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Abstract

A power law is the form taken by a large number of surprising empirical regular-
ities in economics and finance. This article surveys well-documented empirical power
laws concerning income and wealth, the size of cities and firms, stock market returns,
trading volume, international trade, and executive pay. It reviews detail-independent
theoretical motivations that make sharp predictions concerning the existence and co-
efficients of power laws, without requiring delicate tuning of model parameters. These
theoretical mechanisms include random growth, optimization, and the economics of
superstars coupled with extreme value theory. Some of the empirical regularities cur-
rently lack an appropriate explanation. This article highlights these open areas for
future research.
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GLOSSARY

Gibrat’s law: A statement saying that the distribution of the percentage growth rate
of a unit (e.g. a firm, a city) is independent of its size. Gibrat’s law for means says that the
mean of the (percentage) growth rate is independent of size. Gibrat’s law for variance says
that the variance of the growth rate is independent of size.

Power law distribution, aka a Pareto distribution, or scale-free distribution: A distri-
bution that in the tail satisfies, at least in the upper tail (and perhaps up to upper cutoff
signifying “border effects”) P (Size > x) ~ kz~¢, where ( is the power law exponent, and k
is a constant.

Universality: A statement that is broadly true, independently of the details for the
model.

Zipf’s law: A power law distribution with exponent ( = 1, at least approximately.

“Few if any economists seem to have realized the possibilities that such in-
variants hold for the future of our science. In particular, nobody seems to have
realized that the hunt for, and the interpretation of, invariants of this type might
lay the foundations for an entirely novel type of theory”

Schumpeter (1949, p. 155), about the Pareto law

1 INTRODUCTION

A power law (PL) is the form taken by a remarkable number of regularities, or “laws”, in

economics and finance. It is a relation of the type Y = kX, where Y and X are variables of
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interest, « is called the power law exponent, and k is typically an unremarkable constant.! It
other terms, when X is multiplied by say 2, then Y is multiplied by 2%, i.e. “Y scales like X
to the a”. Despite or perhaps because their simplicity, scaling questions continue to be very
fecund in generating empirical regularities, and those regularities are sometimes amongst the
most surprising in the social sciences. These regularities in turn motivate theories to explain
them, which sometimes require fresh new ways to look at economic issues.

Let us start with an example, Zipf’s law, a particular case of a distributional power law.
Pareto (1896) found that the upper tail distribution of the number of people with an income

or wealth S greater than a large z is proportional to 1/x¢, for some positive number (:
P(S>ux)=k/x (1)

for some k. Importantly, the PL exponent ( is independent of the units in which the law

2 states that ¢ ~ 1. Understanding what gives rise to the relation

is expressed. Zipf’s law
and explaining the precise value of the exponent (why it is equal to 1, rather than any other
number) are the challenges when thinking about PLs.

To visualize Zipf’s law, take a country, for instance the United States, and order the
cities® by population, #1 is New York, #2 is Los Angeles etc. Then, draw a graph; on the y-
axis, place the log of the rank (N.Y. has log-rank In 1, L.A. log-rank In 2), and on the z-axis,
place the log of the population of the corresponding city, which will be called the “size” of
the city. Figure 1, following Krugman (1996) and Gabaix (1999), shows the resulting plot for
the 135 American metropolitan areas listed in the Statistical Abstract of the United States

for 1991.

We see a straight line, which is rather surprising. There is no tautology causing the data

to automatically generate this shape. Indeed, running a linear regression yields:

LOf course, the fit may be only approximate in practice, and may hold only over a bounded range.

2G. K. Zipf (1902-1950) was a Harvard linguist (on him, see the 2002 special issue of Glottometrics).
Zipf’s law for cities was first noted by Auerbach (1913), and Zipf’s law for words by Estoup (1916). Of
course, G. K. Zipf was needed to explore it in different languages (a painstaking task of tabulation at the
time, with only human computers) and for different countries.

3The term “city” is, strictly speaking, a misnomer; “agglomeration” would be a better term. So for our
purpose, the “city” of Boston includes Cambridge.
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Figure 1: Log Size vs Log Rank of the 135 American metropolitan areas listed in the Statis-
tical Abstract of the United States for 1991.

In Rank = 10.53 — 1.005 In Size, (2)

where the R? is 0.986 and the standard deviation of the slope is 0.01*. In accordance
with Zipf’s law, when log-rank is plotted against log-size, a line with slope -1.0 (( = 1)
appears. This means that the city of rank n has a size proportional to 1/n or in terms of the
distribution,® the probability that the size of a city is greater than some S is proportional
to 1/S: P(Size> S) = a/S¢, with ¢ ~ 1. Crucially, Zipf’s law holds pretty well worldwide,
as we will see below.

Power laws have fascinated economists of successive generations, as expressed, for in-
stance, by the quotation from Schumpeter that opens this article. Champernowne (1953),
Simon (1955), and Mandelbrot (1963) made great strides to achieve Schumpeter’s vision.
And the quest continues. This is what this article will try to cover.

A central question of this review is: What are the robust mechanisms that can explain this

4We shall see in section 7 that the uncorrected OLS procedure returns a too narrow standard error: the
proper one is actually 1.005 (2/135)1/2 = (.12, and the regression is better estimated as In (Rank — 1/2)
(then, the estimate is 1.05). But those are details at this stage.

5Section 7 justifies for correspondance between ranks and probabilities.



PL? In particular, the goal is not only to explain the functional form of the PL, but also why
the exponent should be 1. An explanation should be detail-independent: it should not rely on
the fine balance between transportation costs, demand elasticities and the like, that, as if by
coincidence, conspire to produce an exponent of 1. No “fine-tuning” of parameters is allowed,
except perhaps to say that some “frictions” would be very small. An analogy for detail-
independence is the central limit theorem: if we take a variable of arbitrary distribution, the
normalized mean of successive realizations always has an asymptotically normal distribution,
independently of the characteristic of the initial process, under quite general conditions.
Likewise, whatever the particulars driving the growth of cities, their economic role etc.,
we will see that as soon as cities satisfy Gibrat’s law (see the Glossary) with very small
frictions, their population distribution will converge to Zipf’s law. PLs give the hope of
robust, detail-independent economic laws.

Furthermore, PLs can be a way to gain insights into important questions from a fresh
perspective. For instance, consider stock market crashes. Most people would agree that
understanding their origins is an interesting question (e.g. for welfare, policy and risk man-
agement). Recent work (reviewed later) has indicated that stock market returns follow a
power law, and, furthermore, it seems that stock market crashes are not outliers to the power
law (Gabaix et al. 2005). Hence, a unified economic mechanism might generate not only
the crashes, but actually a whole PL distribution of crash-like events. This can guide theo-
ries, because instead of having to theorize on just a few data points (a rather unconstrained
problem), one has to write a theory of the whole PL of large stock market fluctuations.
Hence, thinking about the tail distribution may give us both insights about the “normal-
time” behavior of the market (inside the tails), and also the most extreme events. Trying to
understand PLs might give us the key to understanding stock market crashes.

This article will offer a critical review of the state of theory and empirics for power laws

6

(PLs) in economics and finance.” On the theory side, accent will be put on the general

6This survey has limitations. In the spirit of the Annual Reviews, it will not try be exhaustive. Also, it
will not be able to do justice to the interesting movement of “econophysics.” The movement is now a large
group of physicists and some economists that use statistical-physics ideas to find regularities in economic
data and write new models. It is a good source of results on PLs. Mastery of this field exceeds the author’s
expertise and the models are not yet easily readable by economists. Durlauf (2005) provides a partial survey.



methods that can be applied in varied contexts. The theory sections are meant to be a
self-contained tutorial of the main methods to deal with PLs.”

The empirical sections will evaluate the many PLs found empirically, and their connection
to theory. I will conclude by highlighting some important open questions.

Many readers may wish to skip directly to sections 5 and 6, which contain a tour of the

PLs found empirically, along with the main theories proposed to explain them.

2 SIMPLE GENERALITIES

I will start with some generalities worth keeping in mind. A counter-cumulative distribution
P (S > x) = ka~¢ corresponds to a density f (z) = k¢z~€¢*+). Some authors call 1 + ¢ the
PL exponent, i.e., the PL exponent of the density. However, when doing theory, it is easier to
work with the PL exponent of the counter-cumulative distribution function; because of the
transformation rule (8). Also, the PL exponent ( is independent of the units of measurement
(rule 7). This is why there is a hope that a “universal” statement (such as ( = 1) might
be said about them. Finally, the lower the PL exponent, the fatter the tails. If the income
distribution has a lower PL exponent, then there is more inequality between people in the
top quantiles of income.

If a variable has PL exponent (, all moments greater than ( are infinite. This means
that, in finite systems, the PL cannot fit exactly. There must be finite size effects. But that
is typically not a significant consideration. For instance, the distribution of heights might
be well-approximated by a Gaussian, even though heights cannot be negative.

Next, PLs have excellent aggregation properties. The property of being distributed ac-
cording to a PL is conserved under addition, multiplication, polynomial transformation, min,
and max. The general rule is that, when we combine two PL variables, the fattest (i.e., the
one with the smallest exponent) PL dominates. Call (x the PL exponent of variable X. The
properties above also hold if X is thinner than any PL, i.e. (x = +00 and F [|X ﬂ is finite

for all positive (, for instance if X is a Gaussian.

"They draw from Gabaix (1999), Gabaix & Ioannides (2004), Gabaix & Landier (2008), and my New
Palgrave entry on the same topic.



Indeed, for Xj, ..., X,, independent random variables and « a positive constant, we have
the following formulas (see Jessen & Mikosch 2006 for a survey) ® how PLs beget new PLs

(the “inheritance” mechanism for PLs)

Xyt X, = Mmin (Cxys - -, Cx,,) (3)
Xy, = min (Cxys - -5 Cx,) (4)
Cnax(X1,...,X,) = min (Cxy, - - -, Cx,) (5)
Cmin(X1,...X,) = Cx; + - +Cx, (6)
Cax = (x (7)

Gre = &, ®)

For instance, if X is a PL variable for (x < oo and Y is PL variable with an exponent
Cy > (x, then X + VY X .Y, max (X,Y) are still PLs with the same exponent (y. This
property holds when Y is normal, lognormal, or exponential, in which case (x = oo.Hence,
multiplying by normal variables, adding non-fat tail noise, or summing over i.i.d. variables
preserves the exponent.

These properties make theorizing with PL very streamlined. Also, they give the empiricist
hope that those PLs can be measured, even if the data is noisy. Although noise will affect
statistics such as variances, it will not affect the PL exponent. PL exponents carry over the
“essence” of the phenomenon: smaller order effects do not affect the PL exponent.

