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The goal of this handout is to present the most common empirical methods used in applied

economics. Excellent references for the program evaluation and natural experiment approach are

Angrist and Krueger (1999), and Mayer (1999). Angrist and Krueger (1999) contains more material

and at a more detailed level than this handout and should be a high priority paper to read for

students planning to write a thesis in empirical development, labor of public finance.

1 The evaluation problem

Empirical methods in development economics, labor economics, and public finance, have been

developed to try to answer counterfactual questions. What would have happened to this person’s

behavior if she had been subjected to an alternative policy T (e.g. would she work more if marginal

taxes were lower, would she earn less if she had not gone to school, would she be more likely to be

immunized if there had been an immunization center in village?).

Here is an example that illustrates the fundamental difficulties of program evaluation:

Let us call Y T
i the average test scores of children in a given school i if the school has textbooks,

and Y C
i the test scores of children in the same school i if the school has no textbooks. We are

interested in the difference Y T
i − Y C

i , which is the effect of having textbooks for school i.

Problem: we will never have a school i both with and without books at the same time. What can

we do? We will never know the effect of having textbooks on a school in particular but we may

hope to learn the average effect that it will have on schools: E[Y T
i − Y C

i ].
∗Handout by Prof. Esther Duflo
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Imagine we have access to data on lots of schools in one region. Some schools have textbooks

and others do not. We may think of taking the average in both groups, and the difference between

average test scores in schools with textbooks and average test scores in schools without textbooks.

This is equal to:

D = E[Y T
i |School has textbooks]− E[Y C

i |School has no textbooks] = E[Y T
i |T ]− E[Y C

i |C]

Subtract and add E[Y C
i |T ], we obtain,

D = E[Y T
i |T ]− E[Y C

i |T ]− E[Y C
i |C] + E[Y C

i |T ] = E[Y T
i − Y C

i |T ] + E[Y C
i |T ]− E[Y C

i |C]

The first term E[Y T
i − Y C

i |T ] is the treatment effect that we try to isolate (effect of treatment on

the treated): on average, in the treatment schools, what difference will the books make?

The difference E[Y C
i |T ] − E[Y C

i |C] is the selection bias. It tells us that, beside the effect

of the textbooks, there may be systematic differences between schools with textbooks and other

schools.

Empirical methods try to solve this problem.

2 Randomized evaluations

The ideal set-up to evaluate the effect of a policy X on outcome Y is a randomized experiment.

Useful reference is Rosenbaum (1995).

In a randomized experiment, a sample of N individuals is selected from the population (note

that this sample may not be random and may be selected according to observables). This sample

is then divided randomly into two groups: the Treatment group (NT individuals) and the Control

group (NC individuals). Obviously NT +NC = N .

The Treatment group is then treated by policy X while the control group is not. Then the outcome

Y is observed and compared for both Treatment and Control groups. The effect of policy X is

measured in general by the difference in empirical means of Y between Treatments and Controls:

D̂ = Ê(Y |T )− Ê(Y |C),
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where Ê denotes the empirical mean.

As Treatment has been randomly assigned, the difference E[Y C
i |T ]−E[Y C

i |C] is equal to 0 (in the

absence of the treatment, schools are the same). Therefore,

E[Yi|T ]− E[Yi|C] = E[Y T
i − Y C

i |T ] = E[Y T
i − Y C

i ],

the causal parameter of interest.

The regression counterpart to obtain standard errors for D̂ is,

Yi = α+D · 1(i ∈ T ) + εi

where 1(i ∈ T ) is a dummy for being in the Treatment group.

How? The formula for D̂OLS is simple to handle when there is only one independent variable:

D̂OLS =
∑
i 1(i ∈ T )[Yi − Ȳ ]∑

i 1(i ∈ T )[1(i ∈ T )−NT /N ]

The denominator is equal to: Den =
∑
i 1(i ∈ T )2 − (NT /N)

∑
i 1(i ∈ T ) = NT (1−NT /N)

The numerator is equal to: Num =
∑
i 1(i ∈ T )[Yi − Ȳ ] =

∑
i 1(i ∈ T )Yi − Ȳ

∑
i 1(i ∈ T )

which implies:

Num = NT Ê(Y |T )−NT [NT Ê(Y |T )+NCÊ(Y |C)]/N = NT (1−NT /N)Ê(Y |T )−(N−NT )Ê(Y |C) =

NT (1−NT /N)[Ê(Y |T )− Ê(Y |C)].

Taking the ratios of Num and Den, we indeed find that:

D̂OLS = Ê(Y |T )− Ê(Y |C).

• Problems of Randomized Experiments

1. Cost

(a) Financial costs

Experiments are very costly and difficult to implement properly in economics. The

negative income tax experiments of the late 60s and 70s in the US illustrate most of
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the issues (see (Pencavel 1986, Ashenfelter and Plant 1990)). As a result they are often

either poorly managed, or small, or both (with the corresponding problems we will see

below).

(b) Ethical problems

It is not possible to run all the experiments we would like to because they might affect

substantially the economic or social outcomes of the Treated. Alternatively, NGOs or

governments are reluctant to deprive the controls from treatment which they consider

potentially valuable. Insisting on the fact that it is a productive use of limited resources

may be a good way to go...

2. Threats to internal validity:

(a) Non response bias:

People may move off during the experiment. If people who leave have particular charac-

teristics systematically related to the outcome then there is attrition bias. (cf. Hausman

and Wise (1979) about attrition in the NIT experiment).

(b) Mix up of Treatment and Controls:

Sometimes, maintaining the allocation to control and treatment to be random is almost

impossible. Example: (Krueger 2000) evaluation of the Tennessee Star small class size

experiment: children were moved to small classes (due to parental pressures, bad behav-

ior,etc..). The actual class is therefore not random even though the initial assignment

was random. It is then important to use the initial assignment as the treatment, because

it is the only variation that was randomly assigned. It can then be used as an instrument

for actual class size (cf. below).

