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Preface to the First Edition

“It is not the business of the botanist to eradicate the weeds.
Enough for him if he can tell us just how fast they grow.” — C.
Northcote Parkinson (1945), Parkinson’s Law

The maligned botanist has a good deal to be said for him in the company of
rival gardeners, each propagating his own idea about the extent and the growth
of thorns and thistles in the herbaceous border, and each with a patent weed-
killer. I hope that this book will perform a similar role in the social scientist’s
toolshed. It does not deal with theories of the development of income distribu-
tion, of the generation of inequality, or of other social weeds, nor does it supply
any social herbicides. However, it does give a guide to some of the theoretical
and practical problems involved in an analysis of the extent of inequality thus
permitting an evaluation of the diverse approaches hitherto adopted. In avoiding
patent remedies for particular unwanted growths, one finds useful analogies in
various related fields — for example, some techniques for measuring economic in-
equality have important counterparts in sociological and political studies. Thus,
although I have written this as an economist, I would like to think that students
in these related disciplines will be interested in this material.
This book is deliberately limited in what it tries to do as far as expounding

theory, examining empirical evidence, or reviewing the burgeoning literature is
concerned. For this reason, a set of notes for each chapter is provided on pages
161 tff. The idea is that if you have not already been put off the subject by
the text, then you can follow up technical and esoteric points in these notes,
and also find a guide to further reading. A full bibliography follows the notes.
References to the bibliography (in either the main text or the notes) are made
by citing the author, or the author and date. If more than one work in the same
year is cited, these are distinguished by appending ‘a’, ‘b’ as appropriate; thus:
von Obertrauser (1976a).
A satisfactory discussion of the techniques of inequality measurement in-

evitably involves the use of some mathematics. However, I hope that people
who are allergic to symbols will nevertheless read on. If you are allergic, you
may need to toil a little more heavily round the diagrams that are used fairly
extensively in Chapters 2 and 3. In fact the most sophisticated piece of notation

xiii
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which it is essential that all should understand in order to read the main body
of the text is the expression

nX
i=l

xi

representing the sum of n numbers indexed by the subscript i, thus: x1 + x2 +
x3+ ...+ xn. Also it is helpful if the reader understands differentiation, though
this is not strictly essential. Those who are happy with mathematical notation
may wish to refer directly to the appendix in which formal definitions are listed,
and where proofs of some of the assertions in the text are given. The appendix
also serves as a glossary of symbols used for inequality measures and other
expressions.
I would like to thank Professor M. Bronfenbrenner for the use of the table

on page 86, and Dr T. Stark and Professor A. B. Atkinson for each allowing
me to see in advance copies of forthcoming work. The number of colleagues
and students who wilfully submitted themselves to reading drafts of this book
was most gratifying. So I am very thankful for the comments of Tony Atkin-
son, Barbara Barker, John Bridge, David Collard, Shirley Dex, Les Fishman,
Peter Hart, Kiyoshi Kuga, H. F. Lydall, M. D. McGrath, Neville Norman and
Richard Ross; without them there would have been lots more mistakes. You, the
reader, owe a special debt to Mike Harrison, John Proops and Mike Pullen who
persistently made me make the text more intelligible. Finally, I am extremely
grateful for the skill and patience of Sylvia Beech, Stephanie Cooper and Judy
Gill, each of whom has had a hand in producing the text; ‘so careful of the type
she seems,’ as Tennyson once put it.



Preface to the Second
Edition

A lot has happened to the pattern of income distribution in the UK and the
USA (the two countries from which the worked examples were principally drawn
in the first edition), but since this book is principally about measurement rather
than about economic history I have not altered the structure of the text much
to accommodate these changes.
However, in some respects, recent changes have had to be accommodated

in this new edition. A wealth of material has appeared in the literature on the
axiomatic foundation of inequality analysis, on the formal relationships between
inequality and social welfare, and related topics. This material is now covered
in chapters 2 and 3. Some of the developments in techniques of estimation
and computation are covered in the new chapter 5. But perhaps the most
important changes concern data availability. The data series on which several
of the examples in the early chapters in the first edition were based — the CSO
“Blue Book” series published in Economic Trends — is now missing, presumed
dead. For the sake of continuity I have included the last known representative of
this series in the present edition (see page 17), but for practical-minded readers
to make realistic progress I have also included the early results a more recent
UK data source: Households Below Average Income. These data and the other
data sources are described in more detail in the expanded “Notes on Sources”
section — see page 161.
This new material is one of the reasons for a further innovation in the second

edition. Packaged with this book you will find a diskette; this contains - in both
ASCII files and Lotus 1-2-3TM worksheet WK3 files [this is now handled on the
Website, http://sticerd.lse.ac.uk/research/frankweb/MeasuringInequality/index.html]
- all the material used for the examples provided in the second edition, some of
which is not easily available elsewhere. Although you should be able to read the
text without having to use it, I am firmly of the opinion that many of the issues
in inequality measurement can only be properly understood through experience
with practical examples. There are quite a few numerical examples included in
the text, and this edition now comes with a number of questions and problems
at the end of chapter: you may well find that the easiest course is to pick up
the data for these straight from the diskette [website] rather than doing them

xv
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by hand or keying in the numbers into a computer yourself. This is described
further in the Technical Appendix (page 159), but to get going with this diskette
you only need a standard IBM PC-compatible: put the diskette in drive A: and
look at the README.TXT file for guidance [go to the welcome page of the
website].
In preparing the second edition I have received a lot of useful advice and help,

particularly from past and present colleagues in STICERD. Special thanks go to
Tony Atkinson , Karen Gardiner, John Hills, Stephen Jenkins, Peter Lambert,
John Micklewright and Richard Vaughan for their comments on the redrafted
chapters. Z. M. Kmietowicz kindly gave permission for the use of his recent work
in question 2 on page 134. Christian Schlüter helped greatly with the updating
the literature notes and references. Also warm appreciation to Elisabeth Backer
and Jumana Saleheen without whose unfailing assistance the revision would
have been completed in half the time.

STICERD, LSE



Chapter 1

FIRST PRINCIPLES

“It is better to ask some of the questions than to know all of
the answers.” — James Thurber (1945), The Scotty Who Knew Too
Much

“Inequality” is in itself an awkward word, as well as one used in connection
with a number of awkward social and economic problems. The difficulty is that
the word can trigger quite a number of different ideas in the mind of a reader
or listener, depending on his training and prejudice.
“Inequality” obviously suggests a departure from some idea of equality. This

may be nothing more than an unemotive mathematical statement, in which case
“equality” just represents the fact that two or more given quantities are the same
size, and “inequality” merely relates to differences in these quantities. On the
other hand, the term “equality” evidently has compelling social overtones as a
standard which it is presumably feasible for society to attain. The meaning to
be attached to this is not self-explanatory. Indeed, a few years ago Professors
Rein and Miller revealingly interpreted this standard of equality in nine separate
ways

• One-hundred-percentism: in other words, complete horizontal equity -
“equal treatment of equals”.

• The social minimum: here one aims to ensure that no one falls below some
minimum standard of well-being.

• Equalisation of lifetime income profiles: this focuses on inequality of future
income prospects, rather than on the people’s current position.

• Mobility : that is, a desire to narrow the differentials and to reduce the
barriers between occupational groups.

1



2 CHAPTER 1. FIRST PRINCIPLES

• Economic inclusion: the objective is to reduce or eliminate the feeling
of exclusion from society caused by differences in incomes or some other
endowment.

• Income shares: society aims to increase the share of national income (or
some other “cake”) enjoyed by a relatively disadvantaged group - such as
the lowest tenth of income recipients.

• Lowering the ceiling: attention is directed towards limiting the share of
the cake enjoyed by a relatively advantaged section of the population.

• Avoidance of income and wealth crystallisation: this just means elimi-
nating the disproportionate advantages (or disadvantages) in education,
political power, social acceptability and so on that may be entailed by an
advantage (or disadvantage) in the income or wealth scale.

• International yardsticks: a nation takes as its goal that it should be no
more unequal than another “comparable” nation.

Their list is probably not exhaustive and it may include items which you
do not feel properly belong on the agenda of inequality measurement; but it
serves to illustrate the diversity of views about the nature of the subject let
alone its political, moral or economic significance - which may be present in a
reasoned discussion of equality and inequality. Clearly, each of these criteria of
“equality” would influence in its own particular way the manner in which we
might define and measure inequality. Each of these potentially raises particular
issues of social justice that should concern an interested observer. And if I were
to try to explore just these nine suggestions with the fullness that they deserve,
I should easily make this book much longer than I wish.
In order to avoid this mishap let us drastically reduce the problem by trying

to set out what the essential ingredients of a Principle of Inequality Measurement
should be. We shall find that these basic elements underlie a study of equality
and inequality along almost any of the nine lines suggested in the brief list given
above.
The ingredients are easily stated. For each ingredient it is possible to use

materials of high quality - with conceptual and empirical nuances finely graded.
However, in order to make rapid progress, I have introduced some cheap sub-
stitutes which I have indicated in each case in the following list:

• Specification of an individual social unit such as a single person, the nu-
clear family or the extended family. I shall refer casually to “persons”.

• Description of a particular attribute (or attributes) such as income, wealth,
land-ownership or voting strength. I shall use the term “income” as a loose
coverall expression.

• A method of representation or aggregation of the allocation of “income”
among the “persons” in a given population.
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The list is simple and brief, but it will take virtually the whole book to deal
with these fundamental ingredients, even in rudimentary terms.

1.1 A PREVIEW OF THE BOOK

The final item on the list of ingredients will command much of our attention.
As a quick glance ahead will reveal we shall spend quite some time looking at
intuitive and formal methods of aggregation in Chapters 2 and 3. In Chapter
2 we encounter several standard measurement tools that are often used and
sometimes abused. This will be a chapter of “ready-mades” where we take
as given the standard equipment in the literature without particular regard
to its origin or the principles on which it is based. By contrast the economic
analysis of Chapter 3 introduces specific distributional principles on which to
base comparisons of inequality. This step, incorporating explicit criteria of
social justice, is done in three main ways: social welfare analysis, the concept
of distance between income distributions, and an introduction to the axiomatic
approach to inequality measurement. On the basis of these principles we can
appraise the tailor-made devices of Chapter 3 as well as the off-the-peg items
from Chapter 2. Impatient readers who want a quick summary of most of the
things you might want to know about the properties of inequality measures
could try turning to for an instant answer.
Chapter 4 approaches the problem of representing and aggregating informa-

tion about the income distribution from a quite different direction. It introduces
the idea of modelling the income distribution rather than just taking the raw
bits and pieces of information and applying inequality measures or other presen-
tational devices to them. In particular we deal with two very useful functional
forms of income distribution that are frequently encountered in the literature.
In my view the ground covered by Chapter 5 is essential for an adequate

understanding of the subject matter of this book. The practical issues which are
discussed there put meaning into the theoretical constructs with which you will
have become acquainted in Chapters 2 to 4. This is where you will find discussion
of the practical importance of the choice of income definition (ingredient 1) and
of income receiver (ingredient 2); of the problems of using equivalence scales
to make comparisons between heterogeneous income units and of the problems
of zero values when using certain definitions of income. In Chapter 5 also we
shall look at how to deal with patchy data, and how to assess the importance
of inequality changes empirically.
The back end of the book contains two further items that you may find

helpful. The Appendix has been used mainly to tidy away some of the more
cumbersome formulas which would otherwise have cluttered the text; you may
want to dip into it to check up on the precise mathematical definition of defi-
nitions and results that are described verbally or graphically in the main text.
The Notes section has been used mainly to tidy away literature references which
would otherwise have also cluttered the text; if you want to follow up the princi-
pal articles on a specific topic, or to track down the reference containing detailed
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proof of some of the key results, this is where you should turn first. The Notes
section also gives you the background to the data examples found throughout
the book.
Finally, a word or two about this chapter. The remainder of the chapter

deals with some of the issues of principle concerning all three ingredients on
the list; it provides some forward pointers to other parts of the book where
theoretical niceties or empirical implementation is dealt with more fully; it also
touches on some of the deeper philosophical issues that underpin an interest
in the subject of measuring inequality. It is to theoretical questions about the
second of the the three ingredients of inequality measurement that we shall turn
first.