Also, the above formulas indicate how to use PLs variables to generate new PLs.

3 THEORY I: RANDOM GROWTH

This section provides a key mechanism that explains economic PLs: proportional random
growth. The next section will explore other mechanisms. Bouchaud (2001), Mitzenmacher

(2003), Sornette (2004), and Newman (2007) survey mechanisms from a physics perspective.

¥Several proofs are quite easy. Take (8). If P(X >a) = kz~¢, then P (X% >z) = P (X >al/%) =
kx=¢/* so (xa = (x/a.



3.1 Basic Ideas Proportional Random Growth Leads to a PL

A central mechanism to explain distributional PLs is proportional random growth. The
process originates in Yule (1925), which was developed in economics by Champernowne
(1953) and Simon (1955), and rigorously studied by Kesten (1973).

Take the example of an economy with a continuum of cities, with mass 1. Call P} the
population of city i and P; the average population size. We define S! = P?/P;, the “normal-
ized” population size. Throughout this paper, we will reason in “normalized” sizes.” This
way, the average city size remains constant, here at a value 1. Such a normalization is im-
portant in any economic application. As we want to talk about the steady state distribution
of cities (or incomes, etc.), we need to normalize to ensure such a distribution exists.

Suppose that each city i has a population S, which increases by a growth rate 4 from

time ¢ to time t + 1:
Z+1 = 7§+1Sti (9)

Assume that the growth rates ;, ; are identically and independently distributed, with density
f (7), at least in the upper tail. Call G; (x) = P (S{ > x), the counter-cumulative distribution

function of the city sizes. The equation of motion of G is:

Guss (5) = P (St1 > 0) = PlokS! > 2) = P (51> =)

7§+1
& T
_ / ¢, (;) /() dn

Hence, its steady state distribution G, if it exists, satisfies

6s) = [c (g) J () dv. (10)

One can try the functional form G(S) = k/S¢, where k is a constant. Plugging it in gives:

9Economist Levy and physicist Solomon (1996) created a resurgent interest for Champernowne’s random
growth process with lower bound and, to the best of my knowledge, are the first normalization by the average
for them. Wold and Wittle (1957) may be the first to introduce normalization by a growth factor in a random
growth model.



L= [ f (y)dy, ie.
Champernowne’s equation: E [y°] = 1. (11)

Hence, if the steady state distribution is Pareto in the upper tail, then the exponent ( is the
positive root of equation 11 (if such a root exists). °

Equation (11) is fundamental in random growth processes. To the best of my knowledge,
it has been first derived by Champernowne in his 1937 doctoral dissertation, and then pub-
lished in Champernowne (1953). (Publication lags in economics were already long.) The
main antecedent to Champernowne, Yule (1925), does not contain it. Hence, I propose to
name (11) “Champernowne’s equation”.!!

Champernowne’s equation says that: Suppose you have a random growth process that,
to the leading order, can be written S;11 ~ ~v41.5; for large size, where ~ is an i.i.d. random
variable. Then, if there is a steady state distribution, it is a PL with exponent {, where ( is
the positive solution of (11). ¢ can be related to the distribution of the (normalized) growth
rate 7.

Above we assumed that the steady state distribution exists. To guaranty that existence,
some deviations from a pure random growth process (some “friction”) need to be added.
Indeed, if we didn’t have a friction, we would not get a PL distribution. Indeed, if (9)
held throughout the distribution, then we would have InS! = InSj + >°._, In~},,, and
the distribution would be lognormal without a steady state (as var (InS}) = var (In S}) +
var (In-y) t, the variance growth without bound). This is Gibrat’s (1931) observation. Hence,
to make sure that the steady state distribution exists, one needs some friction that prevents
cities or firms from becoming too small. Mechanically, potential frictions represent a positive
constant added in (9) that prevents small entities from becoming too small (section 3.3), a

lower bound for sizes, with “reflecting barrier” (section 3.4). Economically, those forces

might be a death rate, a fixed cost that prevents very small firms from operating, or even

0 Later we will see arguments showing that the steady state distribution is indeed necessarily PL.

" Champernowne also (like Simon) programmed chess-playing computers (with Alan Turing), and invented
“Champernowne’s number”, which consists of a decimal fraction in which the decimal integers are written
sucessively: .01234567891011121314...99100101... It is apparently interesting in computer science as it seems
“random” to most tests.

10



very cheap rents for small cities. This is what the later sections will detail. Importantly, the
particular force that happens for small sizes typically does not affect the PL exponent in the
upper tail. In equation (11), only the growth rate in the upper tail matters.

The above random growth process also can explain the Pareto distribution of wealth,

interpreting S as the wealth of individual i.

3.2 Zipf’s Law: A First Pass

We see that proportional random growth leads to a PL with some exponent (. Why should
the exponent 1 appear in so many economic systems? The beginning of an answer (developed
later) is the following.!? Call the mean size of units S. It is a constant, because we have
normalized sizes by the average size of units. Suppose that the random growth process
(9) holds throughout most the distribution, rather than just in the upper tail. Take the
expectation on (9). This gives: S = E[S;1] = E[y] E[S;] = E[] S. Hence,

Ely]=1

(In other terms, as the system has constant size, we need E [S;1] = E[S;]. The expected
growth rate is 0 so F'[y] = 1.) This implies Zipf’s law as ¢ = 1 is the positive solution of
Eq. 11. Hence, the steady state distribution is Zipf, with an exponent { = 1.

The above derivation is not quite rigorous, because we need to introduce some friction
for the random process (9) to have a solution with a finite mean size. In other terms, to get
Zipf’s law, we need a random growth process with small frictions. The following sections
introduce frictions and make the above reasoning rigorous, delivering exponents very close
to 1.

When frictions are large (e.g. with reflecting barrier or the Kesten process in Gabaix,
Appendix 1), a PL will arise but Zipf’s law will not hold exactly. In those cases, small
units grow faster than large units. Then, the normalized mean growth rate of large cities

is less than 0, i.e. F[y] < 1, which implies ( > 1. In sum, proportional random growth

12Here I follow Gabaix (1999). See the later sections for more analytics on Zipf’s law, and section 3.5.1
for some history.

11



with frictions leads to a PL and proportional random growth with small frictions leads to a

special type of PL, Zipf’s law.

3.3 Rigorous Approach via Kesten Processes

One case where random growth processes have been completely rigorously treated are the
“Kesten processes”. Consider the process S; = A;S;_1+ By, where (A, B;) are i.i.d. random
variables. Note that if S; has a steady state distribution, then the distribution of S; and
AS; + B are the same, something we can write S =% AS 4+ B. The basic formal result is

from Kesten (1973), and was extended by Verwaat (1979) and Goldie (1991).

Theorem 1 (Kesten 1973) Let for some ¢ > 0,
E [\Aﬂ ~1 (12)

and E ||A|* max (In (A),0)| < o0, 0 < E [|B|<] < 00. Also, suppose that B/(1 — A) is not
degenerate (i.e., can take more than one value), and the conditional distribution of In |A]
given A # 0 is non-lattice (i.e. has a support that is not included in \Z for some \), then

there are constant k. and k_, at least one of them positive, such that
2P (S > 1) —ky, 5P (S < —x) — k_ (13)

as v — oo, where S is the solution of S =% AS + B. Furthermore, the solution of the

recurrence equation Si 1 = Ai1S; + Biy1 converges in probability to S as t — oo.

The first condition is none other that “Champernowne’s equation” (11), when the gross
growth rate is always positive. The condition £ [|B ]C] < oo means that B does not have
fatter tails than a PL with exponent ¢ (otherwise, the PL exponent of S would presumably
be that of B).

Kesten’s theorem formalizes the heuristic reasoning of section 2.2. However, that same
heuristic logic makes it clear that a more general process will still have the same asymptotic

distribution. For instance, one may conjecture that the process S; = ApS;—1 + ¢ (Si—1, By),

12



with ¢ (S, B;) = o(S) for large x should have an asymptotic PL tail in the sense of (13),
with the same exponent (. Such a result does not seem to have been proven yet.
To illustrate the power of the Kesten framework, let us examine an application to ARCH

processes.

Application: ARCH processes have PL tails Consider an ARCH process: 02 =

aat{l&f + 3, and the return is £,0,_1, with &; independent of o;_;. Then, we are in the
framework of Kesten’s theory, with S; = 02, A, = ae?, and B, = 3. Hence, squared
volatility o follows a PL distribution with exponent ¢ such that F [(as? +1)C} = 1. By rule
(8), that will mean (, =2(. As [5%&] <1, (. > 2(, and rule (4) implies that returns will
follow a PL, ¢, = min ((,,{.) = 2¢. The same reasoning will show that GARCH processes

have PL tails.

3.4 Continuous-Time Approach

This subsection is more technical and the reader may wish to skip to the next section. The
benefit, as always, is that continuous-time makes calculations easier.

3.4.1 Basic tools, and random growth with reflected barriers

Consider the continuous time process:
dXt =u (Xt, t) dt +o0o (Xt, t) dZt

where z; is a Brownian motion. The process X; could be reflected at some points. Call
f (z,t) the distribution at time t. To describe the evolution of the distribution, given initial

conditions f (z,t = 0), the basic tool is the Forward Kolmogorov equation:

o2 (x,t)
2

Ouf (2,1) = —0, [ (1) f (2,)] + Ons [ /@, t)} (14)

where 0, f = 0f/0t, O, f = Of /Ox and O,,f = 0*f/0x?. Tts major application is to calculate
the steady state distribution f (x), in which case 0, f (z) = 0.

13



As a central application, let us solve for the steady state of a random growth process. We
have u (X) = ¢gX, o(X) =vX. In term of the discrete time model (9), this corresponds,
symbolically, to v = 1 + gdt + vdz;. We assume that the process is reflected at a size
Smin: if the processes goes below Sy, it is brought back at Sui,. Above Spyin, it satisfies
dSy = 11 (St) dt+ 0 (St) dz;. Symbolically, Siya = max (Smin, St + o (St) dt + o (St) dzt, Siin)-
Thus respectively, g and v are the mean and standard deviation of the growth rate of firms
when they are above the reflecting barrier.

The steady state is solved by plugging f (x,t) = f (z) in (14), so that 0;f (z,t) = 0. The

Forward Kolmogorov equation gives for x > Spn:

2

0= =0,y f (O] + 0. | 521 ()

Let us examine a candidate PL solution
f(z)=Co ¢ (15)

Plugging this into the Forward Kolmogorov Equation gives:

2,.2 2

0= =0, [g2Ce™] + Do l“; Cx—C—I] — Ot [gg + % (C—1) g}

This equation has two solutions. Omne, ( = 0, does not correspond to a finite distribution:

f ;: _ [ (x) dz diverges. Thus, the right solution is:

Czl—ﬁ (16)

Eq. (16) gives us the PL exponent of the distribution.!® Note that, for the mean of the
process to be finite, we need ( > 1, hence g < 0. That makes sense. As the total growth
rate of the normalized population is 0 and the growth rate of reflected units is necessarily

positive, the growth rate of non-reflected units (¢) must be negative.

