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The classical problem of optimal taxation introduced by J. Mirrlees (Rev. Econ.
Stud. 38 (1971), 175-208) is addressed, and it is argued that by using generalized
tax schedules (i.e., schedules which depend not only on individual income but also
on the whole profile of incomes announced by the society} a planner can implement
any Pareto optimum, which stands in great contrast with the set of second-best
Pareto optima attainable via classical tax schedules. The mechanism relies crucially
on the fixed probability distribution of characteristics, and on a finite number of
agents. Journal of Economic Literature Classification Numbers: D78, D82, H21.
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1. INTRODUCTION

The subject of this paper is the theory of optimal taxation (also referred
to by Mirrlees [14] as the theory of optimal public policy), and especially
the theory of optimal income taxation.

In the absence of non-convexities, the second welfare theorem states that
any Pareto optimum can be seen as the outcome of a competitive equi-
librium once adequate lump-sum transfers have been made. Unfortunatly,
a planner needs to know every characteristic of every agent in the society
he faces in order to distribute correctly these lump-sum transfers;' conse-
quently, the second welfare theorem is not very useful in a world where the
planners have a limited knowledge of the individuals, and questions such
as “is it possible to reach Pareto optima different from the competitive
allocation” or more generally “what can a planner do” remain unsolved.

* This paper was written in the Autumn of 1991 when I was visiting the London School of
Economics and Political Science. 1 thank the LSE for the nice atmosphere, and especially
Kevin Roberts, Max Steuer, John Sutton, David Webb, and Alison Hole. I am grateful to
Roger Guesnerie and a referee for their comments.

"Even if the planner possessed this information, such a public policy would hardly be
acceptable for ethical reasons because of its strong lack of anonymity.
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The major advance in this area is due to Mirrlees [137], who recognized
the incentive effects associated with taxation and thus the trade-off between
equity and efficiency considerations that a planner has to take into account
while redistributing wealth among agents by means of a tax system. More
precisely, it is now well known that the set of allocations attainable via a
general income tax schedule (i.e, a function that associates an after tax
income, or consumption level, to a before tax income, or simply income)
does not include the Pareto optima of the economy (at least not all of
them); the Pareto optima among the allocations of this set are usually
referred to as second-best Pareto optima, as opposed to first-best Pareto
optima attainable via lump-sum transfers. A comprehensive survey of these
results can be found in Stiglitz [16]. This is essentially a negative result
(equity is in general not compatible with Pareto-efficiency), and this
provides an argument in favour of a very limited redistribution. The first
question that one needs to address ios the robustness of this result, ie., is
it really impossible for a planner using more sophisticated mechanisms
than classical tax schedules to do better than second-best allocations?

A first answer to this question was proposed by Hammond [8] and
Guesnerie [6]: with a continuum of agents, and if the characteristics of
each agent are drawn at random and independently from the same initial
distribution, then a planner cannot do better than using classical tax
schedules. A counterpart of this result in large finite economies, based on
the same independance assumption, has been proposed by Dierker and
Haller [5]. This principle is sometimes referred to as the taxation principle
(see Guesnerie [7]). Our argument in this paper is that the independence
assumption of these results is too restrictive as compared to what planners
can do in the real world, and that, if we adopt a more justified modelling
of the information structure of this problem, then a planner can implement
much better than second-best allocations by using slightly more com-
plicated mechanisms than classical tax schedules.

First, note that if one wants to design a mechanism which enables
planners to go beyond second-best allocations, then one should have a
look at another well-alive part of incentive theory which tries to analyze,
in very general terms, the set of social choice rules that a planner with a
limited knowledge of individual characteristics can implement: the theory
of implementation. This theory proved that unfortunately very few social
choice rules can be implemented with dominant strategy equilibrium as
the equilibrium concept (see Dasgupta et al. [4] among others), and in the
last decade (especially the most recent years) an important literature
established that by using weaker equilibrium concepts (Nash equilibrium,
bayesian Nash equilibrium,...) one could go beyond this negative result (see
Maskin [11] and Jackson [10]), and even implement almost anything
(see Palfrey and Srivastava [15], Abreu and Sen [3] and Abreu and
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Matsushima [ 1, 2]). However, one can easily argue that many mechanisms
proposed by this literature lack robustness: the intensive use of integer
games (every mechanism a la Maskin), tail-chasing (Palfrey and Srivastava
[15]), stochastic outcomes (the essence of virtual implementation) is some-
what confusing; the two former tricks, hardly usable on a large scale, are
addressed by Jackson [9], while the credibility of the latter in a general
equilibrium setting is questioned by Stiglitz [16, p. 1013]. The size of the
message spaces provides another reason why the classical tax system is
practically implementable while these mechanisms are not, simply because
the transmission of a profile of utility functions might be much less
tractable than the transmission of the income (a real number, or more
generally a euclidean vector), regardless of the equilibrium robustness.
Moreover, an important part of the literature deals with complete
information environments, i.e., relies heavily on the assumption that each
individual agent knows perfectly the characteristics of everybody in the
society while the planner does not; such an assumption is obviously
unacceptable in a general equilibrium setting.