1.2 INEQUALITY OF WHAT?

Let us consider some of the problems of the definition of a personal attribute,
such as income, that is suitable for inequality measurement. This attribute
can be interpreted in a wide sense if an overall indicator of social inequality is
required, or in a narrow sense if one is concerned only with inequality in the
distribution of some specific attribute or talent. Let us deal first with the special
questions raised by the former interpretation.
If you want to take inequality in a global sense, then it is evident that you

will need a comprehensive concept of “income” - an index that will serve to
represent generally a person’s well-being in society. There are a number of
personal economic characteristics which spring to mind as candidates for such
an index — for example, wealth, lifetime income, weekly or monthly income.
Will any of these do as an all-purpose attribute?
While we might not go as far as Anatole France in describing wealth as a

“sacred thing”, it has an obvious attraction for us (as students of inequality). For
wealth represents a person’s total immediate command over resources. Hence,
for each man or woman we have an aggregate which includes the money in the
bank, the value of holdings of stocks and bonds, the value of the house and the
car, his ox, his ass and everything that he has. There are two difficulties with
this. Firstly, how are these disparate possessions to be valued and aggregated
in money terms? It is not clear that prices ruling in the market (where such
markets exist) appropriately reflect the relative economic power inherent in
these various assets. Secondly, there are other, less tangible assets which ought
perhaps to be included in this notional command over resources, but which a
conventional valuation procedure would omit.
One major example of this is a person’s occupational pension rights: having

a job that entitles me to a pension upon my eventual retirement is certainly
valuable, but how valuable? Such rights may not be susceptible of being cashed
in like other assets so that their true worth is tricky to assess.
A second important example of such an asset is the presumed prerogative of

higher future incomes accruing to those possessing greater education or training.
Surely the value of these income rights should be included in the calculation of
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a person’s wealth just as is the value of other income-yielding assets such as
stocks or bonds? To do this we need an aggregate of earnings over the entire life
span. Such an aggregate — “lifetime income” - in conjunction with other forms
of wealth appears to yield the index of personal well-being that we seek, in that
it includes in a comprehensive fashion the entire set of economic opportunities
enjoyed by a person. The drawbacks, however, are manifest. Since lifetime
summation of actual income receipts can only be performed once the income
recipient is deceased (which limits its operational usefulness), such a summation
must be carried out on anticipated future incomes. Following this course we are
led into the difficulty of forecasting these income prospects and of placing on
them a valuation that appropriately allows for their uncertainty. Although I
do not wish to assert that the complex theoretical problems associated with
such lifetime aggregates are insuperable, it is expedient to turn, with an eye on
Chapter 5 and practical matters, to income itself.
Income — defined as the increase in a person’s command over resources during

a given time period — may seem restricted in comparison with the all-embracing
nature of wealth or lifetime income. It has the obvious disadvantages that
it relates only to an arbitrary time unit (such as one year) and thus that it
excludes the effect of past accumulations except in so far as these are deployed
in income-yielding assets. However, there are two principal offsetting merits:

• if income includes unearned income, capital gains and “income in kind” as
well as earnings , then it can be claimed as a fairly comprehensive index
of a person’s well-being at a given moment;

• information on personal income is generally more widely available and
more readily interpretable than for wealth or lifetime income.

Furthermore, note that none of the three concepts that have been discussed
completely covers the command over resources for all goods and services in
society. Measures of personal wealth or income exclude “social wage” elements
such as the benefits received from communally enjoyed items like municipal
parks, public libraries, the police, and ballistic missile systems, the interpersonal
distribution of which services may only be conjectured.
In view of the difficulty inherent in finding a global index of “well-offness”,

we may prefer to consider the narrow definition of the thing called “income”.
Depending on the problem in hand, it can make sense to look at inequality in the
endowment of some other personal attribute such as consumption of a particular
good, life expectancy, land ownership, etc. This may be applied also to publicly
owned assets or publicly consumed commodities if we direct attention not to
interpersonal distribution but to intercommunity distribution - for example,
the inequality in the distribution of per capita energy consumption in different
countries. The problems concerning “income” that I now discuss apply with
equal force to the wider interpretation considered in the earlier paragraphs.
It is evident from the foregoing that two key characteristics of the “income”

index are that it be measurable and that it be comparable among different per-
sons. That these two characteristics are mutually independent can be demon-
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strated by two contrived examples. Firstly, to show that an index might be
measurable but not comparable, take the case where well-being is measured by
consumption per head within families, the family rather than the individual be-
ing taken as the basic social unit. Suppose that consumption by each family in
the population is known but that the number of persons is not. Then for each
family, welfare is measurable up to an arbitrary change in scale, in this sense:
for family A doubling its income makes it twice as well off, trebling it makes
it three times as well off; the same holds for family B; but A’s welfare scale
and B’s welfare scale cannot be compared unless we know the numbers in each
family. Secondly, to show that an index may be interpersonally comparable,
but not measurable in the conventional sense, take the case where “access to
public services” is used as an indicator of welfare. Consider two public services,
gas and electricity supply - households may be connected to one or to both or
to neither of them, and the following scale (in descending order of amenity) is
generally recognised:

• access to both gas and electricity
• access to electricity only
• access to gas only
• access to neither.

We can compare households’ amenities — A and B are as well off if they are
both connected only to electricity - but it makes no sense to say that A is twice
as well off if it is connected to gas as well as electricity.
It is possible to make some progress in the study of inequality without mea-

surability of the welfare index and sometimes even without full comparability.
For most of the time, however, I shall make both these assumptions, which
may be unwarranted. For this implies that when I write the word “income”, I
assume that it is so defined that adjustment has already been made for non-
comparability on account of differing needs, and that fundamental differences
in tastes (with regard to relative valuation of leisure and monetary income, for
example) may be ruled out of consideration. We shall reconsider the problems
of non-comparability in Chapter 5.
The final point in connection with the “income” index that I shall mention

can be described as the “constant amount of cake”. We shall usually talk of
inequality freely as though there is some fixed total of goodies to be shared
among the population. This is definitionally true for certain quantities, such as
the distribution of acres of land (except perhaps in the Netherlands). However,
this is evidently questionable when talking about income as conventionally de-
fined in economics. If an arbitrary change is envisaged in the distribution of
income among persons, we may reasonably expect that the size of the cake to
be divided - national income - might change as a result. Or if we try to compare
inequality in a particular country’s income distribution at two points in time it
is quite likely that total income will have changed during the interim. Moreover
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if the size of the cake changes, either autonomously or as a result of some re-
distributive action, this change in itself may modify our view of the amount of
inequality that there is in society.
Having raised this important issue of the relationship between interpersonal

distribution and the production of economic goods, I shall temporarily evade
it by assuming that a given whole is to be shared as a number of equal or
unequal parts. For some descriptions of inequality this assumption is irrelevant.
However, since the size of the cake as well as its distribution is very important
in social welfare theory, we shall consider the relationship between measured
inequality and total income in Chapter 3 (particularly onwards), and examine
the practical implications of a growing — or dwindling — cake in Chapter 5 (see
page 128.

1.3 INEQUALITYMEASUREMENT, JUSTICE
AND POVERTY

So what is meant by an inequality measure? In order to introduce this device
which serves as the third “ingredient” mentioned previously, let us try a simple
definition which roughly summarises the common usage of the term:

• a scalar numerical representation of the interpersonal differences in income
within a given population.

Now let us take this bland statement apart.

1.3.1 Scalar Inequality

The use of the word “scalar” implies that all the different features of inequality
are compressed into a single number - or a single point on a scale. Appealing
arguments can be produced against the contraction of information involved in
this aggregation procedure. Should we don this one-dimensional straightjacket
when surely our brains are well-developed enough to cope with more than one
number at a time? There are three points in reply here.
Firstly, if we want a multi-number representation of inequality, we can easily

arrange this by using a variety of indices each capturing a different characteristic
of the social state, and each possessing attractive properties as a yardstick of
inequality in its own right. In fact we shall see some practical examples (in
Chapters 3 and 5) where we do exactly that.
Secondly, however, we often want to answer a question like “has inequal-

ity increased or decreased?” with a straight “yes” or “no”. But if we make
the concept of inequality multi-dimensional we greatly increase the possibility
of coming up with ambiguous answers. For example, suppose we represent in-
equality by two numbers, each describing a different aspect of inequality of the
same “income” attribute. We may depict this as a point such as B in Figure 1.1,
which reveals that there is an amount I1 of type-1 inequality, and I2 of type-2
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Figure 1.1: Two Types of Inequality

inequality. Obviously all points like C represent states of society that are more
unequal than B and points such as A represent less unequal states. But it is
much harder to compare B and D or to compare B and E. If we attempt to
resolve this difficulty, we will find that we are effectively using a single-number
representation of inequality after all.

Third, multi-number representations of income distributions may well have
their place alongside a standard scalar inequality measure. As we shall see in
later chapters, even if a single agreed number scale (I1 or I2) is unavailable, or
even if a collection of such scales (I1 and I2) cannot be found, we might be able
to agree on an inequality ranking. This is a situation where — although you may
not be able to order or to sort the income distributions uniquely (most equal
at the bottom, most unequal at the top) - you nevertheless find that you can
arrange them in a pattern that enables you to get a fairly useful picture of what
is going on. To get the idea, have a look at Figure 1.2. We might find that over
a period of time the complex changes in the relevant income distribution can
be represented schematically as in the league table illustrated there: you can
say that inequality went down from 1980 to 1985, and went up from 1985 to
either 1990 or 1992; but you cannot say whether inequality went up or down in
the early nineties. Although this method of looking at inequality is not decisive
in terms of every possible comparison of distributions, it could still provide
valuable information.
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Figure 1.2: An Inequality Ranking

I1 I2 I3 I4
A .10 .13 .24 .12
B .25 .26 .60 .16
C .30 .34 .72 .20
D .40 .10 .96 .22

Table 1.1: Four inequality scales

1.3.2 Numerical Representation

What interpretation should be placed on the phrase “numerical representation”
in the definition of an inequality measure? The answer to this depends on
whether we are interested in just the ordering properties of an inequality measure
or in the actual size of the index and of changes in the index.
To see this, look at the following example. Imagine four different social states

A,B,C,D, and four rival inequality measures I1, I2, I3, I4. The first column in
Table 1.1 gives the values of the first measure, I1, realised in each of the four
situations. Are any of the other candidates equivalent to I1? Notice that I3
has a strong claim in this regard. Not only does it rank A,B,C,D in the same
order, it also shows that the percentage change in inequality in going from one
state to another is the same as if we use the I1 scale. If this is true for all social
states, we will call I1 and I3 cardinally equivalent. More formally, I1 and I3 are
cardinally equivalent if one scale can be obtained from the other multiplying by
a positive constant and adding or subtracting another constant. In the above
case, we multiply I1 by 2.4 and add on zero to get I3. Now consider I4: it



10 CHAPTER 1. FIRST PRINCIPLES

ranks the four states A to D in the same order as I1, but it does not give the
same percentage differences (compare the gaps between A and B and between
B and C). So I1 and I4 are certainly not cardinally equivalent. However, if it
is true that I1 and I4 always rank any set of social states in the same order,
we will say that the two scales are ordinally equivalent.1 Obviously cardinal
equivalence entails ordinal equivalence, but not vice versa. Finally we note that
I2 is not ordinally equivalent to the others, although for all we know it may be
a perfectly sensible inequality measure.

Now let A be the year 1970, let B be 1960, and D be 1950. Given the
question, “Was inequality less in 1970 than it was in 1960?”, I1 produces the
same answer as any other ordinally equivalent measure (such as I3 or I4): “nu-
merical representation” simply means a ranking. But, given the question, “Did
inequality fall more in the 1960s than it did in the 1950s?”, I1 only yields the
same answer as other cardinally equivalent measures (I3 alone): inequality now
needs to have the same kind of “numerical representation” as temperature on a
thermometer.

1.3.3 Income Differences

Should any and every “income difference” be reflected in a measure of inequal-
ity? The commonsense answer is “No”, for two basic reasons — need and merit.
The first reason is the more obvious: large families and the sick need more
resources than the single, healthy person to support a particular economic stan-
dard. Hence in a “just” allocation, we would expect those with such greater
needs to have a higher income than other people; such income differences would
thus be based on a principle of justice, and should not be treated as inequali-
ties. To cope with this difficulty one may adjust the income concept such that
allowance is made for diversity of need, as mentioned in the last section (this is
something which needs to be done with some care — as we will find in Chapter
5 (see the discussion on page 5.1.4).

The case for ignoring differences on account of merit depends on the interpre-
tation attached to “equality”. One obviously rough-and-ready description of a
just allocation requires equal incomes for all irrespective of personal differences
other than need. However, one may argue strongly that in a just allocation
higher incomes should be received by doctors, heroes, inventors, Stakhanovites
and other deserving persons. Unfortunately, in practice it would be more dif-
ficult to make adjustments similar to those suggested in the case of need and,
more generally, even distinguishing between income differences that do represent
genuine inequalities and those that do not poses a serious problem.

1A mathematical note: I1 and I4 are ordinally equivalent if one may be written as a
monotonically increasing function of the other, i.e.I1 = f(I4), where dI1/dI4>0. An example
of such a function is log(I).
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1.3.4 Given Population.