13This also comes heuristically also from eq. 11, applied to v, = 1 + gdt + odz;, and by Ito’s lemma
1=E [ﬂ =1+ Cgdt + ¢ (C — 1)v?/2dt.

14



Using economic arguments that the distribution has to go smoothly to 0 for large x, one
can show that (15) is the only solution. Ensuring that the distribution integrates to a mass

1 gives the constant C' and the distribution f () = (z=¢~19 ¢ . Then:

min*

P(S>z)= (Si) B (17)

Hence, we have seen that random growth with a reflecting lower barrier generates a
Pareto — an insight in Champernowne (1953).

Why would Zipf’s law hold then? Note that the mean size is:

S /oo flx)d /Oo Ca¢18S, dr = ¢SS [“”_le ¢ s
= T r)axr = T QT AL = : = ~ 7 “min
S S min min _C + 1 S C- _1

Thus, we see that the Zipf exponent is:'4

1

C: 1— Smin/g.

(18)
We find again a reason for Zipf’s law: when the zone of “frictions” is very small (Spn /§
small), the PL exponent goes to 1. But, of course, it can never exactly be at Zipf’s law: in
(18), the exponent is always above 1.
Another way to “stabilize” the process, so that it has a steady state distribution, is to

have a small death rate. This is to what we next turn.

3.4.2 Extensions with birth, death and jumps

Birth and Death We enrich the process with death and birth. We assume that one
unit of size = dies with Poisson probability § (x,t) per unit of time dt. We assume that a

quantity j (z,t) of new units is born at size x. Call n (x,t) dz the number of units with size

141n a simple model of cities, the total population is exgenous, and the number of cities is exogenous, to
the total average (normalized) size per city S, is exogenous. Likewise, volatility v and Sy, are exogenous.
However, the mean growth rate g of the cities that are not reflected is endogenous. It “will self-organize,”
so as to satisfy (16) and (18). Still, the total growth rate of normalized size remains 0.

15



in [z, + dx). The Forward Kolmogorov Equation describes its evolution as:

o2 (z,t)

o (x,t) = =0, [u(z,t)n (z,t)] + Ops [ n(zx, t)} —0(z,t)n(z,t)+j(x,t) (19)

Application: Zipf’s law with death and birth of cities rather than a lower
barrier As an application, consider a random growth law model where existing units grow
at rate g and have volatility o. Units die with a Poisson rate 9, and are immediately “reborn”
at a size S,. So, for simplicity, we assume a constant size for the system: the number of units
is constant. There is no reflecting barrier: instead, the death and rebirth processes generate
the stability of the steady state distribution. (See also Malevergne et al. 2008).

The Forward Kolmogorov Equation (outside the point of reinjection S,), evaluated at

the steady state distribution f (x), is:

0= 0, [gaf ()] + e [—f @) s @)

We look for elementary solutions of the form f (x) = Cz~¢~!. Plugging this into the above
equation gives:
via?
0=—0, [gza™" "] + Ops lTxcll — 6zt

i.e. 2
0=Cg+TCC—1) =3 (20)

This equation now has a negative root (_, and a positive root (. The general solution
for z different from S, is f () = C_a=¢- 1+ C 2~ ~1. Because units are reinjected at size

S, the density f could be positive at that value. The steady-state distribution is:'?

C(x/S,) " forz< S,

fl@)= C(x/S,) " forz> S,

BFor £ > S,, we need the solution to be integrable when = — oo: that imposes C_ = 0. For z < S,, we
need the solution to be integrable when z — 0: that imposes C'y = 0.
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and the constant is C' = —(,(_/({y — (). This is the “double Pareto” (Champernowne
1953, Reed 2001).

We can study how Zipf’s law arises from such a system. The mean size of the system is:

- ¢C
S =25, 21
D00 2y
As (20) implies that ¢, (. = —2§/0?, this equation can be rearranged as:
20/ 02> S, 9
-1+ = =20
€= (14 27) = Zaago
S

Hence, we obtain Zipf’s law (¢, — 1) if either (i) 2 — 0 (reinjection is done at very
small sizes), or (ii) 6 — 0 (the death rate is very small). We see again that Zipf’s law arises

when there is random growth in most of the distribution and frictions are very small.

Jumps As another enhancement, consider jumps: with some probability pdt, a jump oc-
curs, the process size is multiplied by ét, which is stochastic and i.i.d. X; 4 = (1 + pdt + odz + étht> X
where dJ; is a jump process: d.J; = 0 with probability 1 — pdt and dJ; = 1 with probability
pdt.
This corresponds to a “death” rate § (z,t) = p, and an injection rate j (z,t) = pE [n (z/G,t) /G].
The latter comes from the fact that that injection at a size above x comes from a size above

x/G. Hence, using (19), the Forward Kolmogorov Equation is:

o? (x,1) n(z/G,t)

n (z, t)] +pE [T —n(zt)] (22)

em@w:—@mwwnmm+@4
where the last expectation is taken over the realizations of G.

Application: Impact of death and birth in the PL exponent Combining (19)

and (22), the Forward Kolmogorov Equation is:

o2 (z,t) n(x/G,t)
G
(23)

o (z,t) = =0, [ (z,t) n (2, )] +0s { n(z, t)] —0 (z,t)n(x,t)+j (x,t)+pE l —n(x,t)
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It features the impact of mean growth (u), volatility (o), birth (j), death (J), and jumps
(@).

For instance, take random growth with p(x) = g.x, o (z) = 0.z, death rate 0, and
birth rate v, and apply this to a steady state distribution n (x,t) = f (x). Plugging f (x) =
f(0)x=¢"1 into (23) gives:

W27 1
0=—6z ' +vr -0, (g*x_c) + Osz (%x ¢ 1) +E l<£) — — 1]

1.e.
2

0:—5+u+g*<+%c(c—1)+pE[G<—1} (24)

We see that the PL exponent ( is lower (the distribution has fatter tails) when the growth
rate is higher, the death rate is lower, the birth rate is higher, and the variance is higher (in
the domain ¢ > 1). All those forces make it easier to obtain large firms in the steady state

distribution.6

3.4.3 Deviations from a power law

Recognizing the possibility that Gibrat’s Law might not hold exactly, Gabaix (1999) also
examines the case where cities grow randomly with expected growth rates and standard
deviations that depend on their sizes. That is, the (normalized) size of city i at time ¢ varies

according to:

ds,
—St = g(St)dt + U(St)d2t7 (25)
t

where ¢g(S) and v?(S) denote, respectively, the instantaneous mean and variance of the
growth rate of a size S city, and z; is a standard Brownian motion. In this case, the
limit distribution of city sizes will converge to a law with a local Zipf exponent, ((S) =
—%% —1, where f(.S) denotes the stationary distribution of S. Working with the forward
Kolmogorov equation associated with equation (25) yields:

O F(S.1) =~ (9(5) 5 F(S,1)) + 32 (17(S) 8 £(5.1)). (26)

16The Zipf benchmark with ¢ = 1 has a natural interpretation which will be discussed in a future paper.
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The local Zipf exponent that is associated with the limit distribution, When -f(S,t) =0, 1is

given by:
9(8) . S 0v*(S)
v3(S)  w3(S) 9S

where ¢(.5) is relative to the overall mean for all city sizes. We can verify Zipf’s law here:

((S)=1-2 (27)

when the growth rate of normalized sizes (as all cities grow at the same rate) is 0 (g (S) = 0),
and variance is independent of firm size (61;6;5) = 0), then the exponent is ( (S) = 1.
On the other hand, if small cities or firms have larger standard deviations than large cities

(S) < 0, and the exponent

(perhaps because their economic base is less diversified), then 2
(for small cities) would be lower than 1.

The equation allows us to study deviations from Gibrat’s law. For instance, it is con-
ceivable that smaller cities have a higher variance than large cities. Variance would decrease
with size for small cities, and then asymptote to a “variance floor” for large cities. This
could be due to the fact that large cities still have a very undiversified industry base, as the
examples of New York and Los Angeles would suggest. Using Equation (27) in the baseline
case where all cities have the same growth rate, which forces g (S) = 0 for the normalized
sizes, gives: ((S) = 1+ dlnv?(S)/In S, with dInv?(S)/0InS < 0 in the domain where

volatility decreases with size. So, potentially, this might explain why the ( coefficient is

lower for smaller sizes.

3.5 Complements on Random Growth
3.5.1 Simon’s and other models

This may be a good time to talk about some other random growth models. The simplest
is a model by Steindl (1965). New cities are born at a rate v and with a constant initial
size. Existing cities grow at a rate 7. The result is that the distribution of new cities will
be in the form of a PL, with an exponent ( = v/, as a quick derivation shows!”. However,

this is quite problematic as an explanation for Zipf’s law. It delivers the result we want,

17"The cities of size greater than S are the cities of age greater than a = In S/v. Because of the form of
the birth process, the number of these cities is proportional to e = e vIn5/v = §=¥/7 which gives the
exponent ¢ = v/7.

—va

19



namely the exponent of 1, only by assuming that historically ¥ = ~. This is quite implausible
empirically, especially for mature urban systems, for which it is very likely that v < 7.

Steindl’s model gives us a simple way to understand Simon’s (1955) model (for a particu-
larly clear exposition of Simon’s model, see Krugman 1996, and Yule 1925 for an antecedent).
New migrants (of mass 1, say) arrive at each period. With probability 7, they form a new
city, whilst with probability 1 — 7 they go to an existing city. When moving to an existing
city, the probability that they choose a given city is proportional to its population.

This model generates a PL, with exponent ( = 1/(1 — ). Thus, the exponent of 1
has a very natural explanation: the probability 7 of new cities is small. This seems quite
successful. And indeed, this makes Simon’s model an important, first explanation of Zipf’s
law via small frictions. However, Simon’s model suffers from two large drawbacks that do
not allow it to be a acceptable solution for Zipf’s law.!®

First, Simon’s model has the same problem as Steindl’s model (Gabaix, 1999, Appendix
3). If the total population growth rate is 7y, Simon’s model generates a growth rate in the
number of cities equal to v = 7, and a growth rate of existing cities equal to v = (1 — 1) 7.
Hence, Simon’s model implies that the rate of growth of the number of cities has to be
greater than the rate of growth of the population of the existing cities. This essential model
feature is empirically quite unlikely!?.