The problem we address in this paper is therefore the following: is it
possible to design more sophisticated mechanisms (possibly with a weaker
equilibrium concept than domipant strategy equilibrium) than non-linear
tax systems in order to do better than second-best allocations, while at the
same time keeping the practical implementability of the classical taxation?
More precisely, we are concerned with the standard two-good income
taxation model of Mirrlees [ 137, with a finite number of agents and a fixed
probability distribution of characteristics. Our main argument is
that, instead of using a tax schedule (i.e., a function that associates a
consumption level to any possible income), a planner should use a schedule
that depends not only on the income of the given taxpayer but also on the
whole profile of incomes of the society; we will refer to such a schedule as
a generalized tax schedule (GTS in the rest of the paper). An agent facing
a GTS will not in general have any dominant strategy (as he does not
know the incomes that will be announded by the other agents), and thus
we will use the equilibrium concept of bayesian Nash equilibrium. Under
the single informational assumption that the probability distribution of
characteristics is common knowledge, and under the usual Spence-Mirrlees
property of indifference curves, we will prove that any first-best allocation
can be implemented via GTS; moreover, the (unique) bayesian Nash equi-
librium will be formed of the unique iteratively non-strongly dominated
strategies, and in fact these will be very simple ones (the common
knowledge assumption will be very partially used in the iterative deletion
process).

The paper is organized as follows: Section 2 presents the model we are
concerned with. Section 3 gives definitions of different implementation
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concepts in this framework. Section 4 presents our main result, ie., the
fact that any Pareto-optimal social choice rule can be implemented via
generalized tax schedules. Section 5 deals with the assumption of public
knowledge of the characteristic distribution, which appeared to be essential
for the results of Section 4, and explains why the independence assumption
(necessary for the taxation principle to hold) is not a good one in this
implementation problem. Section 6 provides concluding comments.

2. THE MODEL

We consider an economy with a set of agents 1= (1;...; n), two goods C
and L, where C is called “consumption” and L is “efficient-labour,” and
(for simplicity) a linear technology such that one unit of efficient labour
produces one unit of consumption. We consider a finite set of charac-
teristics @ =(0,;...;8,), and a set of possible individual preferences over
(consumption, efficient-labour) bundles, represented by well-behaved (say,
continuous, strictly monotonic and strictly quasi-concave) utility functions
(U(C, L, 8,), 1 <s5<r) parametrized by characteristics. Without any loss in
generality, we assume 0 < 8, < --- <0,. Each agent /e / has a characteristic
8(i) € O, and we denote by u={(u(0,); ..; #(0,)) the distribution of charac-
teristics over the set of agents, where u(0,) is the number of agents whose
characteristic is ¢,. Without any loss in generality, we assume that u(8,) is
strictly positive for any se (1;...; r). The set of possible preferences profiles
is

P=((0(i), 1 <i<n)such that #(iels.t 6(i)=6,)=pu(8,)

for any se (1;..;r)).

In the income taxation framework, the usual interpretation of individual
characteristics is in terms of individual productivities (see Mirrlees [1373):
it is usually assumed that there exists a well-behaved utility function
U(C, 1) such that for any 6 @ we have

U(C, L, 0)=U(C, L/O).

One can think of 1 = L/8 as being an objective measure of disutility due to
labour (for instance labour time or effort) appreciated by every agent in the
same manner, and of the &’s as being the abilities or the productivities as
they are priced by the private sector (for instance 6 can be the wage rate).
In this interpretation, the limited knowledge of the planner means that he
can only observe the income L (“efficient-labour”) but not the labour time
or level of effort / {“effective-labour”). In such a setting, a social planner
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might well be interested in redistributing wealth from high ability agents to
low ability agents.

An interesting and very useful property of this family of utility functions
is that the marginal rates of substitution between consumption and
efficient-labour are for every bundle a decreasing function of ability:

V(C, L), 8y(UcAC, L, )U,(C, L, 8))<O0.

This is the so-called Spence-Mirrlees condition of principal-agent theory,
and it is verified here at least as long as “well-behaved” for U(C, 1)
means Ur->0, U,;<0, Uprr<0, U,<0, Uy <0 (note that U, <0 is not
necessary; see Lemma 1, Section 4).