3. Threats to external validity

(a) Limited duration:

Experiments are in general temporary. People may react differently to a temporary

program than to a permanent program.

(b) Experiment Specificity:

In general, an experiment is run in a particular geographic area (e.g., the NIT experi-

ments). It is not obvious that the same experiment would have given the same results
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in another area. Therefore, it is often difficult to generalize the results of an experiment

to the total population.

(c) Hawthrone and John Henry effects:

Treatment and control may behave differently because they know they are being ob-

served. Therefore the effects may not be generalized to a context where subjects are not

observed.

(d) General Equilibrium effects:

Extrapolation complicated because of general equilibrium effects: small scale experi-

ments do not generate general equilibrium effects that might be very important when

policy is applied to everybody in the population.

4. Threats to power

(a) Small samples:

Because experiments are difficult to administer, samples are often small, which makes it

difficult to obtain significant results. It is important to compute power calculation before

starting an experiment (what is the sample size required to be able to discriminate from

0 an effect of a given size?). See the command sampsize in stata. But the crucial inputs

(mean and variance of the outcomes before treatment) are often missing, so that there

is always some guess work involved in planning experiments.

(b) Experiment design and power of the experiment:

When the unit of randomization is a group (e.g. a school), we may need to collect data

on a very large number of individuals to get significant results, if outcomes are strongly

correlated within groups (see below how standard errors are corrected for the grouped

structure). This was a difficulty in the Kremer, Glewwe and Moulin (1998) textbook

experiments.
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3 Controlling for selection bias by controlling for observables

3.1 OLS

OLS is the basic regression design.

3.1.1 Definition

Y = Xβ + ε

Suppose we have N observations

Y is the dependent variable N × 1 vector

X are the independent variables N ×K vector (K independent variables). One element of the X

may be T , the variable we are interested in. We note X = (T, x2, .., xK)

ε is the error term N × 1 vector

The OLS estimator is: β̂ = (X ′X)−1X ′Y = β + (X ′X)−1X ′ε

β̂ is consistent if ε and X are uncorrelated, that is, E(X ′ε) = 0.

NB: this is not as strong a requirement as being independent.

Stata OLS command: regress y T x2.. xK

where y is the name of the dependent variable, T is the variable of interest and x2 .. xK are the

names of the K − 1 control variables.

3.1.2 Inference

The asymptotic variance, which stata reports, is correct when the variance of the error term is

diagonal (this rules out autocorrelation) with identical terms on the diagonal (this rules out het-

eroscedasticity), that is,

V (ε) = σ2
ε IN where IN is the identity matrix of rank N .

The asymptotic variance of the OLS estimator is given by:

VAR(β) = σ2
ε (X

′X)−1
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When the error term is non-spherical V (ε) = Ω, the asymptotic variance of the OLS estimator is

different from the previous formula and is given by:

VAR = (X ′X)−1(X ′ΩX)(X ′X)−1

There are two important examples of non-spherical disturbances:

1. Heteroskedasticity:

Ω is diagonal (εi is uncorrelated with εj when i 6= j) but V ar(εi) may vary with i.

Stata command: regress y x1 .. xK, robust

produces correct standard errors in that case using the White method.

2. Group error structure:

Example: Survey design in developing countries is often clustered. (cf. Deaton (1997)’s book

for more on this). First, clusters (i.e. villages or neighborhoods are randomly selected), then

individuals are selected within clusters.

Yij = Xijβ + εij where i is the individual and j is the village.

Assume that there are village common fixed effects:

εij = µj + νij where the νij are independent and with constant variance.

Then the error term matrix Ω is bloc diagonal.

stata command : regress y x1 .. xK, cluster(village)

where village is the subgroup indicator, produces standard errors which are corrected both

for heterockedasticity and the grouped structure.

3.1.3 Problems with OLS

1. Under-controlling

The most frequent problem with OLS is that of omitted variable bias. Our coefficient is likely

to be biased if we omit relevant control variables. The classic example is that of returns to

education. If ability (or other factors affecting future earnings) are correlated with education

choice and are not included in the regression, the OLS coefficient is biased.
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Suppose our true model is

Yi = β0 + β1T + β2X2 + β3X3 + β4X4 + ε

where T represents our variable of interest (e.g. schooling) and X3 and X4 represent other

control variables (e.g. ability, family background). However, we do not have information on

X3 and X4, so we run the “short regression”:

Yi = β∗0 + β∗1T + β∗2X2 + η

Then we know that

β∗1 =
Cov(Y, T̃ )
V ar(T̃ )

where T̃ is the residual from the regression of T on X2 i.e.

T = γ0 + γ1X2 + T̃ with Cov(X2, T̃ ) = 0

So, the numerator of β∗1 is

Cov(Y, T̃ ) = Cov(β0 + β1T + β2X2 + β3X3 + β4X4 + ε, T̃ )

= Cov(β1T + β3X3 + β4X4, T̃ ) = β1V ar(T̃ ) + β3Cov(X3, T̃ ) + β4Cov(X4, T̃ )

⇒ β∗1 = β1 + β3δ31 + β4δ41

where δ31 = coefficient on T when X3 is regressed on T and X2, and δ41 = coefficient on T

when X4 is regressed on T and X2. In words:

Short regression coeff. = Long regression coeff. + [coeffs. on omitted variables in long

regression] × [coeffs. on omitted variables when regressed on included variables]

This formula is very useful in determining the sign of the omitted variables bias. For instance,

in the returns to education example with ability as the omitted variable, we expect that

unobserved ability will have a positive impact on wages in the long regression. If we assume

that higher ability people choose to get more schooling, then the omitted variables bias is

positive, which means that our estimated coeff. on schooling is biased upwards.

2. Over-controlling

Controlling for variables that are caused by the variable of interest will also lead to biased

coefficient. For example, if wage and ability (as measured by IQ, for example), are both
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caused by schooling, then controlling for IQ in an OLS regression of wage on education will

lead to a downward bias in the OLS coefficient of education (intuitively: the ability variable

picks up some of the causal effect of education, namely the increase in wages which is due to

the effect of education on ability which itself affects wages).