Second, the model predicts that the variance of the growth rate of an existing unit of size
S should be 0% (S) = k/S. (Indeed, in Simon’s model a unit of size S receives, metaphorically
speaking, a number of independent arrival shocks proportional to S). Larger units have a
much smaller standard deviation of growth rate than small cities. Such a strong departure
from Gibrat’s law for variance is almost certainly not true, for cities (Ioannides & Overman
2003) or firms (Stanley et al. 1996).

This violation of Gibrat’s law for variances with Simon’s model seems to have been
overlooked in the literature. Simon’s model has enjoyed a great renewal in the literature on

the evolution of web sites (Barabasi & Albert 1999). Hence, it seems useful to test Gibrat’s

18Krugman (1996) also mentions that Simon’s model may converge too slowly compared to historical
time-scales.

19This can be fixed by assuming that the “birth size” of a city grows at a positive rate. But then the
model is quite different, and the next problem remains.
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law for variance in the context of web site evolution and accordingly correct the model.

Till the late 1990s, the central argument for an exponent of 1 for the Pareto was still
Simon (1955). Other models (e.g. surveyed in Carroll 1982 and Krugman 2006) have no
clear economic meaning (like entropy maximization) or do not explain why the exponent
should be 1. Then, two independent literatures, in physics and economics, entered the fray.

Levy & Solomon (1996) was an influential impulse on power laws, that addresses the
Zipf case at most elliptically; however, Malcai et al. (1999) do spell out a mechanism for
Zipf’s law. Marsili & Zhang’s (1998) model can be tuned to yield Zipf’s law, but that tuning
implies that gross flow in and out of a city is proportional to the city size squared (rather
than linear in it), which is most likely counterfactually huge for large cities. Zanette &
Manrubia (1997, 1998) and Marsili et al. (1998b) present arguments for Zipf’s law (see
also a critique by Marsili et al. 1998a, and on the following page Z&M’s reply). Z&M
postulate a growth process v; that can take only two values, and insist on the analogy with
the physics of intermittency. Marsili et al. analyze a rich portfolio choice problem, and
highlight the analogy with polymer physics. As a result, their interesting works arguably
may not elucidate the generality of the mechanism for Zipf’s law outlined in section 3.2.

In economics, Krugman (1996) revived the interest for Zipf’s law. He surveys existing
mechanisms, finds them insufficient, and proposes that Zipf’s law may come from a power
law of natural advantages, perhaps via percolation. But the origin of the exponent of 1 is
not explained. Gabaix (1999), written independently of the above physics papers, identifies
the mechanism outlined in section 3.2, establishes when the Zipf limit obtains in a quite
general way (with Kesten processes, and with the reflecting barrier) and derives analytically
the deviations from Zipf’s law via deviations from Gibrat’s law. It also provides a baseline
economic model with constant returns to scale. Afterwards, a number of papers (cited
elsewhere in this review) developed further economic models for Gibrat’s law and/or Zipf’s

law.

3.5.2 Finite number of units

The above arguments are simple to make when there is a continuum number of cities or

firms. If there is a finite number, the situation is more complicated, as one cannot directly
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use the law of large numbers. Malcai et al. (1999) study this case. They note that if the
distribution has support [Swmin, Smax), and the Pareto form f (z) = kz=¢~! and there are N
cities with average size S = [z f (z)dx/ [ f (z) dz, then necessarily:

C -1 1- (Smin/Smax)g g

1 =
C 1— (Smin/smax)C*l Smin

(28)

This formula gives the Pareto exponent (. Malcai et al. actually write this formula for
Spax = NS, though one may prefer another choice, the logically maximum size Sy, = N S—
(N — 1) Sin. For very large number of cities N and Syay — 00, and a fixed Sy, /S, that gives
the simpler formula (18). However, for a finite N, we do not have such a simple formula, and
¢ will not tend to 1 as Spin /S — 0. In other terms, the limits ¢ (N, Snin/ S, Smax (N, S, Smin))
for N — 0o and Syin/S — 0 do not commute. Malcai et al. make the case that in a variety
of systems, this finite N correction can be important. In any case, this reinforces the feeling
that it would be nice to elucidate the economic nature of the “friction” that prevents small
cities form becoming too small. This way, the economic relation between N, the minimum,

maximum and average size of a firm would be more economically pinned down.

4 THEORY II: OTHER MECHANISMS YIELDING
POWER LAWS

We first start with two “economic” ways to obtain PLs: optimization and “superstars” PL

models.

4.1 Matching and Power Law Superstars Effects

Let us next see that a purely economic mechanism to generate PLs is in matching (possibly
bounded) talent with large firms or large audience — the economics of superstars (Rosen
1982). While Rosen’s model is qualitative, a calculable model is provided by Gabaix &
Landier (2008), whose treatment we follow here. That paper studies the market for chief

executive officers (CEOs).
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Firm n € [0, N] has size S (n) and manager m € [0, N] has talent 7" (m). As explained
later, size can be interpreted as earnings or market capitalization. Low n denotes a larger firm
and low m a more talented manager: S’ (n) < 0, 7" (m) < 0. In equilibrium, a manager with
talent index m receives total compensation of w (m). There is a mass n of both managers
and firms in interval [0,n], so that n can be understood as the rank of the manager, or a
number proportional to it, such as its quantile of rank. The firm number n wants to pick
an executive with talent m, that maximizes firm value due to CEO impact, C'S (n)" T (m),

minus CEO wage, w (m):
max S (n)+CS (n)" T (m) —w (m) (29)

If v = 1, CEO impact exhibits constant returns to scale with respect to firm size.
Eq. 29 gives C'S (n)" T’ (m) = w' (m). As in equilibrium there is associative matching:
m=n,

w' (n) =0C8 (n)"T' (n), (30)

i.e. the marginal cost of a slightly better CEO, w’ (n), is equal to the marginal benefit of
that slightly better CEO, CS (n)” T (n). Equation (30) is a classic assignment equation
(Sattinger 1993, Tervio 2008).

Specific functional forms are required to proceed further. We assume a Pareto firm size

distribution with exponent 1/c: (we saw that a Zipf’s law with o ~ 1 is a good fit)
S(n)=An"" (31)

Section 4.2 will show that, using arguments from extreme value theory, there exist some
constants [ and B such that the following equation holds for the link between talent and

rank in the upper tail (perhaps up to a “slowly varying function”):
T' (z) = —Ba" ™, (32)

This is the key argument that allows Gabaix & Landier (2008) to go beyond antecedents
such as Rosen (1981) and Tervio (2008).
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Using functional form (32), we can now solve for CEO wages. Normalizing the reservation

wage of the least talented CEO (n = N) to 0, Equations 30, 31 and 32 imply:

A"BC
ay —f

N
w(n) = / AYBOu= "1y = [n’(‘”’m — Nf(‘”*m] (33)
In what follows, we focus on the case where ay > 3, for which wages can be very large, and

consider the domain of very large firms, i.e., take the limit n/N — 0. In Eq. 33, if the term

n~(@7=h) becomes very large compared to N~ and w (N):

.
- (n) _ ;47 ?(; n—(av—ﬁ)’ (34)

A Rosen (1981) “superstar” effect holds. If 5 > 0, the talent distribution has an upper
bound, but wages are unbounded as the best managers are paired with the largest firms,
which makes their talent very valuable and gives them a high level of compensation.

To interpret Eq. 34, we consider a reference firm, for instance firm number 250 — the
median firm in the universe of the top 500 firms. Call its index n., and its size S(n.). We
obtain that, in equilibrium, for large firms (small n), the manager of index n runs a firm of

size S (n), and is paid:?

w (n) = D (n.) S(n.)"*S (n) ="/ (35)
where S(n.) is the size of the reference firm and D (n,) = 70277%") is independent of the

firm’s size.
We see how matching creates a “dual scaling equation” (35), or double PL, which has
three implications:

(a) Cross-sectional prediction. In a given year, the compensation of a CEQ is proportional

20The proof is thus. As S = An~%, S(n,) = An;®, n,T" (n,) = —Bnf, we can rewrite Eq. 34,

(ay — B)w (n) = AYBCn~(@7=F) = CBnf . (An;a)ﬁ/a . (An*a)(’y_ﬁ/a)
= —Cn. T (n.) S(n,)P/*S () =P/«
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to the size of his firm to the power v — 3/a, S(n)7=#/«

(b) Time-series prediction. When the size of all large firms is multiplied by A (perhaps
over a decade), the compensation at all large firms is multiplied by A7. In particular, the
pay at the reference firm is proportional to S(n.)".

(¢) Cross-country prediction. Suppose that CEO labor markets are national rather than
integrated. For a given firm size S, CEO compensation varies across countries, with the
market capitalization of the reference firm, S (n*)ﬁ/ @, using the same rank n, of the reference
firm across countries.

Section 5.5 presents much evidence for prediction (a), the “Roberts’ law in the cross-
section of CEO pay. Gabaix & Landier (2008) presents evidence supporting in particular (b)
and (c), for the recent period at least.

The methodological moral for this section is that (35) exemplifies a purely economic
mechanism that generates PLs: matching, combined with extreme value theory for the
initial units (e.g. firm sizes) and the spacings between talents.?! Fairly general conditions

yield a dual scaling relation (35).

4.2 Extreme Value Theory and Spacings of Extremes in the Upper
Tail

We now develop the point mentioned in the previous section: Extreme value theory shows
that, for all “regular” continuous distributions, a large class that includes all standard distri-
butions, the spacings between extremes is approximately (32). The importance of this point
in economics seems to have been seen first by Gabaix & Landier (2008), whose treatment

we follow here. The following two definitions specify the key concepts.

Definition 1 A function L defined in a right neighborhood of 0 is slowly varying if: Yu > 0,
lim, o L (ux) /L (z) = 1.

Prototypical examples include L (z) = a or L(x) = alnl/z for a constant a. If L is

slowly varying, it varies more slowly than any PL z°, for any non-zero .

21Put another way, the next section 4.2 shows a way to generates PLs, and matching generates new PLs
from other PLs.
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Definition 2 The cumulative distribution function F' is reqular if its associated density f =
F’ is differentiable in a neighborhood of the upper bound of its support, M € RU{+o0}, and

the following tail index & of distribution F' exists and is finite:
(36)

Embrechts et al. (1997, p.153-7) show that the following distributions are regular in the
sense of Definition 2: uniform (§ = —1), Weibull (¢ < 0), Pareto, Fréchet (¢ > 0 for both),
Gaussian, lognormal, Gumbel, lognormal, exponential, stretched exponential, and loggamma
(¢ =0 for all).

This means that essentially all continuous distributions usually used in economics are
regular. In what follows, we denote F (t) = 1—F (t) . £ indexes the fatness of the distribution,
with a higher £ meaning a fatter tail.??