The last point about the definition of an inequality measure concerns the phrase
“given population” and needs to be clarified in two ways. Firstly, when examin-
ing the population over say a number of years, what shall we do about the effect
on measured inequality of persons who either enter or leave the population, or
whose status changes in some other relevant way? The usual assumption is that
as long as the overall structure of income differences stays the same (regard-
less of whether different personnel are now receiving those incomes), measured
inequality remains unaltered. Hence the phenomenon of social mobility within
or in and out of the population eludes the conventional method of measuring
inequality. Secondly, one is not exclusively concerned with inequality in the
population as a whole. It is useful to be able to decompose this “laterally” into
inequality within constituent groups, differentiated regionally or demographi-
cally, perhaps, and inequality between these constituent groups. Indeed, once
one acknowledges basic heterogeneities within the population, such as age or sex,
awkward problems of aggregation may arise, although we shall ignore them. It
may also be useful to decompose inequality “vertically” so that one looks at
inequality within a subgroup of the rich, or of the poor, for example. Hence the
specification of the given population is by no means a trivial prerequisite to the
application of inequality measurement.
Although the definition has made it clear that an inequality measure calls

for a numerical scale, I have not suggested how this scale should be calibrated.
Specific proposals for this will occupy Chapters 2 and 3, but a couple of basic
points may be made here.
You may have noticed just now that the notion of justice was slipped in

while income differences were being considered. In most applications of in-
equality analysis social justice really ought to be centre stage. That more just
societies should register lower numbers on the inequality scale evidently accords
with an intuitive appreciation of the term “inequality”. But, on what basis
should principles of distributional justice and concern for inequality be based?
Economic philosophers have offered a variety of answers. This concern could be
no more than the concern about the everyday risks of life: just as individuals
are upset by the financial consequences having their car stolen or missing their
plane so too they would care about the hypothetical risk of drawing a losing
ticket in a lottery of life chances; this lottery could be represented by the income
distribution in the UK, the USA or wherever; nice utilitarian calculations on
the balance of small-scale gains and losses are become utilitarian calculations
about life chances; aversion to risk translates into aversion to inequality. Or the
concern could be based upon the altruistic feelings of each human towards his
fellows that motivates charitable action. Or again it could be that there is a
social imperative toward concern for the least advantage — and perhaps concern
about the inordinately rich - that transcends the personal twinges of altruism
and envy. It is possible to construct a coherent justice-based theory of inequal-
ity measurement on each of these notions, although that takes us beyond the
remit of this book.
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However, if we can clearly specify what a just distribution is, such a state
provides the zero from which we start our inequality measure. But even a
well-defined principle of distributive justice is not sufficient to enable one to
mark off an inequality scale unambiguously when considering diverse unequal
social states. Each of the apparently contradictory scales I1 and I2 considered
in Figure 1.1 and Table 1.1 might be solidly founded on the same principle of
justice, unless such a principle were extremely narrowly defined.
The other general point is that we might suppose there is a close link be-

tween an indicator of the extent of poverty and the calibration of a measure
of economic inequality. This is not necessarily so, because two rather different
problems are generally involved. In the case of the measurement of poverty,
one is concerned primarily with that segment of the population falling below
some specified “poverty line”; to obtain the poverty measure one may perform
a simple head count of this segment, or calculate the gap between the average
income of the poor and the average income of the general population, or carry
out some other computation on poor people’s incomes in relation to each other
and to the rest of the population. Now in the case of inequality one generally
wishes to capture the effects of income differences over a much wider range.
Hence it is perfectly possible for the measured extent of poverty to be declining
over time, while at the same time and in the same society measured inequality
increases due to changes in income differences within the non-poor segment of
the population, or because of migrations between the two groups. (If you are
in doubt about this you might like to have a look at question 4 on page 13.)
Poverty will make a few guest appearances in the course of this book, but on
the whole our discussion of inequality has to take a slightly different track from
the measurement of poverty.

1.4 INEQUALITYANDTHE SOCIAL STRUC-
TURE

Finally we return to the subject of the first ingredient, namely the basic so-
cial units used in studying inequality — or the elementary particles of which we
imagine society to be constituted. The definition of the social unit, whether it
be a single person, the nuclear family or the extended family depends intrin-
sically upon the social context, and upon the interpretation of inequality that
we impose. Although it may seem natural to adopt an individualistic approach,
some other “collective” unit may be more appropriate.
When economic inequality is our particular concern, the theory of the devel-

opment of the distribution of income or wealth may itself influence the choice
of the basic social unit. To illustrate this, consider the classical view of an eco-
nomic system, the population being subdivided into distinct classes of workers,
capitalists and landowners. Each class is characterised by a particular function
in the economic order and by an associated type of income - wages, profits,
and rents. If, further, each is regarded as internally fairly homogeneous, then
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it makes sense to pursue the analysis of inequality in class terms rather than in
terms of individual units.
However, so simple a model is unsuited to describing inequality in a signif-

icantly heterogenous society, despite the potential usefulness of class analysis
for other social problems. A superficial survey of the world around us reveals
rich and poor workers, failed and successful capitalists and several people whose
rôles and incomes do not fit into neat slots. Hence the focus of attention in this
book is principally upon individuals rather than types whether the analysis is
interpreted in terms of economic inequality or some other sense.
Thus reduced to its essentials it might appear that we are dealing with a

purely formal problem, which sounds rather dull. This is not so. Although the
subject matter of this book is largely technique, the techniques involved are
essential for coping with the analysis of many social and economic problems in
a systematic fashion; and these problems are far from dull or uninteresting.

1.5 QUESTIONS

1. In Syldavia the economists find that (annual) household consumption c is
related to (annual) income y by the formula: where α > 0 and 0 < β < 1.

2. Because of this, they argue, inequality of consumption must be less than
inequality of income. Provide an intuitive argument for this. Ruritanian
society consists of three groups of people: Artists, Bureaucrats and Choco-
latiers. Each Artist has high income (15 000 Ruritanian Marks) with a
50% probability, and low income (5 000 RM) with 50% probability. Each
Bureaucrat starts working life on a salary of 5 000 RM and then benefits
from an annual increment of 250 RM over the 40 years of his (perfectly
safe) career. Chocolatiers get a straight annual wage of 10 000 RM. Dis-
cuss the extent of inequality in Ruritania according to annual income and
lifetime income concepts.

3. In Borduria the government statistical service uses an inequality index
that in principle can take any value greater than or equal to 0. You want
to introduce a transformed inequality index that is ordinally equivalent
to the original but that will always lie between zero and 1. Which of the
following will do?
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4. In a small village Government experts reckon that the poverty line is 100
rupees a month. In January a joint team from the Ministry of Food and
the Central Statistical Office carry out a survey of living standards in the
village: the income for each villager (in rupees per month) is recorded. In
April the survey team repeats the exercise. The number of villagers was



14 CHAPTER 1. FIRST PRINCIPLES

exactly the same as in January, and villagers’ incomes had changed only
slightly. An extract from the results is as follows:

January April
... ...
... ...
92 92
95 92
98 101
104 104
... ...
... ...

(the dots indicate the incomes of all the other villagers for whom income
did not change at all from January to April). The Ministry of Food writes
a report claiming that poverty has fallen in the village; the Central Statis-
tical Office writes a report claiming that inequality has risen in the village.
Can they both be right? [See Thon (1979, 1981, 1983b) for more on this].



Chapter 2

CHARTING
INEQUALITY

F. Scott Fitzgerald: “The rich are different from us.”

Ernest Hemingway: “Yes, they have more money.”

If society really did consist of two or three fairly homogeneous groups,
economists could be saved a lot of trouble. We could then simply look at
the division of income between landlords and peasants, among workers, capi-
talists and rentiers, or any other appropriate sections. Naturally we would still
be faced with such fundamental issues as how much each group should possess
or receive, whether the statistics are reliable and so on, but questions such as
“what is the income distribution?” could be satisfactorily met with a snappy
answer “65% to wages, 35% to profits.” Of course matters are not that simple.
As we have argued, we want a way of looking at inequality that reflects both
the depth of poverty of the “have nots” of society and the height of well-being
of the “haves”: it is not easy to do this just by looking at the income accruing
to, or the wealth possessed by, two or three groups.

So in this chapter we will look at several quite well-known ways of presenting
inequality in a large heterogeneous group of people. They are all methods of
appraising the sometimes quite complicated information that is contained in
an income distribution, and they can be grouped under three broad headings:
diagrams, inequality measures, and rankings. To make the exposition easier I
shall continue to refer to “income distribution”, but you should bear in mind, of
course, that the principles can be carried over to the distribution of any other
variable that you can measure and that you think is of economic interest.

15
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2.1 DIAGRAMS
Putting information about income distribution into diagrammatic form is a par-
ticularly instructive way of representing some of the basic ideas about inequality.
In fact there are several useful ways of representing inequality in pictures; the
four that I shall discuss are introduced in the accompanying box. Let us have
a closer look at each of them.

¤ Parade of Dwarfs
¤ Frequency distribution
¤ Lorenz Curve
¤ Log transformation

PICTURES OF INEQUALITY

Jan Pen’s Parade of Dwarfs is one of the most persuasive and attractive
visual aids in the subject of income distribution. Suppose that everyone in the
population had a height proportional to his or her income, with the person
on average income being endowed with average height. Line them up in order
of height and let them march past in some given time interval — let us say
one hour. Then the sight that meets our eyes is represented by the curve in
Figure 2.1. The whole parade passes in the interval represented by OC. But
we do not meet the person with average income until we get to the point B
(when well over half the parade has gone by). Divide total income by total
population: this gives average income or mean income (ȳ) and is represented
by the height OA. We have oversimplified Pen’s original diagram by excluding
from consideration people with negative reported incomes, which would involve
the curve OD crossing the base line towards its left-hand end. And in order to
keep the diagram on the page, we have plotted the point D in a position that
would be far too low in practice.
This diagram highlights the presence of any extremely large incomes and to

a certain extent abnormally small incomes. But we may have reservations about
the degree of detail that it seems to impart concerning middle income receivers.
We shall see this point recur when we use this diagram to derive an inequality
measure that informs us about changes in the distribution.

Frequency distributions are well-tried tools of statisticians, and are discussed
here mainly for the sake of completeness and as an introduction for those un-
familiar with the. concept — for a fuller account see the references cited in the
notes to this chapter. An example is found in Figure 2.2. Suppose you are
looking down on a field. On one side - the axis 0y - there is a long straight fence
marked off income categories: the physical distance between any two points
along the fence directly corresponds to the income differences they represent.
Then get the whole population to come into the field and line up in the strip of
land marked off by the piece of fence corresponding to their income bracket. So
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Figure 2.1: The Parade of Dwarfs. UK Income Before Tax, 1984/5. Source:
Economic Trends, November 1987
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Figure 2.3: Cumulative Frequency Distribution. UK Income Before Tax,
1984/5. Source: Economic Trends, November 1987

the £10,000-to-£12,500-a-year persons stand on the shaded patch. The shape
that you get will resemble the stepped line in Figure 2.2 — called a histogram
— which represents the frequency distribution. It may be that we regard this
as an empirical observation of a theoretical curve which describes the income
distribution — for example the smooth curve drawn in Figure 2.2. The relation-
ship f(y) charted by this curve is sometimes known as a density function, where
the scale is chosen such that the area under the curve and above the line 0y is
standardised at unity.
The frequency distribution shows what is happening in the middle income

ranges more clearly. But perhaps it is not so readily apparent what is happening
in the upper tail; indeed, in order to draw the figure, we have deliberately made
the length of the fence much too short. (On the scale of this diagram it ought to
be 100 metres at least!) This diagram and the Parade of Dwarfs are, however,
intimately related; and we show this by constructing Figure 2.3 from Figure
2.2. The horizontal scale of each figure is identical. On the vertical scale of
Figure 2.3 we plot “cumulative frequency”. For any income y this cumulative
frequency, written F (y), is proportional to the area under the curve and to the
left of y in Figure 2.2. If you experiment with the diagram you will see that as
you increase y, F (y) usually goes up (it can never decrease) — from a value of
zero when you start at the lowest income received up to a value of one for the
highest income. Thus, supposing we consider y = £30 000, we plot a point in
Figure 2.3 that corresponds to the proportion of the population with £30 000
or less. And we can repeat this operation for every point on either the empirical
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Figure 2.4: Lorenz Curve of Income. UK Income Before Tax, 1984/5. Source:
Economic Trends, November 1987

curve or on the smooth theoretical curve.
The visual relationship between Figures 2.1 and 2.3 is now obvious. As a

further point of reference, the position of mean income has been drawn in at
the point A in the two figures. (If you still don’t see it, try turning the page
round!).
The Lorenz curve was introduced in 1905 as a powerful method of illustrating

the inequality of the wealth distribution. A simplified explanation of it runs as
follows.
Once again line up everybody in ascending order of incomes and let them

parade by. Measure F (y), the proportion of people who have passed by, along
the horizontal axis of Figure 2.4. Once point C is reached everyone has gone by,
so F (y) = 1.0. Now as each person passes, hand him his share of the “cake” -
i.e. the proportion of total income that he receives. When the parade reaches
people with income y, let us suppose that a proportion Φ(y) of the cake has
gone. So of course when F (y) = 0, Φ(y) is also 0 (no cake gone); and when
F (y) = 1, Φ(y) is also 1 (all the cake has been handed out). Φ(y) is measured
on the vertical scale in Figure 2.4, and the graph of Φ plotted against F is the
Lorenz curve. Note that it is always convex toward the point C, the reason for
which is easy to see. Suppose that the first 10% have filed by (F (y1) = .10)and
you have handed out 4% of the cake (Φ(y1) = .04); then by the time the next
10% of the people go by (F (y2) = .20), you must have handed out at least 8%
of the cake (Φ(y2) = .08). Why? - because we arranged the parade in ascending
order of cake-receivers. Notice too that if the Lorenz curve lay along OD we
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would have a state of perfect equality, for along that line the first 5% get 5% of
the cake, the first 10% get 10% ... and so on.
The Lorenz curve incorporates some principles that are generally regarded

as fundamental to the theory of inequality measurement, as we will see later in
this chapter (page 30) and also in Chapter 3 (pages 42 and 55). And again there
is a nice relationship with Figure 2.1. If we plot the slope of the Lorenz curve
against the cumulative population proportions, F , then we are back precisely to
the Parade of Dwarfs (scaled so that mean income equals unity). Once again,
to facilitate comparison, the position where we meet the person with mean
income has been marked as point B, although in the Lorenz diagram we cannot
represent mean income itself. Note that the mean occurs at a value of F such
that the slope of the Lorenz curve is parallel to OD.
Logarithmic transformation. An irritating problem that arises in drawing

the frequency curve of Figure 2.2 is that we must either ignore some of the
very large incomes in order to fit the diagram on the page, or put up with a
diagram that obscures much of the detail in the middle and lower income ranges.
We can avoid this to some extent by drawing a similar frequency distribution,
but plotting the horizontal axis on a logarithmic scale as in Figure 2.5. Equal
distances along the horizontal axis correspond to equal proportionate income
differences.
Again the point corresponding to mean income, ȳ, has been marked in as A.