The relationship between short and long regression coefficients is still given by the omitted

variables formula above, only here the short regression is the coefficient we really want, and

the long regression is what we mistakenly run. In the case of the schooling example, it thus

results in a downward bias.

3. Estimating the extent of omitted variables bias

Computing the formula above explicitly is difficult to do since we typically do not have

information on the omitted variables. However, if the true relationship depends on a large

number of variables, and the included regressors are a random subset of this set of factors and

none of the factors dominates the relationship with wages or schooling, then the relationship

between the indices of observables in the schooling and wage equations is the same as the

relationship between the unobservables ((Altonji, Elder and Taber 2000)). To get an idea

of how much our results might be affected due to unobserved covariates, we can compute

how large the omitted variables bias must be to make our results invalid. If our schooling

variable takes only 2 values 0 and 1, we can compute the normalized shift in schooling due to

observables:
E(X ′β|S = 1)− E(X ′β|S = 0)

V ar(X ′β)

and ask how large the normalized shift due to unobservables

E(ε|S = 1)− E(ε|S = 0)
V ar(ε)

would have to be in order to explain away the entire estimate of β1. If selection on unobserv-

ables has to be very large compared to selection on observables in order to attribute all our

results to omitted variables bias, we feel more confident about our results.

9



3.2 Matching

3.2.1 Matching on observables

Instead of doing a regression, it is possible to use matching methods. Matching is easier to imple-

ment when the treatment variable takes only two values. Clearly presented application is (Angrist

1998).

An obvious case is when the treatment effect is random conditional on a set of observable

variables X. Example: at Dartmouth, roommates are allocated randomly after conditioning for

responses to a set of questions: are you more neat or messy?, do you smoke?, do you listen to loud

music? People with the same answers to all of these questions are put in a pile and then randomly

allocated to each other and to a room.

What is the effect of the high school score of my roommate on my GPA? ((Sacerdote 2000)).

Imagine the treatment variable T = 1 if the roommate has a high score in high school. Random-

ization conditional on observables imply that:

E[Y C
i |X,T ]− E[Y C

i |X,C] = 0

So:

E[Yi|X,T ]− E[Yi|X,C] = E[Y T
i |X,T ]− E[Y C

i |X,T ]

And therefore:

EX{E[Y T
i |X,T ]− E[Y C

i |X,C]} = E[Y T
i − Y C

i |T ],

Our parameter of interest.

Finally,

EX{E[Y T
i |X,T ]− E[Y C

i |X,T ]} =
∫
{E[Y T

i |x, T ]− E[Y C
i |x,C]}P (X = x|T )dx
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This means that, if X takes discrete values, we can compare Treatment and Control in all

the cells formed by the combination of the Xs (e.g.: neat, smoker, no loud music), and then take

a weigthed average over these cells, using as weights the proportion of treated in the cells (this is

the sample analog of this expression).

Cells where there are only controls or only treatments are dropped.

Comparing matching and OLS:

- They are the same if the treatment effects are constant

- If treatment effects are different, they will be different, because they apply a different weighting

schemes. OLS is efficient under the assumption that the treatment effect is constant, so it weights

observation by the conditional variance of the treatment status.

-Matching does not use cells where there are only treatment observations, whereas OLS takes

advantage of the linearity assumption to use all the variables: the treatment group and the control

groups may be very dissimilar in matching and in OLS (for example, comparing the CPS to the

sample of training program participants in the training program mentioned below means that very

different people are compared). Matching will throw away all the control observations for which

we cannot find at least one treatment observation with the same characteristics.

Important caveat: Sometimes matching on observables might lead to a greater bias than OLS,

if matching is not truly random conditional on observables i.e. matching may not eliminate the

omitted variables bias due to unobservables. For instance, suppose we match up people on the basis

of family background and attribute any resulting difference in wages to differences in education. It

is quite possible that people with the same family background have widely varying ability levels,

but very similar levels of schooling. In this case, we would obtain a very large estimate of the

returns to schooling, due to the omitted variable bias. This might even be larger than the bias in

usual OLS, because in the latter case, we have a greater range of schooling levels with probably

the same range of ability levels.
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3.2.2 Propensity score matching

Exact matching is not practical when X is continuous or contains many variables. A result due to

Rosenbaum and Rubin (1984), is that for p(X) equal to the probability that T = 1 given X,

E[Y C
i |X,T ]− E[Y C

i |X,C] = 0

implies:

E[Y C
i |p(X), T ]− E[Y C

i |p(X), C] = 0.

So it is possible to first estimate the propensity score, and then compare observations which

have a similar propensity score. It is often easier to estimate non-parametrically or semi-parametrically

the propensity score than to directly condition on observables.

Example: (Dehejia and Wahba 1999), revisiting (Lalonde 1986) on the effect of training on

earnings, show that the propensity score matching approach leads to results that are close to the

experimental evidence, where the regressions approaches failed. In practice, they first estimated

a logit model of training participation on covariates and lags of earnings, and then compared

treatment and control in each quintile of the estimated propensity scores. They obtained the final

estimate by weighting each difference by the proportion of each trainees in the given quintile.

4 Difference-in-differences type estimators

General references: (Campbell 1969, Meyer 1995).

4.1 Simple Differences

As random experiments are very rare, economists have to rely on actual policy changes to identify

the effects of policies on outcomes. These are called “natural experiments” because we take advan-

tage of changes that were not made explicitly to measure the effects of policies.

12



The key issue when analyzing a natural experiment is to divide the data into a control and treat-

ment group.

The most obvious way to do that is to do a simple difference method using data before (t = 0) and

after the change (t = 1):

Yit = α+ β · 1(t = 1) + εit

The OLS estimate of β is the difference in means Ȳ1 − Ȳ0 before and after the change.

Problem: how to distinguish the policy effect from a secular change?

With 2 periods only, this is impossible. The estimate is unbiased only under the very strong as-

sumption that, absent the policy change, there would have been no change in average Y .