Let the random variable 7' denote talent, and F its countercumulative distribution:
Fit)=r (T > t), and f (t) = -F (t) its density. Call z the corresponding upper quantile,
ie.x =P (T > t) = F (t). The talent of CEO at the top z-th upper quantile of the talent
distribution is the function 7' (z): T (z) = 7 (x), and therefore the derivative is:

T (2) = ~1/f (F ' (@) (37)

Eq. 32 is the simplified expression of the following Proposition, proven in Gabaix &

Landier (2008).%

Proposition 1 (Universal functional form of the spacings between talents). For any reqular

22¢ < 0 means that the distribution’s support has a finite upper bound M, and for ¢ in a left neighborhood
of M, the distribution behaves as F (t) ~ (M — 15)71/6 L (M —t). This is the case that will turn out to be
relevant for CEO distributions. £ > 0 means that the distribution is “in the domain of attraction” of the
Fréchet distribution, i.e. behaves similar to a Pareto: F (t) ~ t~*/¢L (1/t) for t — oco. Finally £ = 0 means
that the distribution is in the domain of attraction of the Gumbel. This includes the Gaussian, exponential,
lognormal and Gumbel distributions.

23Numerical examples illustrate that the approximation of 77 (z) by —Bxf~! may be quite good (Gabaix
& Landier 2008, Appendix II).
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distribution with tail index —f3, there is a B > 0 and slowly varying function L such that:
T' (x) = —B2" 'L (2) (38)

In particular, for any € > 0, there exists an x1 such that, for x € (0,11), BaxP~1te <

~T"(x) < BaP~1-=.

We conclude that (32) should be considered a very general functional form, satisfied,
to a first degree of approximation, by any usual distribution. In the language of extreme
value theory, —/ is the tail index of the distribution of talents, while « is the tail index of
the distribution of firm sizes. Hsu (2008) uses this technology to model the causes of the

difference between city sizes.

4.3 Optimization with Power Law Objective Function

The early example of optimization with a power law objective function is the Allais-Baumol-
Tobin model of demand for money. An individual needs to finance a total yearly expenditure
E. She may choose to go to the bank n times a year, each time drawing a quantity of cash
M = E/n. But, then she forgoes the nominal interest rate i she could earn on the cash,
which is M per unit of time, hence Mi/2 on average over the whole year. Fach trip to the
bank has a utility cost ¢, so that the total cost from n = E/M trips is cE/M. The agent
minimizes total loss: miny, Mi/2 + c¢E/M. Thus:

M= \/g (39)

The demand for cash, M, is proportional to the nominal interest rate to the power —1/2, a
nice sharp prediction given the simplicity of the model.

In the above mechanism, both the cost and benefits were PL functions of the choice
variable, so that the equilibrium relation is also a PL. As we saw in section 3.1, beginning a
theory with a power law yields a final relationship power law. Such a mechanism has been
generalized to other settings, for instance the optimal quantity of regulation (Mulligan &

Shleifer 2004) or optimal trading in illiquid markets (Gabaix et al. 2003, 2006). Mulligan

27



(2002) presents another derivation of the —1/2 interest rate elasticity (39) of money demand,

based on a Zipf’s law for transaction sizes.

4.4 The Importance of Scaling Considerations to Infer Functional

Forms for Utility

Scaling reasonings are important in macroeconomics. Suppose that you’re looking for a
utility function ) ;2 6w (c;), that generates a constant interest rate r in an economy that
has constant growth, i.e. ¢; = ¢ped'. The Euler equationis 1 = (1 4 r) du’ (¢i41) /v (¢r), so we
need v’ (ce?) /u’ (c) to be constant for all c. If we take that the constancy must hold for small g
(e.g. because we talk about small periods), then as u’ (ce?) /u' (¢) = 14+gu” (c) c¢/u’ (¢)+0(g),
we get u” (¢) ¢/u’ (¢) is a constant, which indeed means that u’ (¢) = Ac¢™" for some constant
A. This means that, up to an affine transformation, v is in the Constant Relative Risk
Aversion Class (CRRA): u(c) = (¢!77—1)/(1 =) for v # 1, or u(c) = Inc for v = 1.
This is why macroeconomists typically use CRRA utility functions: they are the only ones
compatible with balanced growth.

This reasoning by scaling also works in the cross-section. For instance, Edmans et al.
(2009) ask which utility functions are compatible with the empirical fact that incentive pay
as a fraction of total pay is roughly independent of firm size. They derive that multiplication
utility functions u (c¢ (L)), where ¢ is consumption and L is effort, are the ones that can
accommodate that independence.

In general, asking “what would happen if the firms was 10 times larger?” (or the employee
10 richer), and thinking about which quantities ought not to change (e.g. the interest rate),

leads to rather strong constraints on the functional forms in economics.

4.5 Other Mechanisms

I close this review of theory with two other mechanisms.

Suppose that 7' is a random time with an exponential distribution, and In X} is a Brownian
process. Reed (2001) observes that Xr (i.e., the process stopped at random time T'), follows
a “double” Pareto distribution, with Y/X, PL distributed for Y/X, > 1, and X,/Y PL
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distributed for Y/ Xy < 1. This mechanism does not manifestly explain why the exponent
should be close to 1. However, it does produce an interesting “double” Pareto distribution.
Finally, there is a large literature linking game theory and the physics of critical phe-

nomena under the name of “minority games”, see Challet et al. (2005).

5 EMPIRICAL POWER LAWS: REASONABLY OLD
AND WELL-ESTABLISHED LAWS

After this large amount of theory, we next turn to empirics. To proceed, the reader does not

need to have mastered any of the theories.

5.1 OIld Macroeconomic Invariants

The first quantitative law of economics is probably the quantity theory of money. Not
coincidentally, it is a scaling relation, i.e. a PL. The theory states; if the money supply
doubles while GDP remains constant, prices double. This is a nice scaling law, relevant for
policy. More formally, the price level P is proportional to the mass of money in circulation
M, divided by the gross domestic product Y, times a prefactor V: P =VM/Y.

More modern, we have the Kaldor’s stylized facts on economic growth. Let K be the
capital stock, Y the GDP, L the population and r the interest rate. Kaldor observed that
K/Y,wL/Y, and r are roughly constant across time and countries. Explaining these facts

was one of the successes of Solow’s growth model.

5.2 Firm Sizes

Recent research has established that, to a good degree of approximation, the distribution of
firm sizes is described by a PL, with an exponent close to 1, i.e. follows Zipf’s law. There
are generally deviations for the very small firms, perhaps because of integer effects, and the
very large firms, perhaps because of antitrust laws. However, such deviations do not detract
from the empirical strength of Zipf’s law, which has been shown to hold for firms measured

by number of employees, assets, or market capitalization, in the U.S. (Axtell 2001, Luttmer
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Figure 2: Log frequency In f (.S) vs log size In S of U.S. firm sizes (by number of employees)
for 1997. OLS fit gives a slope of 2.059 (s.e.= 0.054; R? =0.992). This corresponds to a
frequency f(S) ~ S7299 ie. a power law distribution with exponent ¢ = 1.059. This is
very close to Zipf’s law, which says that ( = 1. Source: Axtell (2001).

2007, Gabaix & Landier 2008), Europe (Fujiwara et al. 2004) and Japan (Okuyama et al.
1999). Figure 2 reproduces Axtell’s finding. He uses the data on all firms in the U.S. census,
whereas all previous U.S. studies were using partial data, e.g. data on the firms listed in the
stock market (e.g., Ijiri and Simon 1979, Stanley et al. 1995). Zipf’s law for firm size by
number of employees is clear.

At some level, the Zipf’s law for sizes probably comes from some sort of random growth.
Luttmer (2007) is a state of the art model for random growth of firms. In it firms receive an
idiosyncratic productivity shocks at each period. Firms exit if they become too unproductive,
endogenizing the lower barrier. Luttmer shows a way in which, when imitation costs become
very small, the PL exponent goes to 1. Other interesting models include Rossi-Hansberg
& Wright (2007b), which is geared towards plants with decreasing returns to scale, and
Acemoglu and Cao (2009), which focuses on innovation process.

Zipf’s law for firms immediately suggests some consequences. The size of bankrupt firms

might be approximately Zipf: this is what Fujiwara (2004) finds in Japan. The size of
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strikes should also approximately follow Zipf’s law, as Biggs (2005) finds for the late 19th
century. The distribution of the “input output network” linking sectors (which might be
Zipf distributed, like firms) might be Zipf distributed, as Carvalho (2008) finds.

Does Gibrat’s law for firm growth hold? There is only a partial answer, as most of the
data comes from potentially non-representative samples, such as Compustat (firms listed in
the stock market in the first place). Within Compustat, Amaral et al. (1997) find that
the mean growth rate, and the probability of disappearance, are uncorrelated with size.
However, they confirm the original finding of Stanley et al. (1996) that the volatility does
decay a bit with size, approximately at the power —1/6.2*It remains unclear if this finding
will generalize to the full sample: it is quite plausible that the smallest firms in Compustat
are amongst the most volatile in the economy (it is because they have large growth options
that firms are listed in the stock market), and this selection bias would create the appearance
of a deviation from Gibrat’s law for standard deviations. There is an active literature on the

topic, see Fu et al. (2005) and Sutton (2007).

5.3 City Sizes

The literature on the topic of city size is vast, so only some key findings are mentioned here.
Gabaix & loannides (2004) provide a fuller survey. City sizes hold a special status, because
of the quantity of very old data. Zipf’s law generally holds to a good degree of approximation
(with an exponent within 0.1 or 0.2 of 1, see Gabaix & Ioannides 2004; Soo 2005). Generally,
the data comes from the largest cities in a country, typically because those are the ones with
good data.

Two recent developments have changed this perspective. First, Eeckhout (2004), using
all the data on U.S. administrative cities, finds that the distribution of administrative city
size is captured well by a lognormal distribution, even though there may be deviations in the
tails. Second, in ongoing work, Rozenfeld et al. (2008), using a new procedure to classify

cities based on micro data (building cities as connected clusters), find, however, that city

24This may help explain Mulligan (1997). If the proportional volatility of a firm of size S is o oc S~1/6,
and the cash demand by that firm is proportional to ¢S, then the cash demand is proportional to S%/6, close
to Mulligan’s empirical finding.
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sizes follow Zipf’s law to a surprisingly good accuracy in the US and the UK.