Note that the length OA equals log(ȳ) and is not the mean of the logarithms
of income. This is marked in as the point A0, so that the length OA0 = log(y∗)
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where y∗ is the geometric mean of the distribution. If incomes are non-negative,
then the geometric mean, found by taking the mean of the logarithms and
then transforming back to natural numbers, can never exceed the conventional
arithmetic mean.
We have now seen four different ways of presenting pictorially the same facts

about income distribution. Evidently each graphical technique may emphasise
quite different features of the distribution: the Parade draws attention to the
enormous height of the well-off; the frequency curve presents middle incomes
more clearly, the logarithmic transformation captures information from each
of the “tails” as well as the middle, but at the same time sacrifices simplicity
and ease of interpretation. This difference in emphasis is partly reflected in the
inequality measures derived from the diagrams.

2.2 INEQUALITY MEASURES
We can use Figures 2.1 to 2.5 in order to introduce and illustrate some con-
ventional inequality measures. A few of the more important ones that we shall
encounter are listed in the accompanying box. Of course, an inequality mea-
sure, like any other tool, is to be judged by the kind of job that it does: is it
suitably sensitive to changes in the pattern of distribution? Does it respond
appropriately to changes in the overall scale of incomes? As we go through the
items in the box it we will briefly consider their principal properties: (a proper
job must wait until page 60, after we have considered the important analytical
points introduced in Chapter 3).

¤ Range R
¤ Relative Mean Deviation M
¤ Variance V
¤ Coefficient of variation c
¤ Gini coefficient G
¤ Log variance v

INEQUALITY MEASURES

The Parade of Dwarfs suggests the first two of these. Firstly, we have the
range, which we define simply as the distance CD in Figure 2.1 or:

R = ymax − ymin

where ymax and ymin are, respectively the maximum and minimum values of
income in the parade (we may, of course standardise by considering R/ymin or
R/ȳ). Plato apparently had this concept in mind when he made the following
judgement:

We maintain that if a state is to avoid the greatest plague of all -
I mean civil war, though civil disintegration would be a better term
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- extreme poverty and wealth must not be allowed to arise in any
section of the citizen-body, because both lead to both these disasters.
That is why the legislator must now announce the acceptable limits
of wealth and poverty. The lower limit of poverty must be the value
of the holding. The legislator will use the holding as his unit of
measure and allow a man to possess twice, thrice, and up to four
times its value. - The Laws, 745.

The problems with the range are evident. Although it might be satisfactory
in a small closed society where everyone’s income is known fairly certainly, it
is clearly unsuited to large, heterogeneous societies where the “minimum” and
“maximum” incomes can at best only be guessed. The measure will be highly
sensitive to the guesses or estimates of these two extreme values. In practice one
might try to get around the problem by using a related concept that is more
robust: take the gap between the income of the person who appears exactly
at, say, the end of the first three minutes in the Parade, and that of the person
exactly at the 57th minute (the bottom 5% and the top 5% of the line of people).
However, even if we did that there is a more compelling reason for having doubts
about the usefulness of R. Suppose we can wave a wand and bring about a
society where the person at position O and the person at position C are left
at the same height, but where everyone else in between was levelled to some
equal, intermediate height. We would probably agree that inequality had been
reduced, though not eliminated. But according to R it is just the same!
You might be wondering whether the problem with R arises because it ig-

nores much of the information about the distribution (it focuses just a couple
of extreme incomes). Unfortunately we shall find a similar criticism in subtle
form attached to the second inequality measure that we can read off the Parade
diagram, one that uses explicitly the income values of all the individuals. This
is the relative mean deviation, which is defined as the average absolute distance
of everyone’s income from the mean, expressed as a proportion of the mean.
Take a look at the shaded portions in Figure 2.1. These portions, which are
necessarily of equal size, constitute the area between the Parade curve itself
and the horizontal line representing mean income. In some sense, the larger is
this area, the greater is inequality. (Try drawing the Parade with more giants
and more dwarfs.) It is conventional to standardise the inequality measure in
unit-free terms, so let us divide by the total income (which equals area OCGA).
In terms of the diagram then the relative mean deviation is then:1

M =
area OAP + area PGD

area OCGA

But now for the fatal weakness of M . Suppose you think that the stature of
the dwarfs to the left of B is socially unacceptable. You arrange a reallocation
of income so that everyone with incomes below the mean (to the left of point B)
has exactly the same income. The modified parade then looks like Figure 2.6.

1You are invited to check the technical appendix (pp. 135 ff) for formal definitions of this
and other inequality measures.
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Figure 2.6: The Parade with Partial Equalisation

But notice that the two shaded regions in Figure 2.6 are exactly the same area
as in Figure 2.1: so the value of M has not changed. Whatever reallocation you
arrange among people to the left of C only, or among people to the right of C
only, inequality according to the relative mean deviation stays the same.
The relative mean deviation can be easily derived from the Lorenz curve

(Figure 2.4). From the Technical Appendix, page 139. it can be verified that
M = 2[F (ȳ) − Φ(ȳ)], that is: M = 2[OB− BP]. However a more common
use of the Lorenz curve diagram is to derive the Gini coefficient , G, expressed
as the ratio of the shaded area in Figure 2.4 to the area OCD. There is a
variety of equivalent ways of defining G; but perhaps the easiest definition is as
the average difference between all possible pairs of incomes in the population,
expressed as a proportion of total income: see page 137 and 139 for a formal
definition. The main disadvantage of G is that its places a rather curious implicit
relative value on changes that may occur in different parts of the distribution.
An income transfer from a richer person to a poorer person has a much greater
effect on G if the two persons are near the middle rather than at either end of
the parade. So, consider transferring £1 from a person with £10 100 to a person
with £10,000. This has a much greater effect on reducing G than transferring
£1 from a person with £1 100 to one with £1,000 or than transferring £1 from
a person with £100 100 to a person with £100,000. This valuation may be
desirable, but it is not obvious that it is desirable: this point about the valuation
of transfers is discussed more fully in Chapter 3 once we have discussed social
welfare explicitly.
Other inequality measures can be derived from the Lorenz curve in Figure
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2.4. Two have been suggested in connection with the problem of measuring
inequality in the distribution of power, as reflected in voting strength. Firstly,
consider the income level y0 at which half the national cake has been distributed
to the parade; i.e. Φ(y0) = 1

2 . Then define theminimal majority inequality mea-
sure as F (y0), which is the distance OH. If Φ is reinterpreted as the proportion
of seats in an elected assembly where the votes are spread unevenly among the
constituencies as reflected by the Lorenz curve, and if F is reinterpreted as a
proportion of the electorate, then 1− F (y0) represents the smallest proportion
of the electorate that can secure a majority in the elected assembly. Secondly,
we have the equal shares coefficient, defined as F (ȳ): the proportion of the
population that has income ȳ or less (the distance OB), or the proportion of
the population that has “average voting strength” or less. Clearly, either of
these measures as applied to the distribution of income or wealth is subject
to essentially the same criticism as the relative mean deviation: they are in-
sensitive to transfers among members of the Parade on the same side of the
person with income y0 (in the case of the minimal majority measure ) or (the
equal shares coefficient): in effect they measure changes in inequality by only
recording transfers between two broadly based groups.
Now let us consider Figures 2.2 and 2.5: the frequency distribution and its

log-transformation. An obvious suggestion is to measure inequality in the same
way as statisticians measure dispersion of any frequency distribution. In this
application, the usual method would involve measuring the distance between
the individual’s income yi and mean income ȳ, squaring this, and then finding
the average of the resulting quantity in the whole population. Assuming that
there are n people we define the variance:

V =
1

n

nX
i=1

[yi − ȳ]2 (2.1)

However, V is unsatisfactory in that were we simply to double everyone’s
incomes (and thereby double mean income and leave the shape of the distribu-
tion essentially unchanged), V would quadruple. One way round this problem
is to standardize V . Define the coefficient of variation thus

c =

√
V

ȳ
(2.2)

Another way to avoid this problem is to look at the variance in terms of
the logarithms of income — to apply the transformation illustrated in Figure
2.5 before evaluating the inequality measure. In fact there are two important
definitions:

v =
1

n

nX
i=1

·
log

µ
yi
ȳ

¶¸2
(2.3)

v1 =
1

n

nX
i=1

·
log

µ
yi
y∗

¶¸2
(2.4)
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The first of these we will call the logarithmic variance, and the second we may
more properly term the variance of the logarithms of incomes. Note that v is
defined relative to the logarithm of mean income; v1 is defined relative to the
mean of the logarithm of income. Either definition is invariant under propor-
tional increases in all incomes.
We shall find that v1 has much to recommend it when we come to examine

the lognormal distribution in Chapter 4. However c, v and v1 can be criticised
more generally on grounds similar to those on which G was criticised. Consider
a transfer of £1 from a person with y to a person with y− £100. How does this
transfer affect these inequality measures? In the case of c, it does not matter in
the slightest where in the parade this transfer is effected: so whether the transfer
is from a person with £500 to a person with £400, or from a person with £100
100 to a person with £100 000, the reduction in c is exactly the same. Thus c
will be particularly good at capturing inequality among high incomes, but may
be of more limited use in reflecting inequality elsewhere in the distribution. In
contrast to this property of c, there appears to be good reason to suggest that
a measure of inequality have the property that a transfer of the above type
carried out in the low income brackets would be quantitatively more effective
in reducing inequality than if the transfer were carried out in the high income
brackets. The measures v and v1 appear to go some way towards meeting this
objection. Taking the example of the UK in 1984/5 (Illustrated in 1 to 5 where
we have = £7 522), a transfer of £1 from a person with £10 100 to a person
with £10 000 reduces v and v1 less than a transfer of £1 from a person with
£500 to a person with £400. But, unfortunately, v and v1 “overdo” this effect,
so to speak. For if we consider a transfer from a person with £100 100 to a
person with £100 000 then inequality, as measured by v or v1, increases! This is
hardly a desirable property for an inequality measure to possess, even if it does
occur only at high incomes.2

Other statistical properties of the frequency distribution may be pressed
into service as inequality indices. While these may draw attention to particular
aspects of inequality - such as dispersion among the very high or very low
incomes, by and large they miss the point as far as general inequality of incomes
is concerned. Consider, for example, measures of skewness. For symmetric
distributions (such as the Normal curve) these measures are zero; but this zero
value of the measure may be consistent with either a very high or a very low
dispersion of incomes (as measured by the coefficient of variation). This does
not appear to capture the essential ideas of inequality measurement.
Figure 2.2 can be used to derive an inequality measure from quite a different

source. Stark (1972) argued that an appropriate practical method of measuring
inequality should be based on society’s revealed judgements on the definition of
poverty and riches. The method is best seen by redrawing Figure 2.2 as Figure
2.7. Stark’s study concentrated specifically on UK incomes, but the ideas it
embodies could be applied more generally. The distance OP in Figure 2.7 we