With many years of data, it is possible to develop a more convincing estimation methodology.

Suppose that years 0,..,T are available and change took place in year t∗.

Put all the year dummies in the regression:

Yit = α+
T∑
τ=1

βτ · 1(t = τ) + εit

Then β̂τ = Ȳτ − Ȳ0

Question: is there a rupture in the pattern of β̂τ around the reform date t̄?

Problems: when the reform is gradual, this strategy is not going to work well.

4.2 Difference-in-differences

A way to improve on the simple difference method is to compare outcomes before and after a

policy change for a group affected by the change (Treatment Group) to a group not affected by the

change (Control Group). Example: Minimum wage increase in New-Jersey but not in Pennsylvania.

Compare employment in the fast food industry before and after the change in both states ((Card

and Krueger 1992)).

Alternatively: instead of comparing before and after, it is possible to compare a region where a

policy is implemented to a region with no such policy. Example: micro-credit, poor households

are eligible to borrow from Grameen Bank. Grameen implements the program only in a subset of

villages. (Morduch 1998) compares rich households to poor households in villages where Grameen

implements the program and other villages.
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The DD Estimate is:

DD = [Ê(Y1|T )− Ê(Y0|T )]− [Ê(Y1|C)− Ê(Y0|C)]

The idea is to correct the simple difference before and after for the treatment group by substracting

the simple difference for the control group.

DD estimates are often cleanly presented in a 2 by 2 box.

The DD-estimate is an unbiased estimate of the effect of the policy change if, absent the policy

change, the average change in Y1 − Y0 would have been the same for treatment and controls. This

is the “parallel trend” assumption.

Regression counterpart. Run OLS on,

Yit = α+ β · 1(t = 1) + γ · 1(i ∈ T ) + η · 1(t = 1)× 1(i ∈ T ) + εit

The OLS estimate of η is numerically identical to the DD estimate (the proof of this is similar,

though somewhat more complicated, than for the simple difference case).

DD estimates are very common in applied work. Whether or not they are convincing depends on

the context and on how close are the control and treatment groups. There are a number of simple

checks that one should imperatively do to assess the validity of the DD strategy in each particular

case.

• Checks of DD strategy

1. Use data for prior periods (say period -1) and redo the DD comparing year 0 and year -1

(assuming there was no policy change between year 0 and year -1). If this placebo DD is non

zero, there are good chances that your estimate comparing year 0 and year 1 is biased as well.

More generally, when many years are available, it is very useful to plot the series of average

outcomes for Treatment and Control groups and see whether trends are parallel and whether

there is a sudden change just after the reform for the Treatment group.

2. Use an alternative control group C ′. If the DD with the alternative control is different from
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the DD with the original control C, then the original DD is likely to be biased (cf. (Gruber

1996).

3. Replace Y by another outcome Y ′ that is not supposed to be affected by the reform. If the

DD using Y ′ is non-zero, then it is likely that the DD for Y is biased as well.

NB: For 1) and 2), it possible to do a DDD strategy. The DDD estimate is the difference between

the DD of interest and the placebo DD (that is supposed to be zero).

However, the DDD is of limited interest in general because:

-If the DD placebo is non zero, it will be difficult to convince people that the DDD removes

all the bias.

- if the DD placebo is zero, then DD and DDD give the same results but DD is preferable

because standard errors are much smaller for DD than for DDD.

(Gruber 1994, Gruber 1996) are neat empirical examples of the use of DD estimators.

Note: The closer are the Treatment and Control groups, the more convincing is the DD

approach (note that in the case of a randomized experiment, Treatment and Controls are identical

for large sample).

It is often useful to perform simple differences between Treatment and Controls along covariates

(such as age, race, income, education, ...) to see whether Treatment and Controls differ systemati-

cally.

In the regression framework, it is useful to throw covariates interacted with the time dummy to

control for changes in the composition of controls and treatment groups.

• Common Problems with DD estimates

• Targeting based on differences
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A pre-condition of the validity of the DD assumption is that the program is not implemented

based on the pre-existing differences in outcomes. Example:

– “Ashenfelter dip”: It was common to compare wage gains among participants and non

participants in training programs to evaluate the effect of training on earnings. (Ashen-

felter and Card 1985) note that training participants often experience a dip in earnings

just before they enter the program (which is presumably why they did enter the program

in the first place). Since wages have a natural tendency to mean reversion, this leads to

an upward bias of the DD estimtate of the program effect.

– In the case of difference-in-differences that combine regional and eligibility variation:

Often the regional targeting is based upon the situation of the group of eligible people

(e.g. Grameen will locate a bank in the villages where the poor are worse off. It is easy

to check that this will lead to negative difference-in differences in the absence of the

program, if villages differ in terms of distribution of wealth.

• Functional form dependence:

When average levels of the outcome Y are very different for controls and treatments before the

policy change, the magnitude or even sign of the DD effect is very sensitive to the functional

form posited.

Illustration: Suppose you look at the effect of a training program targeted to the young.

The unemployment level for the young decreases from 30% to 20%.

The unemployment level for the old decreases from 10% to 5%.

Because of the dramatic difference in pre-program unemployment levels (30% vs 10%), it is

difficult to assess whether the program was effective.

The DD in levels would be (30− 20)− (10− 5) = 10− 5 = 5% suggesting a positive effect of

training on employment.

However, if you consider log changes in unemployment, the DD becomes,

[log(30)− log(20)]− [log(10)− log(5)] = log(1.5)− log(2) < 0

suggesting that training had a negative effect on employment.

• Long-term response versus reliability trade-off:
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DD estimates are more reliable when you compare outcomes just before and just after the

policy change because the identifying assumption (parallel trends) is more likely to hold over

a short time-window. With a long time window, many other things are likely to happen and

confound the policy change effect.

However, for policy purposes, it is often more interesting to know the medium or long term

effect of a policy change.