For cities, Gibrat’s law for means and variances is confirmed by Ioannides & Overman
(2003) and Eeckhout (2004). It is not entirely controversial, in part because of measurement
errors, which typically will lead to finding mean-reversion in city size and lower population
volatility for large cities.  Also, for the logic of Gibrat’s law to hold, it is enough that
there is a unit root in the log size process in addition to transitory shocks that may obscure
the empirical analysis (Gabaix & loannides 2004). Hence, one can imagine that the next
generation of city evolution empirics could draw from the sophisticated econometric literature
on unit roots developed in the past two decades.

Zipf’s law has generated many models with economic microfoundations. Krugman (1996)
proposes that natural advantages might follow a Zipf’s law. Gabaix (1999) uses “amenity”
shocks to generate the proportional random growth of population with a minimalist economic
model. Gabaix (1999a) examines how extensions of such a model can be compatible with
unbounded positive or negative externalities. Cordoba (2008) clarifies the range of economic
models that can accommodate Zipf’s law. The next two papers consider the dynamics of
industries that host cities. Rossi-Hansberg & Wright (2007a) generate a PL distribution
of cities with a random growth of industries, and birth-death of cities to accommodate
that growth (see also Benguigui & Blumenfeld-Lieberthal 2007 for a model with birth of
cities). Duranton (2007)’s model has several industries per city and a quality ladder model
of industry growth. He obtains a steady state distribution that is not Pareto, but can
approximate a Zipf’s law under some parameters. Finally, Hsu (2008) uses a “central place
hierarchy” model that does not rely on random growth, but instead on a static model using
the PL spacings of section 4.2.

The models do not connect seamlessly with the issues of “geography” (Brakman et al.
2009), including the link to trade, issues of center and periphery and the like. Now that the
core “Zipf” issue is more or less in place, adding even more economics to the models seems
warranted.

I will conclude by a new fact documented by Mori et al. (2008). If S; is the average size
of cities hosting industry i, and NN; the number of such cities, they find that S; o N[B , for

a [ ~ 3/4. This sort of relation is bound to help constrain new theories of urban growth.
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5.4 Income and Wealth

The first documented empirical facts about the distribution of wealth and income are the
Pareto laws of income and wealth, which state that the tail distributions of these distributions
are PL. The tail exponent of income seems to vary between 1.5 and 3. It is now very well
documented, thanks to the data efforts reported in Atkinson & Piketty (2007).

There is less cross-country evidence on the exponent of the wealth distribution, because
the data is harder to find. It seems that the tail exponent of wealth is rather stable, perhaps
around 1.5. See the survey by Kleiber & Kotz (2003), and Klass et al. (2006) for the Forbes
400 in the USA, and Nirei & Souma (2007) for Japan. In any case, typically studies find
that the wealth distribution is more unequal than the income distribution.

Starting with Champernowne (1953), Simon (1955), Wold & Whitlle (1957), and Man-
delbrot (1961), many models have been proposed to explain the tail distribution of wealth,
mainly along the lines of random growth. See Levy (2003) and Benhabib & Bisin (2007) for
recent models. Still, it is still not clear why the exponent for wealth is rather stable across
economies. An exponent of 1.5-2.5 doesn’t emerge “naturally” out of an economic model:
rather, models can accommodate that, but they can also accommodate exponents of 1.2, or
5, or 10.

One may hope that the recent accumulation of empirical knowledge reported in Atkinson
& Piketty (2007) will contribute to a spur in the understanding of wealth dynamics. One
conclusion from the Atkinson & Piketty studies is that many important features (e.g. move-
ments in tax rates, wars that wipe out part of wealth) are actually not in most models, so
that models are ripe for an update.

For the bulk of the distribution, below the upper tail, a variety of shapes have been
proposed. Dragulescu & Yakovenko (2001) propose an exponential fit for personal income:
in the bulk of the income distribution, income follows a density ke~**. This is accomplished

through a random growth model.
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5.5 Roberts’ Law for CEO Compensation

Starting with Roberts (1956), many empirical studies (e.g., Baker et al. 1988; Barro & Barro
1990; Cosh 1975; Frydman & Saks 2007; Kostiuk 1990; and Rosen 1992) document that CEO
compensation increases as a power function of firm size w ~ S* in the cross-section. Baker
et al. (1988, p.609) call it “the best documented empirical regularity regarding levels of
executive compensation.” Typically the exponent x is around 1/3 — generally, between 0.2
and 0.4. Hierarchical and matching models generate this scaling as in eq. 35, but there is
no compelling explanation for why the exponent should be around 1/3. The Lucas (1978)
model of firms predicts k = 1 (see Gabaix & Landier 2008).

6 EMPIRICAL POWER LAWS: RECENTLY PRO-
POSED LAWS

6.1 Finance: Power Laws of Stock Market Activity

New large-scale financial datasets have led to progress in the understanding of the tail of
financial distributions, pioneered by Mandelbrot (1963) and Fama (1963).>° Key work was
done by physicist H. Eugene Stanley’s group at Boston University, which spawned a large
literature in econophysics. This literature goes beyond previous research by using very large

datasets.

The “Cubic Law” Distribution of Stock Price Fluctuations: (. ~ 3 The tail
distribution of short term (a few minutes to a few days) returns has been analyzed in a
series of studies that use an ever increasing number of data points (Jansen & de Vries 1991,
Mantegna & Stanley 1995, Lux 1996). Gopikrishnan et al. (1999), using a very large number

of data points, established a very large presumption for a “cubic” power law of stock market

25They conjectured a Lévy distribution of stock market returns, but as we will see, the tails appeared to
be less fat than a Lévy.
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returns.?® Let 7, denote the logarithmic return over a time interval At.2” Gopikrishnan et
al. (1999) find that the distribution function of returns for the 1,000 largest U.S. stocks and

several major international indices is:
I .
P(lr] > x) x — with ¢, ~ 3. (40)
x T

This relationship holds for positive and negative returns separately and is illustrated in
Figure 3. It plots the cumulative probability distribution of the population of normalized
absolute returns, with Inz on the horizontal axis and In P (|r| > x) on the vertical axis. It
shows that

In P (|r| > x) = —( Inz + constant (41)

yields a good fit for |r| between 2 and 80 standard deviations. OLS estimation yields —(, =
—3.14+0.1, i.e., (40). It is not automatic that this graph should be a straight line, or that the
slope should be —3: in a Gaussian world it would be a concave parabola. Gopikrishnan et al.
(1999) call Equation 40 “the cubic law” of returns. The particular value ¢, ~ 3 is consistent
with a finite variance, and means that stock market returns are not Lévy distributed (a Lévy
distribution is either Gaussian, or has infinite variance, ¢, < 2). 28

Plerou et al. (1999) examine firms of different sizes. Small firms have higher volatility
than large firms, as is verified in Figure 4a. Moreover, the same diagram also shows similar
slopes for the graphs for four quartiles of firm size. Figure 4b normalizes the distribution of
each size quantile by its standard deviation, so that the normalized distributions all have a
standard deviation of 1. The plots collapse on the same curve, and all have exponents close

to ¢, ~ 3.

Insert Figure 4 here

26Here I can only cite a small number of the interesting papers by Stanley’s group. See
http://polymer.bu.edu/hes/ for more papers by the same team.

2TTo compare quantities across different stocks, variables such as return r and volume g are normalized by
the second moments if they exist, otherwise by the first moments. For instance, for a stock ¢, the normalized
return is 1, = (ry — ;) /0y, where r; is the mean of the r;; and o, ; is their standard deviation. For volume,
which has an infinite standard deviation, the normalization is ¢}, = ¢;t/q;, where ¢; is the raw volume, and
q; is the absolute deviation: ¢; = |q;+ — Git-

28In the reasoning of Lux & Sornette (2002), it also means that stock market crashes cannot be the
outcome of simple rational bubbles.

35



=

- —
=} =
&

_\
DI

Distribution function P( [return | > x)

_\
DI

S 10 e
X (Units of standard deviation)

Figure 3: Empirical cumulative distribution of the absolute values of the normalized 15
minute returns of the 1,000 largest companies in the Trades And Quotes database for the
2-year period 1994-1995 (12 million observations). We normalize the returns of each stock
so that the normalized returns have a mean of 0 and a standard deviation of 1. For instance,
for a stock ¢, we consider the returns r}, = (r;; — ;) /0., where r; is the mean of the r;;’s and
oy is their standard deviation. In the region 2 < 2 < 80 we find an ordinary least squares
fit In P (|r| > ) = = Inx + b, with ¢, = 3.1 £0.1. This means that returns are distributed
with a power law P (|r| > x) ~ 2% for large = between 2 and 80 standard deviations of
returns. Source: Gabaix et al. (2003).

Such a fat-tail PL yields a large number of tail events. Considering that the typical
standard daily deviation of a stock is about 2%, a 10 standard deviation event is a day in
which the stock price moves by at least 20%. The reader can see from day to day experience
that those moves are not rare at all: essentially every week a 10 standard deviation happens
for one of the stocks in the market. The cubic law quantifies that notion. It also says that a
10 standard deviations event and a 20 standard deviations event are, respectively, 5% = 125

and 103 = 1000 times less likely than a 2 standard deviation event.

Equation 40 also appears to hold internationally (Gopikrishnan et al. 1999). Further-
more, the 1929 and 1987 “crashes” do not appear to be outliers to the PL distribution of
daily returns (Gabaix et al. 2005). Thus, there may not be a need for a special theory of

“crashes”: extreme realizations are fully consistent with a fat-tailed distribution. This gives
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Figure 4: Cumulative distribution of the conditional probability P(|r| > z) of the daily
returns of companies in the CRSP database, 1962-1998. We consider the starting values
of market capitalization K, define uniformly spaced bins on a logarithmic scale and show
the distribution of returns for the bins, K € (10°,10°], K e (10%,107], K € (107,108,
K € (10%,10%. (a) Unnormalized returns (b) Returns normalized by the average volatility
ok of each bin. The plots collapsed to an identical distribution, with (. = 2.70 .10 for the
negative tail, and (. = 2.96 £+ .09 for the positive tail. The horizontal axis displays returns
that are as high as 100 standard deviations. Source: Plerou et al. (1999).

the hope that a unified mechanism might account for market movements, big and small,
including crashes.

The above results hold for relatively short time horizons — a day or less. Longer-horizon
return distributions are shaped by two opposite forces. One force is that a finite sum of
independent PL distributed variables with exponent ( is also PL distributed, with the same
exponent (. If the time-series dependence between returns is not too large, one expects the
tails of monthly and even quarterly returns to remain PL distributed. The second force
is the central limit theorem, which says that if 1" returns are aggregated, the bulk of the
distribution converges to Gaussian. In sum, as we aggregate over 1" returns, the central part
of the distribution becomes more Gaussian, while the tail return distribution remains a PL
with exponent (. Extreme returns have an ever smaller probability of occurring, so that
they may not even be detectable in practice.