This particular specification of the utulity functions is the standard one;
even if it is intuitively appealing, this is still a rather restrictive assumption.
It can be justified by remarking that if the planner does not make any
assumptions of this kind about the inequalities between individuals, then
he will hardly be able to make any normative judgement on the different
allocations. Anyway, although in the rest of the paper we will refer to this
particular specification of the model (in particular we will sometimes
refer to “effective-labour” /= L/8 as well as to “efficient-labour” L =0/ to
represent allocations), it is worth noting that the results of the paper can
be readily applied to any family of utility functions (U(C, L, 0,), 1 <s<r)
satisfying the Spence-Mirrlees property stated above, whatever the
economic interpretation.

The set of possible allocations is defined by

A= (((C(i), L()=0()) (1)), 1 <i<n)

such that ¥ C(i)< Y L(i)).

iel iel

In this very simple economy, the “competitive equilibrium” in the
absence of government intervention ((C(i), L(i}=0(i){(i}), 1<i<n) is
defined by

Yiel, (C(i), L(i))=ArgMax U(C, L, 8(i)) under C< L,
or (C(i), Ki)) = ArgMax U(C, /) under C < 6(i)l.

(Note that this “competitive equilibrium” is simply the outcome of
individual maximizations without any market coordinating any trading).
This competitive allocation is Pareto-optimal, by the first welfare
theorem, but this is not the only one. For any pe P, let us define A(p) as
the set of Pareto optima of the economy. The second welfare theorem



28 THOMAS PIKETTY

states that for any p = (8(i), ie I) e P, for any a= ((C(¥), L(i})), ieI)e A(p),
there exists a vector of transfers (7(¢), ie I) e R" such that

(a) 3., T()=0.
(b) Viel, (C(), L(i))=ArgMax U(C, L, 8(i)) under C< L+ T(i).

If the planner knows pu but cannot observe p, then he is unable to
distribute the transfers correctly. What can he do if he is however not
satisfied with the competitive allocation implemented for T(i) =0 Vie I (for
instance for equity reasons because he considers that individuals are not
responsible for their low wage rate)? Before trying to answer to this
question, a few other definitions are necessary.

The normative judgements of the planner are embodied in a social choice
rule ¥, which is a mapping from P to A. We say that a social choice rule
is anonymous if it depends only on the characteristics of the agents, not on
their “name”:

(¥: P> A anonymous}

<« (Vp=(0i), ieD), p(0'(i), ie)e P, Vi, jes.t. B(i)=0'()),

then

(C(@D), L) =C"(j) L' ()
where

¥(p)=((C(k), L(k)), kel)
and

P(p") = ((C'(k), L'(k)), ke T)).

Note than an anonymous social choice rule is thus completely determined
by a vector ((C,, L,), 1 <s<r), where (C,, L,) is the bundle for 6 -agents
(i.e., the agents whose characteristic is 8,). In what follows we will use both
formulations and refer to the latter as an “anonymous allocation.”

3. THE IMPLEMENTATION PROBLEM IN THIS FRAMEWORK

To the question “what can a planner do in such an environment”,
implementation theory answers that the most general thing he can do is to
design a game form (alternatively called a “mechanism”), ie., a strategy
space S; for each agent and a mapping = from the vectors of strategies to
A, such that for any preference profile the individually rational strategies
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lead to the outcome chosen by the planner for that particular preference
profile. Thus the problem depends crucially on what one considers to be an
individually rational choice of strategies, i.e., on the equilibrium concept
used. If one chooses dominant strategy equilibrium as the norm of rational
behavior, the definition of implementation is the following:

Given a social choice rule ¥, a game form (S, =) is said to implement ¥
in dominant strategy equilibrium if and only if:

Vp=(6{i),ie)e P,Viel, 3s,(p) e S, such that

(a) Vs;eS,s_,eS_, Uln(s;(p)s_.), 0() = Uln(s;, s _;), 0(i))
(b) =(s;(p),iel)=¥(p)

(c} VY(s{(p),iel) verifying (a), n(s;(p), iel)=¥(p) (with obvious
notations).