In any case, one must be very cautious to extrapolate short-term responses to long-term

responses (see literature on labor supply or taxable income elasticities).

• Heterogeneous behavioral responses:

When both control and treatment groups experience a change but of different size it is still

possible to do a DD estimate. However, the DD estimate might be meaningless if the intensity

of behavioral responses for Treatments and Controls is different.

Simple illustration: effect of Mit (for example marginal tax rate) on outcome Yit (taxable

income). Assume the model is:

Yit = µi + αt + ηiMit

For treatment individuals, Mit increased from 0 to MT .

For control individuals, Mit increased from 0 to MC .

DD = [Y T
1 − Y T

0 ]− [Y C
1 − Y C

0 ] = ηT ·MT − ηC ·MC

If ηC = 2ηT and MT = 2MC then DD is zero even though both η’s can be large and positive.

This issue arises for example in (Feldstein 1995) on taxable income elasticities.

• Inference

The observations in the control and the treatment group may tend to move together over

time. In other words, there may be a common random effect at the time*group level. In this

case, the standard error of the estimator should take into account this correlation: we have

in effect less information than we think.

Example: Suppose that the outcome can be described by the equations:

yit = βT + γ1Post + αTt + εit,
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if i belongs to the treatment group.

yit = βC + αCt + εit,

if i belongs to the control group, where αTt and αCt are random group effects (not necessarily

i.i.d).

The variance of the difference in difference estimator should take into account the variance of

αTt−αCt: the variance covariance matrix of the error term is block diagonal. The “standard”

OLS variance does not take it into account. With only 2 periods and 1 “treatment”, one

“control” group, there is nothing we can do to adjust the standard error of the DD estimator:

DD is unbiased, but not consistent. With several periods, we can use the pre-treatment

periods to calculate the variance of αTt − αCt, and adjust the standard error for it.

This problem is described in general terms in Moulton (1986), and for the case of the DD

specifically in Lang(2000). Stata offers a correction of the standard error with the command

“cluster”. However, this command runs into trouble when the number of clusters is small.

Using the formula in Moulton seems to be safer, but it needs to be programmed.

4.3 Fixed Effects

Fixed effects can be seen as a generalization of DD in the case of more than two periods (say S

periods) and more than 2 groups (say J groups).

Suppose that group j in year t experiences a given policy T (for example an income tax rate) of

intensity Tjt. We want to know the effect of T on an outcome Y .

OLS Regression: Yjt = α+ βTjt + εjt

With no fixed effects, the estimate of β is biased if treatment Tjt is correlated with εjt (that is,

correlated with the outcome Yjt even if the treatment Tjt were all identical across time and groups.

This is often the case in practice: for example if Tjt is generosity of welfare in state j and year t

and Yjt is unemployment, the simple OLS estimate is likely to be biased downward if poorer states

with high unemployment levels have less generous benefits.

A way to solve this problem is to put time dummies and group dummies in the regression:

Yjt = α+ γt + δj + βTjt + εjt

Then identification is obtained out of within group time variation: group specific changes over
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time. This is a direct extension of DD where there are 2 groups that experience different changes

in policy over 2 periods.

Note that changes common to all groups are captured by the time dummies and thus are not a

source of variation that identifies β.

The problems and short-coming of Fixed effects are basically the same as DD.

The big advantage relative to DD is that many changes and years can be pooled in a single regression

producing more precise and robust results.

However, the disadvantage is that fixed effects is a black-box regression and it is more difficult to

check visually trends as can be done with a single change.

Another common criticism of fixed effects is that state policy reforms may respond to trends in

outcomes Y (example: increase generosity of welfare benefits when economy is not doing well) and

thus produce a spurious correlation even when one controls with time and year dummies.

Fixed effects are valid only if the response is immediate. If full responses take more than 1 period,

the fixed effects estimate might be biased because the true model should include lagged variables

Tj,t−1.

5 Instrumental Variable (IV) methodology

5.1 Basics

We know that the OLS regression Y = Xβ+ ε is biased when ε is correlated with X. A way to get

around this issue is to use an instrument Z for X. An instrument Z is set of P variables. P must

be equal or larger than K the number of variables in X.

The IV formula is given by

β̂IV = (X ′PZX)−1(X ′PZY )

where PZ = Z(Z ′Z)−1Z ′

NB: when the number of instruments is exactly equal to the number of independent variables
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(P = K), the formula reduces to:

β̂IV = (Z ′X)−1(Z ′Y )

β̂IV is consistent when Z satisfies two conditions:

1) Z is uncorrelated with ε

2) Z is correlated with X (Z ′X is of rank K).

Stata command: regress y x1 .. xK (z1 .. zP)

where x1 .. xK is the list of dependent variables and z1 .. zP is the list of instruments.

Note that is general, we are interested by the coefficient on one variable X only (say x1) and we

are confident that the other controls x2 .. xK are not correlated with ε. In that case, x2 .. xK can

be used as instruments and we need find only one extra instrument z.

The stata command in that case is: regress y x1 x2 .. xK (z x2 .. xK)

The spirit of OLS is to compare outcomes Y for high X vs low X.

The spirit of IV is to compare outcomes Y for high Z vs low Z. The regression of the outcome Y

on the instruments Z is called the reduced form.

To understand this clearly, it is useful to consider the case of a single variable X and a single binary

instrument Z. For example, X is variable indicating whether you have served in the military during

the Vietnam era ((Angrist 1990)), Z is a variable indicating whether you had a high lottery number

or a low lottery number in the lottery draft, and Y are your earnings after the war.

In that case, simple computations of the type we did for simple differences shows that:

β̂IV =
Ê(Y |Z = 1)− Ê(Y |Z = 0)
Ê(X|Z = 1)− Ê(X|Z = 0)

That is, the IV estimate is the ratio of the difference of means of the outcome Y for the group

Z = 1 and the group Z = 0 to the difference of means of the variable X for the group Z = 1 and

the group Z = 0. This is the Wald estimator, a very transparent IV estimator.