2You will always get this trouble if the “poorer” of the two persons has at least 2.72 times
mean income , in this case $20 447 - see the Technical Appendix, page 146.
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Figure 2.7: The Stark Approach

will call the range of “low incomes”: in the case of the UK, P would have been
fixed from the basic national assistance (supplementary benefit) scale plus a
percentage to allow for underestimation of income and income disregarded in
applying for assistance (benefit) — this is very similar to the specification of a
“poverty line” that has been attempted by some researchers . The point R would
have been determined by the level at which one becomes liable to any special
taxation levied on the rich (at that time in the UK it was surtax), adjusted for
need.3 Stark’s high/low index is then total shaded area between the curve and
the horizontal axis.
The high/low index is imaginative and practical, but it suffers from three

important weaknesses. Firstly, it is subject to exactly the same type of criticism
that we levelled against M , and against the “minimal majority” and “equal
share” measures. The measure is completely insensitive to transfers among the
“poor” (to the left of P), among the “rich” (to the right of R) or among the
“middle income receivers”. Secondly, there is an awkward dilemma concerning
the behaviour of points P and R over time. Suppose one leaves them fixed in
relative terms — so that OP increases only at the same rate as mean income
increases over time. Then one faces the criticism that one’s current criterion for
measuring inequality is based on an arbitrary standard fixed, perhaps, a quarter
of a century ago. On the other hand, suppose that OP increases with year-to-
year increases in the social standard of reference - i.e. the national assistance
scales (with a similar argument affecting the movement of point R. Then if the

3Note that in a practical application the positions of both P and ... a point which we are
deferring until later. Figure 2.7 illustrates one type
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inequality measure shows a rising trend because of more people falling in the
“low income” category, one must face the criticism that this is just an optical
illusion created by altering the definitions of “poor” people. Some compromise
between the two courses must be chosen and the results derived for a particular
application treated with caution.4 Thirdly, there is the point that in practice the
contribution of the shaded area in the upper tail to the inequality measure would
be negligible. Then the behaviour of the inequality measure would be driven by
what happens in the lower tail - which may or may not be an acceptable feature
- and would simplify effectively to whether people “fall in” on the right or on
the left of point P when we arrange them in the frequency distribution diagram
(Figures 2.2 and 2.7). In effect the high/low inequality index would become a
slightly modified poverty index.
The use of any one of the measures we have discussed in this section implies

certain value judgements concerning the way we compare one person’s income
against that of another. The detail of such judgements will be explained in the
next chapter, although we have already seen a glimpse of some of the issues.

2.3 RANKINGS

Finally we consider ways of looking at inequality that may lead to ambiguous
results. Let me say straight away that this sort of non-decisive approach is not
necessarily a bad thing. As we noted in Chapter 1 it may be helpful to know
that over a particular period events have altered the income distribution in such
a way that we find offsetting effects on the amount of inequality. The inequality
measures that we have examined in the previous section act as “tie-breakers”
in such an event. Each inequality measure resolves the ambiguity in its own
particular way. Just how we should resolve these ambiguities is taken up in
more detail in Chapter 3.

¤ Quantiles
¤ Shares

TYPES OF RANKING

The two types of ranking on which we are going to focus are highlighted in
the accompanying box. To anticipate the discussion a little I should point out
that these two concepts are not really new to this chapter, because they each
have a simple interpretation in terms of the pictures that we were looking at
earlier. In fact I could have labelled the items in the box as Parade Rankings
and Lorenz Rankings.

4There is a further complication in the specific UK application .... “been” rather than
“is”. National assistance, supplementary benefit and surtax are no more. Other politically
or socially defined P and R points could be determined for other times and other countries;
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Figure 2.8: The Parade and the Quantile Ranking

We have already encountered quantiles when we were discussing the incomes
of the 3rd and 57th minute people as an alternative to R (page 22). Quantiles are
best interpreted using either the Parade diagram or its equivalent the cumulative
frequency distribution (Figure 2.3). Take the Parade diagram and enlarge the
vertical a scale a little so that it is easier to see what is going on: this gives
us Figure 2.8. Mark the point 0.2 on the horizontal axis, and read off the
corresponding income on the vertical axis: this gives the 20- percent quantile
point (usually known as the first quintile just to confuse you): the income at the
right-hand end of the first fifth (12 minutes) of the Parade of Dwarfs. Figure 2.8
also shows how we can do the same for the 80-percent quantile (the top quintile).
In general we specify a p−quantile - which I will write Qp - as follows. Form
the Parade of Dwarfs and take the leading proportion p of the Parade (where
of course 0 ≤ p ≤ 1), then Qp is the particular income level which demarcates
the right-hand end of this section of the Parade.5

How might we use a set of quantiles to compare income distributions? We
could produce something like Figure 2.9, which shows the proportionate move-
ments of the quantiles of the frequency distribution of earnings in the UK in

but the basic problem of comparisons over time that I have highlighted would remain. So
too, of course, would problems of comparisons between countries.

5A note on “iles”. The generic term is “quantile” - which applies to any spec-
ified population proportion p - but a number of special names for particular conve-
nient cases are in use. There is the median Q0.5, and a few standard sets such as
three quartiles (Q0.25, Q0.5,Q0.75), four quintiles (Q0.2, Q0.4,Q0.6, Q0.8) or nine deciles
(Q0.1,Q0.2, Q0.3, Q0.4, Q0.5, Q0.6,Q0.7, Q0.8, Q0.9); of course you can specify as many other
“standard” sets of quantiles as you patience and your knowledge of Latin prefixes permits.



2.3. RANKINGS 29

0
20
40
60
80

100
120
140
160
180
200

19
65

19
70

19
75

19
80

19
85

19
90

19
95

Q0.9/Q0.5 

Q0.75/Q0.5 

Q0.25/Q0.5 

Q0.1/Q0.5 

Figure 2.9: Quantile ratios of earnings of adult males, UK 1968-1998. Source:
New Earnings Survey, 1998, Part A Table 28

recent years (the diagram has been produced by standardising the movements
of Q0.1,Q0.25, Q0.75, and Q0.9, by the median, Q0.5). We then check whether the
quantiles are moving closer together or farther apart over time. But although
the kind of moving apart that we see at the right-hand of Figure 2.9 appears
to indicate greater dispersion, it is not clear that this necessarily means greater
inequality: the movement of the corresponding income shares (which we discuss
in a moment) could in principle be telling us a different story.6

However, we might also be interested in the simple quantile ranking of the
distributions, which focuses on the absolute values of the quantiles, rather than
quantile ratios. For example, suppose that over time all the quantiles of the
distribution move up as shown by the broken curve in Figure 2.8 (in the jargon
we then say that according to the quantile ranking the new distribution dom-
inates the old one). Then we might say “there are still lots of dwarfs about”,
to which the reply might be “yes but at least everybody is a bit taller”. Even
if we cannot be specific about whether this means that there is more or less
inequality as a result, the phenomenon of a clear quantile ranking is telling us
something interesting about the income distribution which we will discuss more

6 In case this is not obvious consider a population with just 8 people in it; in year A the
income distribution is (2,3,3,4,5,6,6,7), and it is fairly obvious that Q0.25 = 3 and Q0.75 = 6
in year B the distribution becomes (0, 4, 4, 4, 5, 5, 5, 9) and we can see now that Q0.25 = 4
and Q0.75 = 5. Mean income and median income has remained unchanged and the quartiles
have narrowed: but has inequality really gone down? The story from the shares suggests
otherwise: the share of the bottom 25% has actually fallen (from 5/36 to 4/36) and the share
of the top 25% has risen (from 13/36 to 14/36).
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Figure 2.10: Ranking by Shares. UK 1984/5 Incomes before and after tax.
Source: as for Figure 2.1

in the next chapter.
Shares by contrast are most easily interpreted in terms of Figure 2.4. An

interesting question to ask ourselves in comparing two income distributions is
— does the Lorenz curve of one lie wholly “inside” (closer to the line of perfect
equality) than that of the other? If it does, then we would probably find substan-
tial support for the view that the “inside” curve represents a more evenly-spread
distribution. To see this point take a look at Figure 2.10, and again do an ex-
ercise similar to that which we carried out for the quantiles in Figure 2.8: for
reference let us mark in the share that would accrue to the bottom 20 percent
and to the bottom 80 percent in distribution B (which is the distribution Before
tax — the same as the Lorenz curve that we had in Figure 2.4) — this yields the
blobs on the vertical axis. Now suppose we look at the Lorenz curve marked A,
which depicts the distribution for After tax income. As we might have expected,
Figure 2.10 shows that people in the bottom 20 percent would have received a
larger slice of the after-tax cake (curve A) than they used to get in B. So also
those in the bottom 80 percent received a larger proportionate slice of the A-
cake than their proportionate slice of the B-cake (which of course is equivalent
to saying that the richest 20 percent gets a smaller proportionate slice in A
than it received in B). It is clear from the figure that we could have started
with any other reference population proportions and obtained the same type of
answer: whatever “bottom proportion” of people F (y) is selected, this group
gets a larger share of the cake Φ(y) in A than in B (according to the shares
ranking, A dominates B). Moreover, it so happens that whenever this kind of
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Figure 2.11: Lorenz Curves Crossing

situation arises all the inequality measures that we have presented (except just
perhaps v and v1 ) will indicate that inequality has gone down.
However, quite often this sort of neat result just does not apply. If the

Lorenz curves intersect, then the Shares-ranking principle cannot tell us whether
inequality is higher or lower, whether it has increased or decreased. Either we
accept this outcome with a shrug of the shoulders, or we have to use a tie-
breaker. This situation is illustrated in Figure2.11, which depicts the way in
which the distribution of income after tax changed from 1981/2 to 1984/5.
Notice that the bottom 20 percent of the population did proportionately better
under 1984/5 than in 1981/2 (see also the close-up in Figure 2.12), whilst the
bottom 80% did better in 1981/2 than in 1984/5 (see also Figure 2.12). We
shall have a lot more to say about this kind of situation in Chapter 3.

2.4 FROM CHARTS TO ANALYSIS
We have seen how quite a large number of ad hoc inequality measures are as-
sociated with various diagrams that chart inequality, which are themselves in-
terlinked. But however appealing each of these pictorial representations might
be, we seem to find important reservations about any of the associated inequal-
ity measures. Perhaps the most unsatisfactory aspect of all of these indices is
that the basis for using them is indeed ad hoc: the rationale for using them
was based on intuition and a little graphical serendipity. What we really need
is proper theoretical basis for comparing income distributions and for deciding
what constitutes a “good” inequality measure.
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This is where the ranking techniques that we have been considering come in
particularly useful. Although they are indecisive in themselves, they yet provide
a valuable introduction to the deeper analysis of inequality measurement to be
found in the next chapter.

2.5 QUESTIONS

1. Explain how Pen’s Parade would look if there were some individuals with
negative incomes.

2. Explain how the Lorenz curve would look if (a) there were some individuals
with negative incomes but mean income were still positive, (b) there were
so many individuals with negative incomes that mean income itself were
negative. [See the Technical Appendix, page 152. for more on this]

3. Reconstruct the histogram for the UK 1984/5, before-tax income, using
the worksheet “ET84-5” on the website (see the Technical Appendix page
159 for guidance on how to use the data file). Now merge adjacent pairs of
intervals (so that, for example the intervals [£0,£2000] and [£2000,£3000]
become [£0,£3000]) and redraw the histogram; comment on your findings.

4. Using the same data source for the UK 1984/5, before-tax income, con-
struct the distribution function corresponding to the histogram drawn in
question 3. Now, instead of assuming that the distribution of income fol-
lows the histogram shape, assume that within each income interval all
income receivers get the mean income of that interval. Again draw the
distribution function. Why does it look like a flight of steps?.

5. Suppose a country’s tax and benefit system operates so that taxes payable
are determined by the formula

T = t[y − y0]

where y is the person’s original (pre-tax) income, t is the marginal tax
rate and y0 is a threshold income. Persons with incomes below y0 receive
a net payment from the government (“negative tax”). If the distribution
of original income is y1, y2, ..., yn, use the formulas given in the Technical
Appendix (page 137) to write down the coefficient of variation and the
Gini coefficient for after-tax income. Comment on your results.

6. Suppose the income distribution before tax is represented by a set of num-
bers {y[1], y[2], ..., y[n]}, where y[1] ≤ y[2] ≤ y[3].... Write down an expres-
sion for the Lorenz curve. If the tax system were to be of the form given
in question 5, what would be the Lorenz curve of disposable (after tax)
income?. Will it lie above the Lorenz curve for original income? [for fur-
ther discussion of the point here see Jakobsson (1976) and Eichhorn et al.
(1984) ].
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7.

(a) Ruritania consists of six districts that are approximately of equal size
in terms of population. In 1992 per-capita incomes in the six districts
were:

• Rural ($500, $500, $500)
• Urban ($20 000, $28 284, $113 137).

What is mean income for the Rural districts, for the Urban districts
and for the whole of Ruritania. Compute the logarithmic variance,
the relative mean deviation and the Gini coefficient for the Rural
districts and the Urban districts separately and for the whole of Ru-
ritania? (You will find that these are easily adapted from the work-
sheet “EastWest” in the data file, and you should ignore any income
differences within any one district).