In order to define implementation in bayesian Nash equilibrium, one
needs to specify completely the informational structure of the model (i.e.,
what the agents know about the other agents’ characteristics, about the
other agents’ beliefs over these characteristics, and so on...). The weakest
and most natural assumption that one can make in this modei is to assume
that each agent knows only his own type and the distribution wx, and that
this is common knowledge. In this context a mechanism (S, n) is said to
implement a social choice rule ¥ in bayesian Nash equilibrium if and only
if:

Viel, V0 e @, I5,(8) € S, such that

(a) Vs5,€5,Y0€0, 34, Ulnl(s(0), s_,(0(—i))), 0) v(u, 8, 6(—10)) =
Yoo Uln(s,, s_A0(—10))), 8) v, 6, 6(—1))
(b) Vp=1(0(i),ie e P, a(s,(0(i)), ie )= ¥(p)

(¢) V(s)(8),iel) verilying (a), Vp = (8(i), ie )€ P, n(s,(0(i)), ie )=
Y(p) (where v(u, 6, 8(—i)) is the distribution over the other agents’
characteristics 6( —i) deduced from the knowledge of u and 6).

These two definitions define the set of allocations that a planner can
implement by using these equilibrium concepts. The aim of implementation
theoury is to characterize more precisely these sets. However, in this model,
where there is much more structure than in the classical implementation
framework, there exist more usual and seemingly simpler mechanisms to
implement social choice rules: taxation systems. The next and natural
problem is then to determine what can be achieved via tax systems, and
what their link with general mechanisms is.

A taxation system, from a general mechanism design viewpoint, is
characterized by the property that it is strongly anonymous, in the sense
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that the (consumption, efficient-labour) bundle allocated to an agent
depends only on his strategy. The formal definition of a tax schedule is the
following:

A tax schedule is a real function @ such that:

(a) VOe®, 31 (C(8), L(H)) = ArgMax U(C, L, 0) under C < &(L)

(b) Yoo COYUWBYSI g L(BY u(f) (L is the before tax income,
@(L) is the after tax income).

Note that implementation in dominant strategy equilibrium and implemen-
tation in bayesian Nash equilibrium are equivalent as long as one uses
strongly anonymous mechanisms. It is straightforward to show that tax
schedules are the most general strongly anonymous mechanism: any
allocation which can be implemented via a strongly anonymous mechanism
can be implemented by using a well-chosen tax schedule.

The taxation principle wants to say more: it states that this restriction to
strongly anonymous mechanisms is in fact not a restriction since a planner
cannot implement more allocations by using more mechanisms. The
taxation principle is presented in more general contexts than the Mirrlees’
model by Hammond [8] and Guesnerie [6], among others. The Pareto
optima among the set of allocations implementable via tax schedules are
called the second-best Pareto optima. In general, they are different from the
first-best Pareto optima. A complete description of this set is possible when
the utility functions have the particular form considered in Section 2 (see
Stiglitz [16]), and constitutes one of the most classical applications of the
principal-agent model with adverse selection. It is worth noting that the
knowledge of u by the planner is in fact not necessary in order to imple-
ment second-best allocations: for any given set of possible distributions,
a planner who does not know which distribution is the right one can
implement in dominant strategy equilibrium exactly the allocations
implementable when he knows the distribution (see Guesnerie [6]).

The objective of the taxation principle is clear: one should concentrate
on the study of tax schedules, since nothing more can be achieved by using
more sophisticated mechanisms. However, the taxation principle holds only
under the assumption that there is a continuum of agents and that the
characteristics of each agent are drawn at random and independantly from
the same initial distribution. In the case of finite economies, the taxation
principle simply tells us that tax schedules are the most general strongly
anonymous mechanism, without justifying at all the restriction to strongly
anonymous mechanisms. The objective of this paper is precisely to prove
that the strong anonymity restriction (or equivalently the tax schedules
restriction) is no longer justified in the finite economy considered here;
some more sophisticated tax systems should be designed for (Pareto-)
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efficiency reasons. This crucial difference between economies with a
continuum of agents and economies with a finite set of agents is discussed
in Section 5. Moreover, note that if one wants to limit the set of usable
mechanisms because of anonymity considerations, then the correct
restriction should be to use only weakly anonymous mechanisms (i.e.,
mechanisms such that the bundle given to an agent depends only on his
strategy and on the probability distribution induced by the other agents’
strategies; roughly speaking, the “names” do not matter (the formal
definition is left to the reader)). There exist several reasons for doing so:
firstly, weak anonymity is the adequate concept as far as political or ethical
considerations are concerned, while strong anonymity is needlessly
restrictive; secondly, since the planner has exactly the same information
about each individual, no Pareto improvement can be obtained by using
mechanisms which are not weakly anonymous.?

We define generalized tax schedules as the natural extension of tax
schedules derived from weakly anonymous mechanisms exactly in the same
way as tax schedules are derived from strongly anonymous mechanisms.
More precisely:

A generalised tax schedule (GTS) is a mapping @ that associates a
consumption level to an individual income and a distribution of the other
agents’ incomes such that:

(a) V0e®, iel A1 (C(i, 0), L{i, 8))=ArgMax U(C, L, 8) under C <
D(L, v(((L(}, 0'), j#i, 0'€0), 0, u))

(b) Vp=(0(i),ieNeP T, CU 0(i)) n(8() < X, LU 0(i)) u(6(1))
(where v( ) is the distribution of incomes of the rest of the society induced
by the stragegies of the other agents).