Good instruments are:
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• Strongly correlated with X: E(X|Z) varies a lot with Z. This correlation is checked by the

First-stage: regress X on Z.

X = Zγ + ν

γ has to be non-zero and significant, otherwise the instrument is weak and standard errors

for β will be large.

• Uncorrelated with Y beyond the direct effect through X (in other words can be excluded

from the equation Y = Xβ + ε, that is, is not correlated with ε). That cannot be tested and

has to be assessed on a case by case basis. When there are more instruments than columns

in X, two tests can be used:

– An overidentification test, which in essence compares all the IV obtained from using

different subsets of instruments, and tests whether they are the same.

– A Hausman test, when you trust an instrument, and comparing the results obtained with

only this instrument against the results obtained using the whole set of instruments.

These tests are useful, but have two problems:

– They may reject if the treatment effect is heterogenous, and the instruments exploit

variation at different parts of the treatment response function (cf. below on the inter-

pretation of IV).

– Their power is not very strong and they tend to accept too often.

5.2 Where to find instruments?

Instruments do not fall from the sky. Because it is difficult to test the validity of the instruments,

you need to be convinced on a priori grounds that they are valid. Good instruments are usually

generated by real or natural experiments.

Examples:

• Random encouragement designs: These are cases where the probability that someone receives
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a treatment varies randomly across people. The actual treatment status may then result from

a choice, and then be endogenous.

– Vietnam era draft lottery ((Angrist 1990)): a high lottery number makes it more likely

that someone is drafted, but he can still dodge the draft if he has a high number, or

enroll voluntarily if he has a low number.

– To test the effect of flu vaccine on flu ((Imbens, K.Hirano, D.Rubin and A.Zhou 2000)).

A random encouragement design was done. A letter reminding doctors to propose a

flu vaccine to their clients was randomly sent to a set of doctors. The instrument (the

letter) is randomly assigned, but not the treatment (flu vaccine).

• Instruments trying to approximate a random encouragement design:

– Distance to hospital with operating facilities as an instrument for surgery in heart at-

tacks.

– Distance to school as an instrument for schooling These instruments must be evaluated

carefully.

• Policy reforms etc...

An instrument can be formed by interacting two variables, for example a time and group. We

are then using a DD as the first stage of the relationship. In the second stage, we control for

the two uninteracted variables.

For example, consider the school experiment in (Duflo 2000). There are two types of regions

(High H and Low L program regions) and two types of cohorts (Young Y and Old O). The

program affected mostly the education of young cohorts in the high program regions. Assume

that the program affected the wage of the individuals only through its effects on education.

The difference in differences estimator for the effect of the program on education S is:

(E[S|H,Y ]− E[S|H,O])− (E[S|L, Y ]− E[S|L,O])

The difference in differences estimator for the effect of the program on wages W is:

(E[W |H,Y ]− E[W |H,O])− (E[W |L, Y ]− E[W |L,O])
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The effect of education on wages can be obtained by taking the ratio of the two DD. This is

the Wald estimator:

E[W |H,Y ]− E[W |H,O])− (E[W |L, Y ]− E[W |L,O]
E[S|H,Y ]− E[S|H,O])− (E[S|L, Y ]− E[S|L,O]

The corresponding regression would be:

W = α+ βY + γH + δS + ε

where H is a dummy equal to 1 in the high program region, Y is a dummy equal to 1 for the

young and S is instrumented with the interaction H × Y .

5.3 Problems with IV

1. IV can be very biased (much more than OLS).

Suppose our instrument is not truly exogenous i.e. Cov(Z, ε) 6= 0. Consider the example

of difference in wages(Y) due to serving in the Vietnam War(X), using the draft lottery

number(Z) as an instrument. We know that the OLS estimator E(Y |X = 1)− E(Y |X = 0)

is biased, because serving in the army is likely to be correlated with lots of unobserved

characteristics. For the IV Wald estimator, the denominator represents the difference in the

probability of serving in the army for people with high and low lottery numbers i.e. this

number is less than 1. Suppose in fact the the draft lottery number were not random, then

E(Y |Z = 1)−E(Y |Z = 0) is a biased estimate of the reduced form impact of lottery number

on wages. Notice now that even if the bias in the reduced form is of the same order of

magnitude as the bias of OLS, the IV estimate as a whole is much more biased, because the

denominator is less than one.

If the instrument is strong i.e. a very good predictor of army service, then the denominator

is closer to (1− 0), and hence this bias due to the violation of the exclusion restriction is less.

2. Even instruments that are randomly assigned can be invalid.

What is needed is that they don’t affect the outcome directly. Examples:

• Draft Lottery and Military service ((Angrist 1990):
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A low number could encourage someone to stay in college to evade the draft, thereby

increasing its earning directly.

• Flu vaccine:

The letter sent to the doctor seems to have convinced them to take other steps to prevent

the flu ((Imbens et al. 2000)). It therefore had a direct effect on flu, not due to the shot

per se. The IV using the letter as instrument would be an overestimate.

3. How representative is the IV answer?

Notice that the IV estimator is the ratio of the change in Y due to change in Z to the change

in X due to change in Z, and we are assuming that a lower draft lottery number makes

army service more likely, not less. We can partition all our sample units into the following

categories: those for whom the lottery number makes a difference to the army service decision

and those for whom it doesn’t (this includes those who would have volunteered anyway, and

those who would have avoided the draft irrespective of their lottery number). Then the

change in X due to change in Z is non-zero only for the first group (the “compliers”) and

so the IV estimate represents the impact of army service on wages only for this group. This

is called the Local Average Treatment Effect i.e. the impact of the treatment (army service)

only for the group affected by the instrument(see (Angrist and Imbens 1994, Angrist, Imbens

and B.Rubin 1996, Angrist and Krueger 1999) for detailed explanations of this). If we assume

that the impact of army service on wages is the same for every individual in the population

(“constant treatment effect”) then this IV estimate represents a population average. However,

if the impact of army service is different for “non-compliers”, then we must be careful while

extrapolating IV estimates to the whole population.