(b) By 1993 the per-capita income distribution had changed as follows:

• Rural: ($499, $500, $501)
• Urban: ($21 000, $26 284, $114 137)

Rework the computations of part (a) for the 1993 data. Did inequal-
ity rise or fall from 1992 to 1993? [See the discussion on page 59
below for an explanation of this phenomenon].



Chapter 3

ANALYSING
INEQUALITY

“He’s half a millionaire: he has the air but not the million.” —
Jewish Proverb

In Chapter 2 we looked at measures of inequality that came about more
or less by accident. In some cases a concept was borrowed from statistics and
pressed into service as a tool of inequality measurement. In others a useful dia-
grammatic device was used to generate a measure of inequality that “naturally”
seemed to fit it, the relative mean deviation and the Parade, for example; or
the Gini coefficient and the Lorenz curve.

¤ Social Welfare
¤ Information Theory
¤ Structural Approach

APPROACHES TO INEQUALITY ANALYSIS

However, if we were to follow the austere and analytical course of rejecting
visual intuition, and of constructing an inequality measure from “first princi-
ples”, what approach should we adopt? I shall outline three approaches, and
in doing so consider mainly special cases that illustrate the essential points eas-
ily without pretending to be analytically rigorous. The first method we shall
examine is that of making inequality judgments from and deriving inequality
measures from social-welfare functions. The social welfare function itself may
be supposed to subsume values of society regarding equality and justice, and
thus the derived inequality measures are given a normative basis. The second
method is to see the quantification of inequality as an offshoot of the problem of

35
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comparing probability distributions: to do this we draw upon a fruitful analogy
with information theory. The final - structural - approach is to specify a set of
principles or axioms sufficient to determine an inequality measure uniquely; the
choice of axioms themselves, of course, will be determined by what we think
an inequality measure “should” look like. Each of these approaches raises some
basic questions about the meaning and interpretation of inequality.

3.1 SOCIAL-WELFARE FUNCTIONS
An obvious way of introducing social values concerning inequality is to use a
social-welfare function (SWF) which simply ranks all the possible states of soci-
ety in the order of (society’s) preference. The various “states” could be functions
of all sorts of things — personal income, wealth, size of people’s cars — but we
usually attempt to isolate certain characteristics which are considered “relevant”
in situations of social choice. We do not have to concern ourselves here with
the means by which this social ranking is derived. The ranking may be handed
down by parliament, imposed by a dictator, suggested by the trade unions, or
simply thought up by the observing economist - the key point is that its char-
acteristics are carefully specified in advance, and that these characteristics can
be criticised on their own merits.
In its simplest form, a SWF simply orders social states unambiguously: if

state A is preferable to state B then, and only then, the SWF has a higher value
for state A than that for state B. How may we construct a useful SWF? To help
in answering this question I shall list some properties that it may be desirable
for a SWF to possess; we shall be examining their economic significance later.
First let me introduce a preliminary piece of notation: let yiA be the magnitude
of person i’s “economic position” in social state A, where i is a label that can be
any number between 1 and n inclusive. For example, yiA could be the income
of Mr Jones of Potter’s Bar in the year 1984. Where it does not matter, the
A-suffix will be dropped.
Now let us use this device to specify five characteristics of the SWF. The

first three are as follows:

• The SWF is individualistic and nondecreasing, if the welfare level in any
state A, denoted by a number WA, can be written:

WA =W (y1A, y2A, ..., ynA)

and if yiB ≥ yiA implies, ceteris paribus, that WB ≥ WA, which in turn
implies that state B is at least as good as state A.

• The SWF is symmetric if it is true that, for any state,
W (y1, y2, ..., yn) =W (y2, y1, ..., yn) = ... =W (yn, y2, ..., y1)

That is, the value of W does not depend on the particular assignment of
labels to members of the population.
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• The SWF is additive if it can be written

W (y1, y2, ..., yn) =
nX
i=1

Ui(yi) = U1(y1) + U2(y2) + ...+ Un(yn) (3.1)

where U1 is a function of y1 alone, and so on.

If these three properties are all satisfied then we can write the SWF like this:

W (y1, y2, ..., yn) =
nX
i=1

U(yi) = U(y1) + U(y2) + ...+ U(yn) (3.2)

where U is the same function for each person and where U(yi) increases with yi.
If we restrict attention to this special case the definitions of the remaining two
properties of the SWF can be simplified, since they may be expressed in terms
of the function U alone. Let us call U(yi) the social utility of, or the welfare
index for, person 1. The rate at which this index increases is

U 0(y1) =
dU(y1)

d y1

which can be thought of as the social marginal utility of, or the welfare weight
for person 1. Notice that, because of the first property, none of the welfare
weights can be negative. Then properties 4 and 5 are:

• The SWF is strictly concave if the welfare weight always decreases as yi
increases.

• The SWF has constant elasticity, or constant relative inequality aversion
if U(yi) can be written

U(yi) =
y1−εi − 1
1− ε

(or in a cardinally equivalent form), where ε is the inequality aversion
parameter, which is non-negative.1

I must emphasise that this is a very abbreviated discussion of the properties
of SWFs. However these five basic properties — or assumptions about the SWF -
are sufficient to derive a convenient purpose-built inequality measure, and thus
we shall examine their significance more closely.
The first of the five properties simply states that the welfare numbers should

be related to individual incomes (or wealth, etc.) so that if any person’s income

1Notice that I have used a slightly different cardinalisation of U from that employed in the
first edition (1977) of this book in order to make the presentation of figures a little clearer.
This change does not affect any of the results discussed in either edition.
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goes up social welfare cannot go down. The term “individualistic” may be
applied to the case where the SWF is defined in relation to the satisfactions
people derive from their income, rather than the incomes themselves. I shall
ignore this point and assume that any standardisation of the incomes, yi, (for
example to allow for differing needs) has already been performed.2 This permits
a straightforward comparison of the individual levels, and of differences in indi-
vidual levels, of people’s “economic position” - represented by the yi and loosely
called “income”. The idea that welfare is non-decreasing in income is perhaps
not as innocuous as it first seems: it rules out for example the idea that if one
disgustingly rich person gets richer still whilst everyone else’s income stays the
same, the effect on inequality is so awful that social welfare actually goes down.
Given that we treat these standardised incomes yi as a measure that puts

everyone in the population on an equal footing as regards needs and deserts, the
second property (symmetry) naturally follows - there is no reason why welfare
should be higher or lower if any two people simply swapped incomes.
The third assumption is quite strong, and is independent of the second.

Suppose you measureWB−WA, the increase in welfare from state A to state B,
where the only change is an increase in person 1’s income from £20 000 to £21
000. Then the additivity assumption states that the effect of this change alone
(increasing person 1’s income from £20 000 to £21 000) is quite independent
of what the rest of state A looked like - it does not matter whether everyone
else had £1 or £100 000, WB −WA is just the same for this particular change.
However this convenient assumption is not as restrictive in terms of the resulting
inequality measures as it might seem at first sight — this will become clearer when
we consider the concept of “distance” between income shares later.
We could have phrased the strict concavity assumption in much more gen-

eral terms, but the discussion is easier in terms of the welfare index U . Note
that this is not an ordinary utility function, although it may have very similar
properties: it represents the valuation given by society of a person’s income.
One may think of this as a “social utility function”. In this case, the concept
corresponding to “social marginal utility”, is the quantity U 0(yi) which we have
called the welfare weight. The reason for the latter term is as follows. Consider
a government programme which brings about a (small) change in everyone’s
income: 4y1,4y2, ...,4yn. What is the change in social welfare? It is simply

dW = U 0(y1)4y1 + U 0(y2)4y2 + ...+ U 0(y)4yn

so the U 0-quantities act as a system of weights when summing the effects of the
programme over the whole population. How should the weights be fixed? The
strict concavity assumption tells us that the higher a person’s income, the lower
the social weight he is given. If we are averse to inequality this seems reasonable -
a small redistribution from rich to poor should lead to a socially-preferred state.

2Once again notice my loose use of the word “person”. In practice incomes may be
received by households or families of differing sizes, in which case yi must be reinterpreted as
“equivalised” incomes: see page 96 for more on this.
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value maximum amount of
of ε sacrifice by R
0 £1.00
1
2 £2.24
1 £5.00
2 £25.00
3 £125.00
5 £3 125.00
... ...

Table 3.1: How much should R give up to finance a č1 bonus for P?

¤ nondecreasing in incomes
¤ symmetric
¤ additive
¤ strictly concave

¤ constant elasticity

SOME PROPERTIES OF THE
SOCIAL-WELFARE FUNCTION

It is possible to obtain powerful results simply with the first four assumptions
- omitting the property that the U -function have constant elasticity. But this
further restriction on the U -function — constant relative inequality aversion —
turns the SWF into a very useful tool.
If a person’s income increases, we know (from the strict concavity property)

that his welfare weight necessarily decreases — but by how much? The constant-
elasticity assumption states that the proportional decrease in the weight U 0 for
a given proportional increase in income should be the same at any income level.
So if a person’s income increases by 1% (from £100 to £101, or £100 000 to
£101 000) his welfare weight drops by ε% of its former value. The higher is ε,
the faster is the rate of proportional decline in welfare weight to proportional
increase in income - hence its name as the “inequality aversion parameter”. The
number ε describes the strength of our yearning for equality vis à vis uniformly
higher income for all.
A simple numerical example may help. Consider a rich person R with five

times the income of poor person P. Our being inequality averse certainly would
imply that we approve of a redistribution of exactly £1 from R to P — in other
words a transfer with no net loss of income. But if ε > 0 we might also approve
of the transfer even if it were going to cost R more than £1 in order to give £1
to P — in the process of filling up the bucket with some of Mr R’s income and
carrying it over to Ms P we might be quite prepared for some of the income to
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Figure 3.1: Social utility and relative income

leak out from the bucket along the way. In the case where ε = 1 we are in fact
prepared to allow a sacrifice of up to £5 by R to make a transfer of £1 to P (£4
leaks out). So, we have the trade-off of social-values against maximum sacrifice
as indicated in Table 3.1. Furthermore, were we to consider an indefinitely large
value of ε, we would in effect give total priority to equality over any objective of
raising incomes generally. Social welfare is determined simply by the position
of the least advantaged in society.
The welfare index for five constant-elasticity SWFs are illustrated in Figure

3.1. The case ε = 0 illustrates that of a concave, but not strictly concave, SWF;
all the other curves in the figure represent strictly concave SWFs. Figure 3.1
illustrates the fact that as you consider successively higher values of ε the social
utility function U becomes more sharply curved (as ε goes up each curve is
“nested” inside its predecessor); it also illustrates the point that for values of ε
less than unity, the SWF is “bounded below” but not “bounded above”: from
the ε = 2 curve we see that with this SWF no one is ever assigned a welfare
index lower than −2, but there is no upper limit on the welfare index that can
be assigned to an individual. Conversely, for ε greater than unity, the SWF is
bounded above, but unbounded below. For example, if ε = 2 and someone’s
income approaches zero, then we can assign him an indefinitely large negative
social utility (welfare index), but no matter how large a person’s income is, he
will never be assigned a welfare index greater than 1.
Notice that the vertical scale of this diagram is fairly arbitrary. We could

multiply the U -values by any positive number, and add (or subtract) any con-
stant to the U -values without altering their characteristics as welfare indices.
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Figure 3.2: The relationship between welfare weight and income.

The essential characteristic of the different welfare scales represented by these
curves is the elasticity of the function U(y) or, loosely speaking, the “curvature”
of the different graphs, related to the parameter ε. For convenience, I have cho-
sen the units of income so that the mean is now unity: in other words, original
income is expressed as a proportion of the mean. If these units are changed,
then we have to change the vertical scale for each U -curve individually, but
when we come to computing inequality measures using this type of U -function,
the choice of units for y is immaterial.
The system of welfare weights (social marginal utilities) implied by these

U -functions is illustrated in Figure 3.2. Notice that for every ε > 0, the welfare
weights fall as income increases. Notice in particular how rapid this fall is once
one reached an ε-value of only 2: evidently one’s income has only to be about
45% of the mean in order to be assigned a welfare weight 5 times as great as
the weight of the person at mean income.
Let us now put the concept of the SWF to work. First consider the ranking

by quantiles that we discussed in connection with Figure 2.8. The following
result does not make use of either the concavity or the constant-elasticity prop-
erties that we discussed above.

Theorem 1 If social state A dominates the state B according to their quantile
ranking, then WA > WB for any individualistic, additive and symmetric social-
welfare function W .