The definition of the implementation of a social choice rule via a
generalized tax schedule follows directly from the definition given above. In
particular, it should be clear that implementability via GTS is a special
case of implementability in bayesian Nash equilibrium. We can now prove
that the move from classical tax schedules to GTS strongly increases the
planner’s possibilities.

2 Following Guesnerie [6], one can distinguish between two types of anonymity: horizontal
anonymity and anonymity in influence. Using mechanisms that are not horizontally
anonymous is equivalent to ex anfe randomization over implementable social choices rules,
and thus a planner cannot generate any Pareto improvement by doing so, even if it can be
interesting for a planner with an utilitarian welfare function, because of potential non-
convexities (see Stigitz [ 16, p. 1012]). Using mechanisms that are not anonymous in influence
is equivalent to ex post randomization, which does not seem to be interesting, except if one
makes additionnal assumptions on the different types' risk aversion. Consequently, non-
weakly anonymous mechanisms, while implementing much more social choice rules, are not
interesting as far as Pareto improvements are concerned.

642 61 1-3
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4. FIRST-BEST ALLOCATIONS ARE IMPLEMENTABLE ViA GTS

Before we state and prove our main result, we would like to show with
a single case how it works, since the intuition behind the result is very
simple.

Let us consider the special case where r =2, and 6, > 8,. Let us consider
a first-best anonymous allocation ((C,, L,), (C,, L,)} that involves a large
wealth redistribution from the #,-agents to the 6,-agents so that the
0,-agents prefer the bundle (C,, L,) initially devoted to §,-agents to their
own bundle (C,, L,) (see Fig. 1). Typically, this allocation is not
implementable via a tax schedule. If a planner using tax schedules really
wants to give to the 0,-agents the utility U(C,, L, 6,) then he will have to
lower the utility level of fl,-agents and to use a distortionary taxation
with 0,-agents. Consequently this second-best Pareto optimum (noted
((Cisp»> Lisg)s (Casss Lasg)) in Fig. 1) will not be a first-best Pareto
optimum.
Let now see why a planner using GTS can easily implement the allocation
((Cy, L)), (C5, Ly)). Let €} and C7 be the consumption levels such that

U(C’h Ly, 62)= U(C,, Ly, 02)3 U( ;’» L|a0|)= U(Cz» nggl)-

Ci

(CisesL1s8)

e

v

FIGURE |
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Because of the Spence—Mirrlees property, we have C{ < Cj. Suppose that
the planner say to the agents: if you earn L,, you will consume C,; if
you earn L, and the number of agents whose income equals L, is strictly
superior to u(6,), then you will consume C* (with C{ < C* < C}); if you
earn L, and the number of agents whose income equals L, is inferior or
equal to u(#,), then you will consume C,; if you earn anything different
from L, or L,, then you will consume, say, 0 (or anything preferred by
(C*, L)) or (C,, L,)). Then any 0,-agent facing this GTS has a strictly
dominant strategy: earning L,. Anticipating that the #,-agents will earn
L, any f,-agent has a unique best-response (whatever the strategies of the
other #,-agents): earning L,. Consequently, this GTS implements the first-
best anonymous allocation ((C,, L), (C,, L,)).

The implementation of any anonymous social choice rule ((C,, L)),
1 <!<r) via GTS works exactly in the same way: we design a GTS such
that (a) the type l-agents have a strictly dominant strategy (earning the
income planned for their type); (b) the 2-agents, knowing that the first
type-agents will play their dominant strategy, have only one strategy which
is not strongly dominated (earning the income planned for their type); (c)
and so on....

Being formed of the unique strategies which survive the iterative removal
of strongly dominated strategies, this equilibrium is the unique bayesian
Nash equilibrium: to prove this general game theory result in the special
case of our very simple iterative deletion process, note firstly that any
bayesian equilibrium must involve the strictly dominant strategy of type
1-agents (since by definition this strategy is strictly better than any other
strategy, whatever the other agents’ strategies); secondly any bayesian
equilibrium must also involve the strategy of type 2-agents which strictly
dominates any other strategy once the other agents’ strategies vector
involve the strictly dominant strategy of type 1-agents (since we already
know that this is the case for the other agents’ strategies in any bayesian
equilibrium}); and so on....