4. Specification searching and publication bias.

Papers with T statistic above 2 are more likely to be published. IV have larger standard

error than OLS, therefore they also need larger point estimates to be significant. Reported

IV will therefore have a natural tendency to be “too high”. This is Ashenfelter, Harmon and

Oosterbeek (1999) explanation for why IV returns to education tend to be higher than OLS.
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5.4 Getting Instruments from Theoretical Models

In many papers, authors write down theoretical models which generate instruments. For example,

(Strauss 1986) writes down a model of the effect of food on productivity. Price of food is negatively

correlated with food quantity. The model is written such that price of food is also uncorrelated

with productivity besides the effect on food intake.

This strategy known as structural model estimation produces a framework that is complete (theo-

retical model and data application) and estimates that are fully meaningful in the context of the

model. However, these estimates are valid only to the extent that the structural model is valid.

6 Regression Discontinuity Design

References

[1] The important reference is (Campbell 1969). See (Angrist and Lavy 1999, Van der Klauw 1996)

for convincing applications.

• RDD can be used when the treatment is a discontinuous function of an underlying continuous

variable. Examples:

- Grameen bank eligibility rule: eligible if households owns less then 0.5 hectares.

- Financial aid at NYU for college studies: step function of an index (grades in highschool,

SAT scores, income of parents ...).

- Maimonides rule for class size in Israel: extra teacher added as soon as the number of pupils

in class reaches multiple of 40 students.

• When this rule is followed at least approximately, it means that two people with very close

characteristics will be exposed to different treatments.

• Idea of RD: compare outcome for people whose value of the underlying targeting variable is

just below and just above the discontinuity.
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Formally: Imagine first that treatment rule is based on some number X and that the treat-

ment rule is:

- T = 1 if X ≥ X

- T = 0 if X < X

Then with a large sample, you would compute (for some ε):

E[Y |X ≤ X < X + ε]− E[Y |X − ε ≤ X < X =

E[Y T |T,X ≤ X < X + ε]− E[Y C |C,X − ε ≤ X < X]

The assumption is that as the ε goes to 0, the difference between the two groups in the

absence of the treatment shrinks to 0.

More realistically, the rule increase the probability that someone will be treated.

- Not everybody with X ≥ X will be treated (for example, some people may not have asked for

financial aid, even though they would qualify for it.

- Some people with X < X will not be treated (for example, some schools with less than 40 students

still get a second teacher).

Formally:

- P (T = 1) = p1 if X >= X

- P (T = 0) = p0 if X < X, with p1 > p0.

We can again calculate the difference in outcome between individuals just above and just

below X.

E[Y |X ≤ X < X + ε]− E[Y |X − ε ≤ X < X]

Under the same assumption as before (that for ε small enough, the outcomes in the absence

of treatment would be the same in the two groups), we can attribute this difference to the difference

in the probability of treatment. But now, there are some treated people and some control people
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on both sides of X. To obtain the effect of the treatment, we must “scale up” the difference, by

dividing between the difference in the probability of treatment between the two groups.

E[Y |X ≤ X < X + ε]− E[Y |X − ε ≤ X < X]
E[T |X ≤ X < X + ε]− E[T |X − ε ≤ X < X]

The relationship between this and IV should be clear: This is the Wald estimate (which we

derived above), using a dummy for X ≥ X as instrument for the treatment status. This regression-

discontinuity Wald estimator is numerically identical to a non-parametric kernel estimator with a

uniform kernel. Under this interpretation, this estimator would be valid even if the IV assumptions

were violated. However, it would be asymptotically biased and we would need to use a slightly more

complicated non-parametic estimator to reduce the bias ((Hahn, Todd and der Klaauw 2001)).

Researchers have exploited this to construct “IV versions” of the RD estimator:

We start with a model:

Y = αT + g(X) + ε,

where g(X) is a set of smooth functions of X (polynomials, splines, etc...) (thus controlling

for the dependence of Y on X).

A dummy for X > X can then be used as instrument for receiving the treatment, in a regular

2SLS strategy

Cautionary remarks:

• It is important to check in the data that there is actually a discontinuity in the probability

of being treated at the expected point X. Example: In the Grameen case, (Morduch 1999)

shows that people with more than 0.5 hectares of land are as likely than other people to get

credit. The first step should be to regress non-parametrically the treatment variable on the

variable X, and check whether the discontinuity is actually present in the data.

• In developing countries, even strong rules are rarely followed to the letter... Fancy means

testing procedure are unlikely to generate RD that can be exploited in practice.
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• Large sample is required, since you will be exploiting only variation coming from individuals

around X.

7 The measurement error problem

7.1 Classical measurement error

Assume that you want to estimate the relationship

y∗i = βx∗i + εi,

for i = 1 to N , where, for example y∗i is log calories per capita (after having taken out the mean)

and x∗i is log of long run resources per capita.

However, the true y∗i and the true x∗i are both unobserved. What you observe are proxies of

these measures, i.e. the true variables, measured with error (For example: it is quite difficult to

know what people really eat: they eat food out of the home, there is wastage,.... It is also difficult

to know people’s long run resources. What we observe in a survey is people’s current income, which

can vary much more).

We model measurement error in the following way. We observe yi and xi, which are the true

variables, plus some noise.

yi = y∗i + νi,

xi = x∗i + υi,

In the “classical” measurement error case, the assumption is that measurement errors are

uncorrelated with the truth, and with each other (we will see what happens if we relax this as-

sumption).

So: E[νiy∗i ] = E[υix∗i ] = E[νix∗i ] = E[υiy∗i ] = E[υiνi] = 0

28



Obviously, we will also assume that the model is otherwise correctly specified: E[εix∗i ] = 0.

Let us rewrite the model in terms of the variable we actually observe:

yi = βxi + (εi + νi − βυi)

The source of the problem is that the new error term wi = εi + νi − βυi is now not uncorrelated

with xi.