In conclusion, the existing literature shows that while high frequencies offer the best

statistical resolution to investigate the tails, PLs still appear relevant for the tails of returns
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Figure 5: Probability density of normalized individual transaction sizes ¢ for three stock
markets (i) NYSE for 1994-5 (ii) the London Stock Exchange for 2001 and (iii) the Paris
Bourse for 1995-1999. OLS fit yields In p () = —(1+(,) In z+constant for (, = 1.5+0.1. This
means a probability density function p (z) ~ z=(1¢)  and a countercumulative distribution
function P (q > x) ~ x7%. The three stock markets appear to have a common distribution
of volume, with a power law exponent of 1.5 + 0.1. The horizontal axis shows invidividual
volumes that are up to 10* times larger than the absolute deviation, |¢ — g|. Source: Gabaix
et al. (2006).

at longer horizons, such as a month or even a year.

The “Half-Cubic” Power Law Distribution of Trading Volume: (, ~ 3/2
Gopikrishnan et al. (2000) find that trading volumes for the 1,000 largest U.S. stocks are
also PL distributed:?

Plg> 1) ILC with ¢, = 3/2. (42)

The precise value estimated is ¢, = 1.53 & .07. Figure 5 illustrates: the density satisfies
p(q) ~ q %5, i.e., (42). The exponent of the distribution of individual trades is close to 1.5.
Maslov & Mills (2001) likewise find ¢, = 1.4 £ 0.1 for the volume of market orders. Those
U.S. results are extended to France and the UK in Gabaix et al. (2006): 30 large stocks of

29We define volume as the number of shares traded. The dollar value traded yields very similar results,
since, for a given security, it is essentially proportional to the number of shares traded.
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the Paris Bourse from 1995-1999, which contain approximately 35 million records, and 250
stocks of the London Stock Exchange in 2001. As shown in Figure 5, we find (;, = 1.5+ 0.1
for each of the three stock markets. The exponent appears essentially identical in the three

stock markets, which is suggestive of universality.

Other Power Laws Finally, the number of trades executed over a short horizon is PL

distributed with an exponent around 3.3 (Plerou et al. 2000).

Some Proposed Explanations There is no consensus about the origins for these
regularities. Indeed, there are few models making testable predictions about the fat-tailness
of stock market returns.

ARCH. The fat tail of returns could come from ARCH effects, as we mentioned in section
3.3. It would be very nice to have an economic model that generates such dynamics, perhaps
via a feedback rule, or the dynamics of liquidity. Ideally, it would simultaneously explain
the cubic and half-cubic laws of stock market activity. However, this model does not appear
to have been written.

Trades of Large Traders. Another model was proposed in Gabaix et al. (2003, 2006).
It attributes the PLs of trading activity to the strategic trades by very large institutional
investors in relatively illiquid markets. This activity creates spikes in returns and volume,
even in the absence of important news about fundamentals, and generates the cubic and half-
cubic laws. Antecendents of this idea including Levy & Solomon (1996), express that large
traders will have large price impact and predict (. = (s (see Levy 2005 for some evidence
in that direction). Solomon and Richmond (2001) propose an amended theory, predicting
(r = 2(s. In the Gabaix et al. model, cost-benefit considerations lead to (, = 3(g, as we will
see.

Examples of that sort might be the crash of Long Term Capital Management in the
Summer 1998, the rapid unwinding of very large stock positions by Société Générale after
the Kerviel “rogue trader” scandal (which led stock markets to fall, and the Fed to cut
interest rates by 75 basis points on January 22, 2008), the conjecture by Khandani & Lo
(2007) that one large fund was responsible for the crash of quantitative funds in August

2007, or even the crash of 1987 (see the discussion in Gabaix et al. 2006). Of course, one has
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a feeling that such a theory may at most be a theory of the “impulse”, where the dynamics
of the propagation is left for future research. According to the PL hypothesis, these sort of
actions happen at all scales, including the small ones, such as day to day.

The theory works the following way. First, imagine that a trade of size ¢ generates
a percentage price impact equal to kq", for a constant v (we shall take v = 1/2, and
sketch an explanation in the papers). A mutual fund will not want to lose more than a
certain percentage of returns in price impact (the theory microfounds that by a concern for
robustness). Each trade costs its dollar value ¢ times the price impact, hence kq'™ dollars.
Optimally, the fund trades as much as possible, subject to the robustness constraint. That
implies: kq'™ oc S, hence the typical trade of a fund of size S is of volume ¢ oc S+ and
its typical price impact is |Ap| = kq” oc §7/0+7), (Those predictions still await empirical
testing with micro data). Using rule (4), this generates the following PL exponents for

returns and volumes:

¢ = (1 i %) G = (1+7)Cs (43)

Hence the theory links the PL exponents of returns and trades to the PL exponent of
mutual fund sizes, and price impact. Given the finding of a Zipf distribution of fund sizes
({s = 1, which presumably comes from random growth of funds), and a square-root price
impact (7 = 1/2), we get: (, = 3 and (, = 1/2, the empirically-found exponents of returns
and volumes. The theory also makes testable predictions about specific deviations from

those values.

6.2 Other Scaling in Finance

Bid-Ask Spread Wyart et al. (2008) offer a simple but original theory of the bid-ask

spread, which yields a new empirical prediction:

Ask—Bid | o
Price /N

where ¢ is the daily volatility of the stock, and N the average number of trades for the stock,

(44)

and k is a constant, in practice roughly close to 1. They find good support for this prediction.

The basic reasoning is the following (their model has more sophisticated variants): suppose
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that at each trade, the log price moves by k~! times the bid-ask spread S. After N trades,
assumed to have independent signs, the standard deviation of the log price move will be
k~1Sv/N. This should be the daily price move, so k'K Sv/N = o, hence (44). Of course,
some of the microfoundations remain unclear, but at least we have a simple new hypothesis,
which makes a good scaling prediction and has empirical support. Bouchaud & Potters
(2004) and Bouchaud et al. (2009) are a very good source on scaling in finance, particularly

in microstructure.

Bubbles and the size distribution of stocks During stock market “bubbles”, it is
plausible that some stocks will be particularly overvalued. Hence, the size distribution of
stock will be more skewed. Various authors have shown this (Kou & Kou 2004, Kaizoji
2005). To diagnose “bubbly” markets or sectors, it would be nice to know if this skewness
of the distribution offers a useful complement to more traditional measures such as the ratio

of market value to book value.

6.3 International Trade

In an important new result, Hinloopen & van Marrewijk (2008) find that the “Balassa index”
of revealed comparative advantage satisfies Zipf’s law. Also, the size distribution of exporters
might be roughly Zipf (see Helpman et al. 2004, Figure 3)3°. However, the models hitherto
proposed explain a PL of the size of exporters (Melitz 2003, Arkolakis 2008, and Chaney
2009), but not why the exponent should be around 1. Presumably, this literature will import
some ideas from the firm size literature to identify the root causes of the “Zipf” feature of
exports. See Faton et al. (2004) for the beginning of an uncovering of many powers law in

the fine structure of exports.

6.4 Other Candidate Laws

Supply of regulations Mulligan & Shleifer (2004) establish another candidate law.

In the U.S., the quantity of regulations (as measured by the number of lines of text) is pro-

30In that graph, the standard errors are too narrow, because the authors use the OLS standard errors,
which have a large downward bias. See section 7 for the correct standard errors, ¢ (2/N )1/ %,
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portional to the square root of the population. They provide an efficiency-based explanation

for this phenomenon. It would be interesting to investigate their findings outside the U.S.

Scaling of CEO incentives with firm size Calling s the Roberts’ law exponent, we
saw in section 5.5,CEO Wage o« S*, with k ~ 1/3 and S the firm size. Edmans et al. (2009)
predict that incentive pay as a fraction of total pay is roughly independent of firm size, and
find empirical support for this prediction. If the firm value increases by 1%, the CEQ’s pay
(or wealth) should increase by a percentage independent of firm size. From this, they predict
the scaling of “Jensen-Murphy” (1990) incentives: if the firm size increases, the CEO wealth
should increase by a amount proportional to S~(1=%) = §=2/3  which will be very small in
practice. The Jensen-Murphy incentives should then decline with firm size at this precise

scaling. It would be nice to investigate these scaling predictions outside the U.S.

Networks Networks are full of power laws, see Newman et al. (2006) and Jackson

(2009).

Wars Johnson et al. (2006) find that the number of death in armed conflicts follows a

PL, with an exponent around 2.5, and provide a model for it.

6.5 Power Laws Outside of Economics

Language, and perhaps Ideas Ever since Zipf (1949), the popularity of words has
been found to follow Zipf’s law.3! There is no consensus on the origin of that regularity. One
explanation might be Simon’s (1955), or the more recent models based on Champernowne.
Another might be the “monkeys at the typewriter” (written by Mandelbrot in 1951, and
reprinted in Mandelbrot 1997 p.225). Let a monkey type randomly on a typewriter (each
of n letters being hit with probability ¢/n), and say that there is a new word when they
hit the space bar (which happens with probability 1 — ¢). Do this for one billion hours,

and count the word frequency. It is a simple exercise to derive that this yields a PL for the

3Interestingly, McCowan et al. (1999) show that Zipf’s law is not limited to human language: it holds for
dolphins, those intelligent mammals.
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word distribution, with exponent ¢ = 1/ (1 —Ing/Inn) (because each of the n* words with
length & has frequency (1 — ¢) (¢/n)*). When the space bar is hit with low probability, or
the number of letters get large, the exponent becomes close to 1. This argument, though
interesting, is not dispositive.

It might be that the Zipf distribution of word use corresponds to a maximal efficiency of
the use of concepts (in that direction, see Mandelbrot 1953, which uses entropy maximization,
and Carlson & Doyle 1999). Perhaps our minds need to use a hierarchy of concepts,
which follows Zipf’s law. Then, that would make Zipf’s law much more linguistically and
cognitively relevant.

In that vein, Chevalier & Goolsbee (2003) find a roughly Zipf distribution of book sales
volume at online retailers (though a different methodology by Dechastres & Sornette 2005
gives an exponent around 2). This may be because of random growth, or perhaps because,
like words, the “good ideas” follow a PL distribution. In this vein, De Vany (2003) shows
many fat tails in the movie industry. Kortum (1997) is a model of research delivering a

power law distribution of ideas.