We consider this equilibrium structure as a crucial argument in
favour of GTS, especially if one compares it to the confusing and com-
plicated tricks often used to rule out unwanted equilibria. Moreover,
as one can check, only a very partial part of the common knowledge
assumption is used in the iterative deletion process, and the planner
knows which agents’ type needs to have some true beliefs of a superior
order. From a more conventional game theoretic viewpoint, note that
this refinement of Nash equilibrium is the most robust one (it is perfect
in any sense of this term); moreover it is well known that it is implied
by bayesian rationality (i.e. utility maximization given an assessment
of other players’ strategics) and common knowledge of bayesian
rationality, so that the removel of strictly dominated strategies should be
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considered as the rationality concept coming just after dominant strategy
rationality.

As can be intuitively understood by looking at Fig. I, a necessary
condition for designing such a mechanism is that the before tax income L,
of the high productivity agents is larger than the before tax income L, of
the low productivity agents. However, this is a very weak restriction: the
Spence-Mirrlees condition implies that the competitive allocation in the
absence of government intervention involves a higher before tax income for
higher productivity agents, so that if we assume leisure to be a non-inferior
good we get that every (first-best) Pareto optimum characterized by higher
transfers for lower productivity agents involves higher before tax incomes
for higher productivity agents. Since there is a little interest from a nor-
mative point of view for Pareto optima characterized by higher transfers
for higher productivity agents, virtually every Pareto optimum (say, every
acceptable Pareto optimal social choice rule) can be implemented with our
mechanism, even if strictly speaking Pareto optima characterized by a
sufficiently large transfer from low productivity agents to high productivity
agents may well involve higher before tax income for lower productivity
agents. Anyway, regardless of this discussion, we have, as mentioned
above:

LEMMA 1. Let ((C,, L,)=ArgMax U(C, L,0,) under C<SL+T,, 1<
s<r) be the Pareto-optimal anonymous allocation generated by a lump-sum
transfer vector (T,, 1 <s<r)such that 3, ..., T,=0and T,>2 T, for s<t.
Let us assume that the Spence—Mirrlees condition holds and that U(C, 1) is
such that leisure (i.e., —1) is a non-inferior good. Then L_> L, for s> t.

Proof. The Spence—Mirrlees property implies that this monotonicity
property holds for an anonymous allocation ((C,, L,) = ArgMax U(C, L, 8,)
under C< L+ T, 1 €s5<r) for any real number T (see Maskin and Riley
[12, Assumption 3, pp. 4-5]). The very definition of non-inferiority implies
that if ((C, L)=ArgMax U(C, L,0) under C<L+T) and ((C,L')=
ArgMax U(C,L,0) under C<L+T'), with T>T7', then L<L’ This
completes the proof. Note also that the Spence-Mirrlees property and the
non-inferiority of leisure are both implied by the usual assumptions U, >0,
U,<0, Upre-<0, Uy<0, Ugry<O (these assumptions are however not
necessary; the sufficient and necessary conditions on U(C, /) for these two
properties are given by Maskin and Riley [12, pp. 3-5]). C.Q.F.D.

We can now state and prove our main result:

PROPOSTION 1. Let ((C,, L,), 1 Ks<r) be an anonymous allocation such
that L,> L, for s>t. Then there exists a GTS & which implements it via
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iterative removal of strongly dominated strategies (and therefore in bayesian
Nash equilibrium)

Proof. Let ((C,, L,), | <s<r)be an anonymous social choice rule. Let
us assume that there exists a sequence of consumption levels (C,, I <y,
t € r) such that:

Vs, t,u such that 1 <s<r, s<u<r, 1 <t<r, t#s, then
C,,=C, (1)
U(C,,, L, 8,)>U(C,,, L,, 8,).

Let us define a generalized tax schedule @ by

(a) @(L,v)C,, if L=L, and
r=Min{¢' s.t. 1 <t'<rand v(L,)<u(d,)},

forany 1<, 1<r.

(b) @(L,v)=0if L#L, for any se(1;..;r).

Note that this schedule is well defined since for any possible distribution v
of the other agents’ incomes there exists a unique t=Min{¢ st. 1 <¢'<r
and v(L,)< u(6,)}.

Consider an agent i such that (i) =6,. Then, using (1), we have

VL >0, L#L,, Vv, U(L,, ®(L,,v),0,)>U(L, &(L,v),8,).