7So if the Parade of distribution A lies everywhere above the Parade of
distribution B (as in the example of Figure 2.8 on page 28), social welfare must
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be higher for this class of SWFs. In fact this result is a bit more powerful than it
might at first appear. Compare the distribution A=(5,3,6) with the distribution
B=(2,4,6): person 1 clearly gains in a move from B to A, but person 2 is worse
off: yet according to the Parade diagram. and according to any symmetric,
increasing SWF, A is regarded better than B. Why? Because the symmetry
assumption means that A is equivalent to A0=(3,5,6), and there is clearly higher
welfare in A0 than in B.
If we introduce the restriction that the SWF be concave then a further

very important result (which again does not use the special constant-elasticity
restriction) can be established:

Theorem 2 Let the social state A have an associated income distribution (y1A, y2A, ..., ynA)
and social state B have income distribution (y1B , y2B, ..., ynB), where total in-
come in state A and in state B is identical. Then the Lorenz curve for state A
lies wholly inside the Lorenz curve for state B if and only if WB > WA for any
individualistic, increasing, symmetric and strictly concave social-welfare func-
tion W .

This result shows at once the power of the ranking by shares that we dis-
cussed in Chapter 2 (the Lorenz diagram), and the relevance of SWFs of the
type we have discussed. Re-examine Figure 2.10. We found that intuition sug-
gested that curve A represented a “fairer” or “more equal” distribution than
curve B. This may be made more precise. The first four assumptions on the
SWF crystallise our views that social welfare should depend on individual eco-
nomic position, and that we should be averse to inequality. Theorem 2 reveals
the identity of this approach with the intuitive method of the Lorenz diagram,
subject to the “constant amount of cake” assumption introduced in Chapter 1.
Notice that this does not depend on the assumption that our relative aversion to
inequality should be the same for all income ranges - other concave forms of the
U -function would do. Also it is possible to weaken the assumptions considerably
(but at the expense of ease of exposition) and leave theorem 2 intact.
Moreover the result of theorem 2 can be extended to some cases where the

cake does not stay the same size. To do this define the so-called generalised
Lorenz curve by multiplying the vertical co-ordinate of the Lorenz curve by
mean income (so now the vertical axis runs from 0 to rather than 0 to 1).

Theorem 3 The Generalised Lorenz curve for state A lies wholly above the
generalised Lorenz curve for state B if and only if WA > WB, for any indi-
vidualistic, additive increasing, symmetric and strictly concave social-welfare
function W .

For example, we noted in Chapter 2 that the simple shares- ranking criterion
was inconclusive when comparing the distribution of income after tax in the UK,
1981/2 with that for the period 1984/5: the ordinary Lorenz curves intersect
(see Figures 2.11-2.13). Now let us consider the generalised Lorenz curves for
the same two datasets, which are depicted in Figure 3.3. Notice that the vertical
axes is measured in monetary units, by contrast with that for Figures 2.4 and
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Figure 3.3: The Generalised Lorenz Curve Comparison

2.10-2.13; notice also that this method of comparing distributions implies a kind
of priority ranking for the mean: as is evident from Figure 3.3 if the mean of
distribution A is higher than the distribution B, then the generalised Lorenz
curve of B cannot lie above that of A no matter how unequal A may be. So,
without further ado, we can assert that any SWF that is additive, individualistic
and concave will suggest that social welfare was higher in 1984/5 than in 1981/2.

However, although theorems 1 to 3 provide us with some fundamental in-
sights on the welfare and inequality rankings that may be inferred from income
distributions, they are limited in two ways.

First, the results are cast exclusively within the context of social welfare
analysis. That is not necessarily a drawback, since the particular welfare criteria
that we have discussed may have considerable intuitive appeal. Nevertheless you
might be wondering whether the insights can be interpreted in inequality without
bringing in the social welfare apparatus: that is something that we shall tackle
later in the chapter.

Second, the three theorems are not sufficient for the practical business of
inequality measurement. Lorenz curves that we wish to compare often intersect;
so too with Parade diagrams and generalised Lorenz curves. Moreover we often
desire a unique numerical value for inequality in order to make comparisons of
different changes in inequality. This is an issue that we shall tackle right away:
we use the social-welfare function to find measures of inequality.
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3.2 SWF-BASED INEQUALITY MEASURES

In fact from 1 we can derive two important classes of inequality measure. Recall
our piecemeal discussion of ready-made inequality measures in Chapter 2: we
argued there that although some of the measures seemed attractive at first sight,
on closer inspection they turned out to be not so good in some respects because
of the way that they reacted to changes in the income distribution. It is time
to put this approach on a more satisfactory footing by building an inequality
measure from the groundwork of fundamental welfare principles. To see how
this is done, we need to establish the relationship between the frequency distri-
bution of income y — which we encountered in Figure 2.2 — and the frequency
distribution of social utility U .
This relationship is actually achieved through the cumulative frequency dis-

tribution F (y) (Figure 2.3). To see the relationship examine Figure 3.4 which
is really three diagrams superimposed for convenience. In bottom right-hand
quadrant we have plotted one of the “welfare-index”, or “social utility” curves
from Figure 3.1, which of course requires the use of the constant-elasticity as-
sumption.
In the top right-hand quadrant you will recognise the cumulative frequency

distribution, drawn for income or wealth in the usual way. To construct the
curves for the distribution of social utility or welfare index, U pick any income
value, let us say y0; then read off the corresponding proportion of population
F0 on the vertical 0F axis, using the distribution function F (y), and also the
corresponding U -value (social utility) on 0U (bottom right-hand corner). Now
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plot the F and U -values in a new diagram (bottom left-hand corner) - this is
done by using top left-hand quadrant just to reflect 0F axis on to the horizontal
0F axis. What we have done is to map the point (y0, F0) in the top right-hand
quadrant into the point (F0, U0) in the bottom left-hand quadrant. If we do
this for other y−values and points on the top-right hand quadrant cumulative
frequency distribution, we end up with a new cumulative frequency distribution
in the bottom left-hand quadrant. (To see how this works, try tracing round
another rectangular set of four points like those shown in Figure 3.4).
Once we have this new cumulative frequency distribution in terms of social

utility, we can fairly easily derive the corresponding frequency distribution itself
(this is just the slope of the F -function). The frequency distributions of y and
U are displayed in Figure 3.5: notice that the points y0 and U0 correspond to
the points y0 and U0 in Figure 3.4 (the shaded area in each case corresponds to
F0).
Now let us derive the inequality measures. For the distribution of income

(top half of Figure 3.5) mark the position of the mean, ȳ, on 0y. Do the same
for the distribution of social utility — point Ū on 0U . We can also mark in two
other points of interest:

• The social utility corresponding to ȳ — we do this using the bottom half
of Figure 3.5 — point U(ȳ) on 0U ;

• The income corresponding to average social utility — we do this by a reverse
process using the top half of Figure 3.5 and plotting point ye on 0y.
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The quantity U(ȳ) represents the social utility for each person in the com-
munity were national income to be distributed perfectly equally. The quantity
ye represents the income which, if received by each member of the community,
would result in the same level of overall social welfare as the existing distribu-
tion yields. Necessarily ye ≤ ȳ - we may be able to throw some of the national
income away, redistribute the rest equally and still end up with the same level
of social welfare. Notice that we have drawn the diagram for a particular isoe-
lastic utility function in the bottom right-hand quadrant of Figure 3.4; if ε were
changed, then so would the frequency distribution in the bottom half of Figure
3.5, and of course the positions of ȳ and ye.
Thus we can define a different inequality measure for each value of ε, the

inequality aversion parameter. An intuitively appealing way of measuring in-
equality seems to be to consider how far actual average social utility falls short
of potential average social utility (if all income were distributed equally). So we
define Dalton’s Inequality Index (for inequality aversion ε) as:

Dε = 1−
1
n

Pn
i=1

£
y1−εi − 1¤

ȳ1−ε − 1
which in terms of the diagram means

Dε = 1− Ū

U(ȳ)

Wemay note that this is zero for perfectly equally distributed incomes (where we
would have Ū = U(ȳ). (Atkinson 1970) criticises the use of Dε on the grounds
that it is sensitive to the level from which social utility is measured — if you add
a non-zero constant to all the Us, Dε changes. Now this does not change the or-
dering properties of Dε over different distributions, but the inequality measures
obtained by adding different arbitrary constants to U will not be cardinally
equivalent. So Atkinson suggests, in effect, that we perform our comparisons
back on the 0y axis, not the 0U axis, and compare the “equally distributed
equivalent” income, ye, with the mean ȳ. So define Atkinson’s Inequality Index
(for inequality aversion ε) as

Aε = 1− 1
ȳ
U−1

Ã
1

n

nX
i=1

!
U(yi)

= 1−
"
1

n

nX
i=1

·
yi
y

¸1−ε# 1
1−ε

In terms of the diagram this is:

Aε = 1− ye
ȳ
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Once again, as for the index Dε, we find a different value of Aε for different
values of our aversion to inequality.
From the definitions we can check that the following relationship holds for

all distributions and all values of ε

1−Dε =
Uy([1−Aε])

U(y)

which means that

∂Dε

∂Aε
= y

U 0(y [1−Aε])

U 0(y)
> 0

Clearly the choice betweenDε and Aε as defined above is only of vital impor-
tance with respect to their cardinal properties (“is the reduction in inequality
by taxation greater in year A than in year B?”); they are obviously ordinally
equivalent in that they produce the same ranking of different distributions.3

Of much greater significance is the choice of the value of ε, especially where
Lorenz curves intersect, as in Figure 2.11. This reflects our relative sensitivity
to redistribution from the rich to the not-so-rich vis à vis redistribution from
the not-so-poor to the poor. If a low value of ε is used we are particularly
sensitive to changes in distribution at the top end of the parade; if a high value
is employed, then it is the bottom end of the parade which concerns us most —
we will come to specific examples of this later in the chapter.
The advantage of the SWF approach is evident. Once agreed on the form

of the social-welfare function (for example along the lines of assumptions that I
have listed above) it enables the analyst of inequality to say, in effect “you tell
me how strong society’s aversion to inequality is, and I will tell you the value
of the inequality statistic”, rather than simply incorporating an arbitrary social
weighting in an inequality index that just happens to be convenient.

3.3 INEQUALITYAND INFORMATIONTHE-
ORY

Probability distributions sometimes provide useful analogies for income distri-
butions. In this section we shall see that usable and quite reasonable inequality
measures may be built up from an analogy with information theory.
In information theory, one is concerned with the problem of “valuing” the

information that a certain event out of a large number of possibilities has oc-
curred. Let us suppose that there are events numbered 1,2,3,..., to which we

3 Instead of lying between zero and unity Dε lies between 0 and ∞. In order to transform
this into an inequality measure that is comparable with others we have used, it would be
necessary to look at values of Dε/[Dε − 1]. One might be tempted to suggested that Dε

is thus a suitable choice as Aε. However, even apart from the fact that Dεdepends on the
cardinalisation of utility there is another unsatisfactory feature of the relationship between
Dε and ε. For Atkinson’s measure, Aε, the higher is the value of ε, the greater the value of
the inequality measure for any given distribution; but this does not hold for Dε.
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attach probabilities p1, p2, p3,... Each pi is not less than zero (which represents
total impossibility of event’s occurrence) and not greater than one (which rep-
resents absolute certainty of the event’s occurrence). Suppose we are told that
event #1 has occurred . We want to assign a number h(p1) to the value of this
information: how do we do this?
If event #1 was considered to be quite likely anyway (p1 near to 1), then

this information is not fiercely exciting, and so we want h(p1) to be rather low;
but if event #1 was a near impossibility, then this information is amazing and
valuable - it gets a high h(p1). So the implied value h(p1) should decrease as p1
increases. A further characteristic which it seems correct that h(.) should have
(in the context of probability analysis) is as follows. If event 1 and event 2 are
statistically independent (so that the probability that event 1 occurs does not
depend on whether or not event 2 occurs, and vice versa), then the probability
that both event 1 and event 2 occur together is p1p2. So, if we want to be able
to add up the information values of messages concerning independent events,
the function h should have the special property

h(p1p2) = h(p1) + h(p2) (3.3)

and the only function that satisfies this for all valid p− values is h = − log(p).
However, a set of n numbers - the probabilities relating to each of n possible

states - is in itself an unwieldy thing with which to work. It is convenient to
aggregate these into a single number which describes “degree of disorder” of
the system. This number will be lowest when there is a probability of 1 for
one particular event i and a 0 for every other event: in this case the system
is completely orderly and the information that i has occurred is valueless (we
already knew it would occur) whilst the other events are impossible; the overall
information content of the system is zero. More generally we can characterise
the “degree of disorder” — known technically as the entropy — by working out
the average information content of the system. This is the weighted sum of all
the information values for the various events; the weight given to event i in this
averaging process is simply its probability pi: In other words we have:

entropy =
nX
i=1

pih(pi)

= −
nX
i=1

pi log(pi)

Now Theil has argued that the entropy concept provides a useful device for
inequality measurement. All we have to do is reinterpret the n possible events
as n people in the population, and reinterpret pi as the share of person i in total
income, let us say si, where of course if is mean income, and yi is the income of
person i:

si =
yi
ny
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Figure 3.6: The Theil Curve

so that, of course:

nX
i=1

si = 1

Then subtracting the actual entropy of the income distribution (just replace all
the pis with sis in the entropy formula) from the maximum possible value of
this entropy (when each si = 1/n, everyone gets an even share) we find the
following contender for status as an inequality measure.