Biology PLs are also of high interest outside of economics. Explaining and under-
standing PLs exponents is a large part of the theory of critical phenomena, in which lots of
very different materials behave identically around the critical point — a phenomenon reminis-
cent of “universality.” PLs have proven relevant, and very useful to describe and understand
social and physical networks (Newman et al. 2006). In biology, there is a surprisingly high
amount of PL regularities, that go under the name of “allometric scaling.” For instance, the
energy that an animal of mass M requires to live is proportional to A/3/4. This regularity is
expressed in Figure 6. It is only recently that this empirical regularity has been explained,
by West et al. (1997), along the following lines: If one wants to design an optimal vascular
system to send nutrients to the animal, one designs a fractal one, and maximum efficiency
exactly delivers the M?/* law. The moral is sharp: to explain the broad patterns between
energy needs and mass, thinking about the feathers and the hair of animals is a counter-
productive distraction. Simpler and deeper principles underlie the regularities instead. The

same may holds for economic laws.
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Figure 6: Metabolic rate for a series of mammals and birds as a function of mass. The scale
is logarithmic and the slope of 3/4 exemplifies Kleiber’s law: the metabolic rate of an animal
of mass m is proportional to m?*. This law has recently been explained by West, Brown
and Enquist (1997). Source: West, Brown and Enquist (2000).

Physics Finally, PLs occur in a range of natural phenomena: earthquakes (Sornette

2001), forest fires (Malamud et al. 1998), and many other events.

7 ESTIMATION OF POWER LAWS

7.1 Estimating

How does one estimate a distributional PL? Take the example of cities. We order cities by
size Sy = ... = S, stopping at a rank n that is a cutoff still “in the upper tail” There
is not yet a consensus on how to pick the optimal cutoff (see Beirlant et al. 2004). Most
applied researchers indeed rely on a visual goodness of fit for selecting the cutoff or use a
simple rule, such as choosing all the observations in the top 5 percent of the distribution.
Systematic procedures require the econometrician to estimate further parameters (Embrechts

et al. 1997), and none has gained widespread use. Given the number of points in the upper
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tail, there are two main methods of estimation. 32

The first method is Hill’s (1975) estimator:

n—1
ZHz‘ll — (n — 2) / Z (111 S(i) —In S(n)) (45)
i=1
which has® a standard error Hill (n — 3)7%/2.
The second method is a “log-rank log-size regression,” where Zthe slope in the regression

of the log-rank 7 on the log-size:

In (i — s) = constant — COLS In S(i) + noise (46)

which has an asymptotic standard error (OXS (n/2)""* (the standard error returned by
an OLS software is wrong, because the ranking procedure makes the residuals positively
autocorrelated). s is a shift; s = 0 has been typically used, but a shift s = 1/2 is optimal
to reduce the small-sample bias, as Gabaix & Ibragimov (2008a) show. The OLS method is
typically more robust to deviations from PLs than the Hill estimator.

This log log regression can be heuristically justified thus. Suppose that size S follows a PL
with counter-cumulative distribution function k£S~¢. Draw n— 1 units from that distribution,
and order them Sy > ... > S(,_1). Then®*, we have i/n = E [kS(;)C], which motivates the

following approximate statement:
Rank ~ nk Size™® (47)

Such a statement is sometimes called by the old-fashioned term “rank-size rule”. Note that

32 A basic theoretical tool is the Rényi representation theorem: For i < n, the differences In Sy —In Sy
have jointly the distribution of the sums ¢! ZZ;ZI Xy /k, where the X are independent draws of an
standard exponential distribution P(Xj > z) = e™* for z > 0.

33Much of the literature estimates 1/¢ rather than ¢, hence the n — 2 and n — 3 factors here, rather than
the usual n. I have been unable to find an earlier reference for those expressions, so I derived them for this
review. It is easy to show that they are the correct ones to get unbiased estimates, using the Rényi theorem,
and the fact that X; +...+X,, has density 2" 1e~*/(n—1)! when X; are independent draws from a standard
exponential distribution.

31This is if S has counter-cumulative function F (z), then F (S) follows a standard uniform distribution,
and the expectation of the i—th smallest value out of n — 1 of a uniform distribution is i/n.
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even if the PL fits exactly, then the rank-size rule (47) is only approximate. But as least
this offers some motivation for the empirical specification (46).

Both methods have pitfalls and the true errors are often bigger than the nominal standard
errors, as discussed in Embrechts et al. (1997, pp.330-345). Indeed, in many datasets,
particularly in finance, observations are not independent. For instance, it is economically
accepted that many extreme stock market returns are clustered in time and affected by the
same factors. Hence, standard errors will be illusorily too low if one assumes that the data
are independent. There is no consensus procedure to overcome that problem. In practice,
applied papers often report the Hill or OLS estimator, together with a caveat that the
observations are not necessarily independent, so that the nominal standard errors probably
underestimate the true standard errors.

Also, sometimes a lognormal fits better. Indeed, since the beginning, some people have
been attacking the fit of the Pareto law (see Persky 1992). The reason, broadly, is that
adding more parameters (e.g. a curvature), as a lognormal permits, can only improve the
fit. However, the Pareto law has survived the test of time: it fits still quite well. The extra
degree of freedom allowed by a lognormal might be a distraction from the “essence” of the

phenomenon.

7.2 Testing

With an infinitely large empirical data set, one can reject any non-tautological theory. Hence,
the main question of empirical work should be how well a theory fits, rather than whether
or not it fits perfectly (i.e., within the standard errors). It is useful to keep in mind an
injunction of Leamer & Levinsohn (1995). They argue that in the context of empirical
research in international trade, too much energy is spent to see if a theory fits exactly.
Rather, researchers should aim at broad, though necessarily non-absolute, regularities. In
other words, “estimate, don’t test”.

A good quotation to keep in mind is Iriji & Simon (1964) who remark that Galileo’s law
of the inclined plane, which states that the distance traveled by a ball rolling down the plane

increases with the square of the time

“does ignore variables that may be important under various circumstances: irreg-
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ularities in the ball or the plane, rolling friction, air resistance, possible electrical
or magnetic fields if the ball is metal, variations in the gravitational field and so
on, ad infinitum. The enormous progress that physics has made in three centuries
may be partly attributed to its willingness to ignore for a time discrepancies from

theories that are in some sense substantially correct (Ijiri & Simon 1964, p.78).”

Consistent with these suggestions, some of the debate on Zipf’s law should be cast in
terms of how well, or poorly, it fits, rather than whether it can be rejected or not. For
example, if the empirical research establishes that the data are typically well described by a
PL with exponent ¢ € [0.8,1.2], then this is a useful result: It prompts us to seek theoretical
explanations of why this should be true.

Still, it is useful to have a test, so what is a test for the fit of a PL? Many papers
in practice do not provide such a test. Some authors (Clauset et al. 2008) advocate the

Kolmogorov Smirnov test. Gabaix & Ibragimov (2008b) provide a simple test using the OLS
cov((lnSj)Z,lnSj)

regression framework of the previous subsection. Define s, = Soar (5]
J

, and run the

OLS regression:
o1 ~ . 2 .
In (z - 5) = constant — ¢ InSg;) + 7 (In Sy — s.)” + noise (48)

to estimate the values Zand ¢. The term (In S; — s,)? captures a quadratic deviation from
an exact PL. The coefficient s, recenters the quadratic term: with it the estimate of the PL
exponents Eis the same whether the quadratic term is included or not. The test of the PL

is: Reject the null of an exact PL iff ‘Z]\/Ez > 1.95- (2n)" 2.

8 SOME OPEN QUESTIONS

I conclude with some open questions. By the Schumpeter quote that opens this review,
answering such a question might lead to a different point of view on the issue in question,
e.g. the nature of capital and technological progress for question or the origin of stock market
crashes.

Theory
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1. Is there a “deep” explanation for the coefficient of 1/3 capital share in the aggregate
capital stock? This constancy is one of the most remarkable regularities in economics.
It is a pity that it does not have an explanation. A fully satisfactory explanation should
not only generate the constant capital share, but some reason why the exponent should
be 1/3. See Jones (2005) for an interesting paper that generates a Cobb-Douglas, but
does not predict the 1/3 exponent. With such an answer, we might understand more

deeply what causes technological progress or the nature of capital.

2. Can we fully explain the PL distribution of financial variables, particularly returns
and trading volume? This article sketched some theories, but they are at best partial.
Working out a fully theory of large financial movements, guided by PLs, might be a
surprising key to the explanation of both “excess volatility” and financial crashes, and,

perhaps inform appropriate risk-management or policy responses.

3. Is there an explanation for the PL distribution of firms that is not based on a simple
“mechanical” Gibrat’s law, but instead comes from full efficiency maximization? For
instance, in biology, we have seen relations (West et al. 1997) that show that PLs come
as a way to maximize efficiency: that is, roughly, because an organization in network,
with a scale-free (fractal) organization, is optimal under many circumstances. It is
plausible that the same happens in economics: solving this conjecture would be very
interesting. Of course, the same may hold for the Zipf’s law for words: it might be
that the Zipf distribution of word use corresponds to a maximal efficiency of the use

of concepts.

4. Is there a “deep” explanation for the coefficient of 1/3 in the Roberts’ law listed in
section 5.57 Some theories predict a relation w o S*, for some k between 0 and 1, but
none predicts why the exponent should be (roughly) 1/3. Gabaix & Landier (2008)
show that the exponent 1/3 arises if the distribution of talents has a square root
shaped upper bound. Is there any “natural” mechanism, perhaps random growth for
the accumulation or detection of talent, that would generate that distribution? With
such an insight, we might understand better how top talent (which may be a crucial

engine in growth) is accumulated.
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. Is there a way to generate macroeconomic fluctuations, purely from microeconomic

shocks? Bak et al. (1993) contains a rather fascinating possibility, in which inventory
needs propagate throughout the economy. Nirei (2006) is a related model. Those mod-
els have not yet convinced all economists, as they do not yet make tight predictions
and they tend to generate too fat tailed fluctuations (they are Lévy distributions with
infinite variance). Still, they might be on the right track. Gabaix (2007)’s theory
of “granular fluctuations” generates fluctuations from the existence of large firms or
sectors (see also Brock and Durlauf 1991, Durlauf 1993). These models are still hy-
potheses. Better understanding the origins of macroeconomic fluctuations should lead

to better models and policies.

Empirics

. Do tail events matter for investors, in particular for risk premia? Various authors

have argued that they do (Barro 2006, Gabaix 2008, Ibragimov et al. forthcoming,

Weitzman 2007), but this is a matter of ongoing research.

. Economics of superstars: It would be good to test “superstars” models, and see if the

link between stakes (e.g. advertising revenues), talents (e.g. ability of a golfer) and

income is as predicted by theories.

. The availability of large new datasets makes it possible to discover new PLs, and test

the models’ predictions about microeconomic behavior. Times seem ripe for economists
to use those PLs, and renew the tradition of Gibrat, Champernowne, Mandelbrot and

Simon, and investigate old and new regularities with renewed models and data.
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