Therefore L, is a strictly dominant strategy for any 0,-agent. Let us now
consider an agent j such that (/)= 6,. Because of the assumption that j
knows u(6,), j knows that he will never face any income distribution v such
that v(L,) < u(6,). Moreover, using (1),

VL>0, L#L,,  Vvstv(l,)>u#,),
U(L29 ¢(L2’ V), 62) > U(L’ ¢(L, V), 92)

Thus L, is the unique iteratively non-strongly dominated strategy for any
#,-agent. Repeating these remarks until 8(k) =0, leads to the fact that L
is the unique strategy which survives the iterative removal of strongly
dominated strategies for any 8,-agent, for any se (1;...; r). It follows that if
we prove the existence of a sequence (C,,, 1 <s, t<r) verifying (1), then
the proof of the Proposition 2 is complete.
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Consider the following proposition, depending on an integer ne (1;...; r):

P(n):V((0F, L), 1<s<n), C*>0such that 6 <8F<>s<1t (2)

L¥<L¥es<t (3)
There exist (C*¥*, 1 <s<n)((6F, LF), 1 <s<n), C*) such that:

Cx*=(C* Vs, t such that 1 <s, t<n, t#s, then

U(CH*, LF 0F)> U(C}Y*, L}, 6F).

If we prove that P(n) is true for any ne(1;...; r), then we will have proved
the existence of the sequence (C,,1<s, t<r) verifying (1) for any
anonymous allocation ((C,, L,), | <s<r) such that L, is an increasing
function of ability: to see this, just consider the (C,,, 1 <s, t<r) defined
by

Vie(l;..ir),  (Cy, 1<s<)=(CH*, 1<s<i)(((6,, L)), 1<5<1), C))

C,=0 if s>t

We prove that P(r) is true by induction.

P(1}) is trivially true. Assume that P(n) is true. Let us consider any
(((0X, L¥), 1<s<n+1), C*) verifying (2) and (3). We can apply P(n)
to (((0X, LF),2<s<n+1),C*). For any s such that 2<s<n+1,
consider:

C,, Cost. U(CL LY, 0F)=U(CY*, LY, 0F)
U(CY, LE, 0F)=U(CH*, LY, 0F)°

(where the C}* stand for the (CX* 2<s<n+1)((8F L}¥),2<s<
n+ 1), C*) obtained by the application of P(n)).

We claim that max(C,, 2<s<n+1)<min(C,, 2<s<n+1).

To prove this, suppose the opposite, ie., suppose that there exists s, ¢
such that C, < C;.

We can now prove that this leads to a contradiction with the Spence—
Mirrlees property (see Fig. 2): consider the real mappings F(L) and G(L)
defined by

VLe[L¥, LFJU(G(L), L, 8F)=U(CF* L}, 0F)
U(F(L), L, 0F)=U(C**, L}, 0F)

3, and C! are well defined, as a consequence of the strict monotonicity of preferences (so
that then any indifference curve defines a strictly increasing real mapping).
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FIGURE 2

(these mappings are continuous and strictly monotonic due to continuity
and strict monotonicity of preferences) P(n) gives us:

UCH* LY, 6F)>U(Cr*, LF,0F)

Therefore C}*=F(L*)<G(LF). C.<C; implies F(L¥)>G(L¥). The
continuity of the mappings F(L) and G(L) implies the existence of
L'e[L¥, L¥] such that (a) F(L')=G(L') and (b) F'(L’) < G’(L’). But this
contradicts the Spence—Mirrlees condition at the point (F(L’), L’), since
0F <6r

Thus we have proved the existence of a C¥* such that

Vse(2;.5n+1), Cl<CH* < C.

Now, one can check that the (C}*, 1 <s<n+1) satisfy the definition of
the (CF*, 1<s<n+1)(((0F, LF), 1<s<n+1),C*).
Thus we have proved P(n+1). C.QF.D.

It is worth noting that it is possible to smooth the GTS defined in the
proof, exactly as in the case of tax schedules. In particular, the (b) of the
definition of the GTS was only used for convenience and can be removed
(see the example with two characteristics).
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5. ON THE INFORMATION ASSUMPTION

While the common knowledge assumption is not fully necessary (see
the remarks just before Lemma 1), it appeared clearly that the public
knowledge of the characteristics distribution is essential for the efficiency of
the GTS. One can wonder what the meaning of this assumption is, and
whether this is a reasonable one.

Concerning the knowledge of the true distribution by the planner, two
simple justifications can be provided.

First, it can be argued that any planner who wants to do some wealth
redistribution inside a given society needs to have (and has in the real
world) a statistical knowledge of this society. Of course, this knowledge is
very unlikely to be a perfectly precise one, while our mechanism seems to
rely heavily on the assumption that the planner knows the exact u in order
to define properly his GTS. In fact, it does not, as the planner can always
design a GTS using the superior bound of possible sizes of the set of agents
whose allocations is envied; by doing so, the planner will implement an
allocation only slightly different from the Pareto optimum (in the example
with two characteristics, there might be a few 6,-agents who will safely
deviate) as long as the planner’s estimation of the true distribution is not too
bad. This “slight difference” should not be so important for a planner facing
a large economy. These allocations obtained via “GTS with a small margin
of error” should anyway be much better than second-best allocations. This
“continuity” intuition must of course be made more precise.