To see this, let us express the OLS estimator of β in the observed equation:

β̂OLS =
∑N
i=1 xiyi∑N
i=1 x

2
i

=
∑N
i=1(x∗i + υi)(βx∗i + εi − νi)∑N

i=1(x∗i + υi)(x∗i + υi)

We want to know the probability limit of β̂OLS as N →∞. With our assumptions we obtain:

Plim(β̂OLS) = Plim

(
β

1
N

∑N
i=1 x

∗2
i

1
N

∑N
i=1 x

∗2
i + υ2

i

)
= β

σ2
x∗

σ2
x∗ + σ2

υ

,

where for a random variable x, σ2
x = Plim

(∑N

i=1
x2
i

N

)
is the variance of x.

Note:

1. There is an attenuation bias: the estimated coefficient is smaller than the true coefficient (the

‘Iron law of econometrics’).

2. The measurement error in y does not lead to attenuation bias, in the uncorrelated case.

3. The larger the variance of the error term relative to the variance of the underlying variable

(the ‘signal to noise ratio’), the larger the attenuation bias.

7.2 The problem of measurement error with fixed effects

Imagine you now have the relationship:
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y∗it = βx∗it + εit,

with εit = ωi + ξit. You are worried that there is a correlation between ωi and xit which

would lead to a bias in OLS estimation of this equation. If you have two years of data, you might

think of taking first differences:

y∗i2 − y∗i1 = β(x∗i2 − x∗i1) + ξi2 − ξi1

which we rewrite:

∆y∗it = β∆x∗it + ∆ξit,

The fixed effect has now disappeared, so we have solved this problem. However, the mea-

surement problem is still here. The probability limit of the first OLS estimate of β in the first

difference equation (assuming uncorrelated measurement error) is:

Plimβ̂FD = β
σ2

∆x∗

σ2
∆x∗ + σ2

∆υ

If measurement errors are independent measurement error in each period (an extreme case),

then σ2
∆υ = 2 ∗ σ2

υ. However, x∗ is presumably strongly autocorrelated, so σ2
∆x∗ < σ2

x∗ . Therefore

the attenuation bias is stronger in fixed effect. In fact, it can become really large if the underlying

variable does not move very much over time but there is measurement error in every period.

7.3 Instrumental variables to solve the measurement error problem

Coming back to the case of a single cross-section, assume that you have another, independent

measure of x∗, possibly noisy as well. For example, you ask food expenditure to each spouses in

the family (while the other spouse is not in the room).
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zi = x∗i + µi,

with E[µix∗i ] = E[µiυi] = 0.

The instrumental variable estimator of β is:

β̂IV =
∑N
i=1 xiyi∑N
i=1 xizi

=
∑N
i=1(x∗i + υi)(βx∗i + εi + νi)∑N

i=1(x∗i + υi)(x∗i + µi)

Plimβ̂IV = β

So the IV estimator is consistent.

7.4 Non-classical measurement error

This can occur due to various reasons:

1. Measurement error is correlated with the underlying variables X. In this case, there is not

necessarily an attenuation bias, and error in the measurement of y∗ can also lead to biased

estimates. For example, assume that E[νix∗i ] = σνx∗ 6= 0. For example, there would be a

positive correlation between the measurement error in calorie intake and income if calorie

intakes tend to be overestimated for high income households (because they waste more) and

underestimated for low income households. Then the probability limit of the OLS estimator

becomes:

plim(β̂OLS) = β
σ2
x∗ + σνx∗

σ2
x∗ + σ2

υ

,

The bias depend on how large σνx∗ is.
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2. Our regressors are categorical variables e.g. years of schooling (discrete values) or dummy for

high-school graduate. In this case, the lowest category cannot under-report and the highest

cannot over-report, which means that the distribution of the measurement error is related to

the value of the regressor, thus violating the classical assumptions. In the case of only two

categories, the OLS estimates are biased downwards, but two-stage IV estimates are biased

upwards. In the case of only two schooling categories (0 and 1) and two measurements S1

and S2 of the true schooling level S∗, we can use S2 as an instrument for S1. In this case,

Kane et. al. derive the probability limit of the 2SLS estimator to be

plim(β̂2SLS) = β
1

1− (α1 + α2)

where α1 = Pr(S1 = 0|S∗ = 1), α2 = Pr(S1 = 1|S∗ = 0). Since the denominator is less than

1, the IV estimator is biased upwards.

In the general case of multiple categories, we cannot even determine the direction of bias.

Different ways of solving these problems include estimating the extent of measurement error

by using a validation data set (Pishke 1995), or putting restrictions on the form of the

measurement error (Card 1996) or estimating the extent of measurement error from the data

by using the presence of two measures of the regressor (Kane et.al. 1999).

3. Suppose people do not report the mismeasured x and y, but instead are aware of the possibility

of mismeasurement and report their best estimate of x∗ and y∗, based upon the observed x

and y. For instance, if people are asked how much food they buy in a month and they report

a monthly figure based on last week’s consumption. Or people are asked their income levels,

and they report their best estimate of it, which may not include some components like interest

income or capital gains. The best estimate x̃ is E[x∗|x], which for our linear model would be

a linear combination of the observed x and µx, the unconditional mean of x (and similarly for

y). Crucially, the measurement error between the reported value and the true value (x̃− x∗)

would now be uncorrelated with the reported x̃ (property of conditional expectation), so that

measurement error in the regressor does not lead to a downward bias in OLS. Further, using

IV in such a situation would result in an upward-biased estimate.

On the other hand, the reported ỹ is E[y∗|y] = λy+ (1−λ)µy ⇒ Cov(ỹ, x∗) = λCov(y, x∗) =

λCov(y∗, x∗) ⇒ our OLS estimates are biased downwards when there is measurement error

in y, but not biased if there is measurement error in x. This is the reverse of the results
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with classical measurement error! Hyslop and Imbens (2000) also consider the case when the

respondents report their best estimate x̃ taking into account both the observed y and the

observed x, and find that measurement error can even lead to upward biases in OLS.
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