Second, a planner without any prior on the characteristics distribution
should manage to solve this problem in a dynamic sense (and the real
world planners who do not have sufficient information certainly do so).
To solve theorically such a problem, the fact that the implementation in
dominant strategy equilibrium of second-best allocations does not need the
knowledge of the distribution (see Section 3) might be useful: one could
think to a two-stage mechanism where in the first period a second-best
allocation is implemented in dominant strategy equilibrium and a second
period where a first-best allocation is implemented via GTS by using the
information collected during the first period. Of course, this has also to be
made more precise.

Concerning the knowledge of the distribution by the agents, this should
not be a real problem as long as the planner has the information: he can
simply communicate it to the agents, as long as ‘it is in their own interest
to believe him. Even if difficult related problems are still to be solved
(for example if the agents’ “small error” in their assessment of the true
distribution is in a different direction than the planner’s error), the
argument of the remark above concerning the small deviations due to an
imprecise prior should simplify some of them.
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Another point is worth discussing: it is somewhat confusing that the
knowledge of u is no longer usable by GTS when one models the set of
agents as a continuum (see Section 3 and Guesnerie [6]).* The reason is
that the continuum assumption rules out the possibility for a planner of
allocating in a different way after an individual deviation, while this
possibility exists in the real world (even if a planner can only use it with
a margin of error, as noted above, this threat is enough to deter (most of)
the agents from choosing a “wrong” income in equilibrium). Indeed,
assuming that individual characteristics are drawn from independent
random variables implies for example that the observation of the
characteristics of an important part of the society can never improve our
statistical knowledge of the other part of the society; however, in the real
world, if a planner faces for exemple a society almost equally divided
between “rich” and “poor”, and if the observes that a first half of the
society is, say, poor, then this will greatly improve his statistical knowledge
of the second half of the society, even if he is not completely sure that
everybody in this second half is “rich”; this possibility for improving
information, which is ruled out by the independence assumption, exists in
the real world, should be allowed by the modelling, and is extensively used
by our mechanism. For these reasons, we do think that models with a finite
number of agents and a fixed distribution of characteristics are more
justified ones for this problem.

Note that these remarks can be made from a more general implementa-
tion theory viewpoint: the continuum assumption leads to the extreme case
where the information is completely private, so that the usual incentive
compatibility constraints are fully binding; whereas in a finite economy, we
are just in the opposite case: the information is non-exclusive (that is
anyone’s type can be inferred from the collective information of the other
agents), and this is why much more can be implemented.

Note that the information would still be non-exclusive for example if the
planner did not know the distribution of types but instead (several of ) the
agents knew it, and hence incentive compatibility constraints would still be
avoided: in fact, Abreu and Matsushima’s [3] mechanism implements any
social choice rule if the information is non-exclusive, but this relies on the
concept of virtual implementation (see Section 1), and in the context of
non-virtual implementation non-exclusivity of information does not imply
that anything can be implemented (see Jackson [10]). Anyway, regardless
of the fact that this information assumption does not seem very suitable in

4 As noted above, Dierker and Haller [5] proposed an asymptotic result which extends the
domain of application of the taxation principle to large finite economies; however, the
independence assumption behind the result is exactly the same as under the continuum
modelization.
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the income taxation framework (tax-designers certainly have a better
statistical knowledge of the population than the agents), it seems clear that
a GTS, which provides a muc less sophisticated mechanism than general
game-forms, is only suitable for a mechanism-designer who knows the
distribution of types (at least approximately): it does not seem to be
possible for a planner to extract the distribution of types from the agents
by using a GTS, even if it may be feasible with another mechanism.

6. CoNCLUDING COMMENTS

The results obtained for implementation via GTS are obviously partial,
even if the special type of economy considered in this paper is in fact a very
important one as far as the opportunity of redistribution is concerned.
Moreover, it seems very unlikely that in the general case the use of GTS
does not enable a planner to do much better than with simple tax
schedules.

Second-best allocations are supposed to be the best allocations
attainable by a planner in a context of information asymmetry. In the
light of our results, this definition should be qualified a bit: second-best
allocations are the allocations attainable in such a context by a planner
who restricts himself to the use of tax schedules. As the very refinement of
bayesian Nash equilibrium formed by the equilibrium of our mechanism
should be considered as the smallest weakening of dominant strategy
rationality, it is unclear whether the restriction which founds the actual
understanding of second-best allocations is justified.
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