T =
nX
i=1

1

n
h

µ
1

n

¶
−

nX
i=1

sih (si)

=
nX
i=1

si

·
h

µ
1

n

¶
− h (si)

¸

=
nX
i=1

si

·
log (si)− log

µ
1

n

¶¸

=
1

n

nX
i=1

yi
y
log

µ
yi
y

¶
Each of these four expressions is an equivalent way of writing the measure T .
A diagrammatic representation of T can be found in Figures 3.6 and 3.7. In

the top right-hand corner of Figure 3.6, the function log(yy ) is plotted (along the
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horizontal axis) against y
y (along the vertical axis). In the top left-hand corner

we have the Parade, slightly modified from Figure2.1, whiles in the bottom left-
hand corner we have the Lorenz curve (upside down). We can use these three
curves to derive the Theil curve in the bottom right hand corner of Figure 3.6.
The method is as follows.

• Pick a particular value of F .
• Use the Parade diagram (top left) to find the corresponding value of y/µ
- in other words the appropriate quantile divided by the mean.

• Also use the Lorenz curve (bottom left) to find the corresponding φ-value
for this same F -value — in other words find the income share of the group
in population that has an income less than or equal to y.

• Read off the “−h” value corresponding to y
y using the log function shown

top right.

• You have now fixed a particular point in the bottom right-hand part of
the figure as shown by dotted rectangle.

• By repeating this for every other F -value, trace out a curve — the Theil
curve — in the bottom right-hand corner.

If you are not yet convinced, you may care to try plotting another set of four
points as an exercise. This Theil curve charts the “information function” against
income shares. Unfortunately the entire curve cannot be shown in Figure 3.6
since it crosses the 0Φ axis ; to remedy this I have drawn a fuller picture of
the curve in Figure 3.7, (which is drawn the logical way up, with 0Φ along the
horizontal axis). The measure T is then simply the area trapped between this
curve and the 0Φ axis — shown as a shaded area.
However this merely tells us about the mechanics of Theil’s measure; we need

to look more closely at its implications for the way we look at inequality. To do
this, examine what happens to T if the share of a poor person (1) is increased
at the expense of a rich person (2). So let the share of person 1 increase from s1
to a fractionally larger amount s1 +4s and the share of 2 decrease to s2 −4s
. Then, remembering that h(s) = − log(s), we find (by differentiation) that the
resulting change in T is:

∆T = ∆s [h (s2)− h (s1)]

= −∆s log
µ
s2
s1

¶
As we would expect, the proposed transfer 4s results in a negative 4T , so that
the inequality index decreases. But we can say a little more than that. We
see that the size of the reduction in T depends only on the ratio of s2 to s1.
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So for any two people with income shares in the same ratio, the transfer s (as
above) would lead to the same reduction in inequality T . Thus, for example, a
small transfer from a person with an income share of 2 millionths, to a person
with only 1 millionth of the cake has the same effect on Theil-inequality as an
identical transfer from a person with 8 millionths of the national cake to one
with 4 millionths.
This aids us to complete our analogy between inequality measurement and

information theory. It is easy to see that income shares (si) serve as counterparts
to probabilities (pi). And now we can interpret the “social analogue” of the
information function h. Evidently from the formula for 4T , we can now say
under what circumstances s3 and s4 are the same “distance apart” as s2 and
s1. This would occur if

h(s1)− h(s2) = h(s3)− h(s4)

so that a small transfer from s2 to s1 has exactly the same effect on inequality
as a small transfer from s4 to s3. Given this interpretation of h(s) in terms of
distance, do we want it to have exactly the same properties as h(p) in information
theory? There does not seem to be any compelling a priori reason why we
should do so,4 although h(s) = − log(s) gives us a reasonably sensible inequality
measure, T . The function, − log(s) can be seen as a member of a much wider
class of functions, illustrated in Figure 3.8. This figure charts members of the

4Recall that the log-function was chosen in information theory so that h(p1, p2) = h(p1)+
h(p2).
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family of curves given by5

h(s) =
1− sβ

β

Deriving an inequality measure in exactly the same way as before gives us,
for any value of β that we choose, a particular inequality measure which may
be written in any of the following equivalent ways:

1

1 + β

"
nX
i=1

1

n
h

µ
1

n

¶
−

nX
i=1

sih(si)

#

1

1 + β

nX
i=1

si

·
h

µ
1

n

¶
− si

¸

1

β + β2

nX
i=1

si

h
sβi − n−β

i
And of course the effect of a small transfer s from rich person 2 to poor person
1 is now

− 1
β

h
sβ2 − sβ1

i
∆s

= [h (s2)− h (s1)]∆s

You get the same effect by transferring s from rich person 4 to poor person
3 if and only if the “distance” h(s4) − h(s3) is the same as the “distance”
h(s2)− h(s1).
The special case where β = 0 simply yields the measure T once again. As

we noted, this implies a relative concept of distance: 1 and 2 are the same
distance apart as 3 and 4 if the ratios s1/s2 and s3/s4 are equal. Another
interesting special case is found by setting β = 1. Then we get the following
information-theoretic measure:

1

2

"
nX
i=1

s2i −
1

n

#
Now Herfindahl’s indexis simply

H =
nX
i=1

s2i ,

5Again I have slightly modified the definition of this function from the first edition in order
to make the presentation neater, although this reworking does not affect any of the results —
see footnote 3.1.
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Figure 3.8: A variety of distance concepts

that is, the sum of the squares of the income shares. So, comparing these two
expressions, we see that for a given population, H is cardinally equivalent to
the information- theoretic measure with a value of β = 1; and in this case we
have the very simple absolute distance measure

h(s1)− h(s2) = s1 − s2.

Thus the distance between a person with a 1% share and one with a 2%
share is considered to be the same as the distance between a person with a 4%
share and one with a 5% share.
Thus, by choosing an appropriate “distance function”, we determine a par-

ticular “information theoretic” inequality measure. In principle we can do this
for any value of β. Pick a particular curve in Figure 3.8: the “distance” between
any two income shares on the horizontal axis is given by the linear distance be-
tween their two corresponding points on the vertical axis. The β-curve of our
choice (suitably rotated) can then be plugged into the top left-hand quadrant of
Figure 3.6, and we thus derive a new curve to replace the original in the bottom
right- hand quadrant, and obtain the modified information-theoretic inequality
measure. Each distance concept is going to give different weight on the gaps be-
tween income shares in different parts of the income distribution. To illustrate
this, have a look at the example in the accompanying panel: the top part of
this gives the income for poor P, rich R and quite-well-off Q and their respective
shares in total income (which is £1 000 000); the bottom part gives the implied
distance from P to Q and the implied distance from Q to R for three of the
special values of β that we have discussed in detail. We can see that for β=-ε
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income share
person P £2 000 0. 2%
person Q £10 000 1%
person R £50 000 5%

all: £1 000 000 100%

distance distance
β h(si)− h(sj) (P,Q) (Q,R)
-1 1

si
− 1

sj
400 80

0 log( sisj ) 5 5
1 sj − si 0.008 0.04

Table 3.2: Is P further from Q than Q is from R?

the (P,Q)-gap is ranked as greater than the (Q,R)-gap; for β=1 the reverse is
true; and for β=0, the two gaps are regarded as equivalent.

Notice the obvious formal similarity between choosing one of the curves in
Figure 3.8 and choosing a social utility function or welfare index in Figure 3.1.
If we write β = - ε , the analogy appears to be almost complete: the choice of
“distance function” seems to be determined simply by our relative inequality
aversion. Yet the approach of this section leads to inequality measures that
are somewhat different from those found previously. The principal difference
concerns the inequality measures when β ≥ 0. As we have seen the modified
information- theoretic measure is defined for such values. However, Aε and Dε

become trivial when ε is zero (since A0 and D0 are zero whatever the income
distribution); and usually neither Aε nor Dε is defined for ε < 0 (corresponding
to β > 0). Furthermore, even for positive values of ε — where the appropriate
modified information-theoretic measure ranks any set of income distributions in
the same order as Aε and Dε — it is evident that the Atkinson index, the Dalton
index and the information-theoretic measure will not be cardinally equivalent.
Which forms of inequality measure should we choose then? The remainder of
this chapter will deal more fully with this important issue.

3.4 BUILDINGAN INEQUALITYMEASURE

What we shall now do is consider more formally the criteria we want satisfied by
inequality measures. You may be demanding why this has not been done before.
The reason is that I have been anxious to trace the origins of inequality measures
already in use and to examine the assumptions required at these origins.



3.4. BUILDING AN INEQUALITY MEASURE 55

¤ Weak Principle of Transfers
¤ Income Scale Independence
¤ Principle of Population
¤ Decomposability

¤ Strong Principle of Transfers

FIVE PROPERTIES OF INEQUALITY MEASURES

However, now that we have looked at ad hoc measures, and seen how the
SWF and information theory approaches work, we can collect our thoughts on
the properties of these measures. The importance of this exercise lies not only
in the drawing up of a shortlist of inequality measures by eliminating those that
are “unsuitable”. It also helps to put personal preference in perspective when
choosing among those cited in the shortlist. Furthermore it provides the basis for
the third approach of this chapter: building a particular class of mathematical
functions for use as inequality measures from the elementary properties that we
might think that inequality measures ought to have. It is in effect a structural
approach to inequality measurement.
This is a trickier task, but rewarding, nonetheless; to assist us there is a

check-list of the proposed elementary criteria in the accompanying box. Let us
look more closely at the first four of these: the fifth criterion will be discussed
a bit later.

Weak Principle of Transfers In Chapter 2 we were interested to note
whether each of the various inequality measures discussed there had the property
that a hypothetical transfer of income from a rich person to a poor person
reduces measured inequality. This property may now be stated more precisely.
We shall say that an inequality measure satisfies the weak principle of transfers
if the following is always true. Consider any two individuals, one with income y,
the other, a richer person, with income y+ δ where δ is positive. Then transfer
a positive amount of income 4y from the richer to the poorer person, where
4y is less than 2δ. Inequality should then definitely decrease. If this property
is true for some inequality measure, no matter what values of y and y + δ we
use, then we may use the following theorem.

Theorem 4 Suppose the distribution of income in social state A could be achieved
by a simple redistribution of income in social state B (so that total income is
the same in each case) and the Lorenz curve for A lies wholly inside that of B.
Then, as long as an inequality measure satisfies the weak principle of transfers,
that inequality measure will always indicate a strictly lower level of inequality
for state A than for state B.

This result is not exactly surprising, if we recall the interpretation of the
Lorenz curve in Chapter 2: if you check the example given in Figure 2.10 on



56 CHAPTER 3. ANALYSING INEQUALITY

page 30 you will see that we could have got to state A from state B by a series
of richer-to-poorer transfers of the type mentioned above. However, theorem
4 emphasises the importance of this principle for choosing between inequality
measures. As we have seen V, c,G, T,H, Aε, Dε (ε > 0) and the modified
information-theory indices all pass this test; υ and υ1 fail the test in the case
of high incomes - it is possible for these to rank B as superior to A. The other
measures, R, M , the equal shares coefficient, etc., just fail the test — for these
measures it would be possible for state A’s Lorenz curve to lie partly “inside”
and to lie nowhere “outside” that of state B, and yet exhibit no reduction in
measured inequality. In other words, we have achieved a situation where there
has been some richer-to-poorer redistribution somewhere in the population, but
apparently no change in inequality occurs.6

I have qualified the definition given above as the weak principle of transfers,
because all that it requires is that given the specified transfer, inequality should
decrease. But it says nothing about how much it should decrease. This point is
considered further when we get to the final item on the list of properties.

Income Scale Independence. This means that the measured inequality of
the slices of the cake should not depend on the size of the cake. If everyone’s
income changes by the same proportion then it can be argued that there has
been no essential alteration in the income distribution, and thus that the value
of the inequality measure should remain the same. This property is possessed by
all the inequality measures we have examined, with the exception of the variance
V , and Dalton’s inequality indices.7 This is immediately obvious in the case of
those measures defined with respect to income shares si, since a proportional
income change in all incomes leaves the shares unchanged.

Principle of Population. This requires that the inequality of the cake dis-
tribution should not depend on the number of cake-receivers. If we measure
inequality in a particular economy with n people in it and then merge the econ-
omy with another identical one, we get a combined economy with a population of
2n, and with the same proportion of the population receiving any given income.
If measured inequality is the same for any such replication of the economy, then
the inequality measure satisfies the principle of population.
However, it is not self-evident that this property is desirable. Consider a

two-person world where one person has all the income, and the other has none.
Then replicate the economy as just explained, so that one now has a four-person
world with two destitute people and two sharing income equally. It seems to
me debatable whether these two worlds are “equally unequal”. In fact nearly
all the inequality measures we have considered would indicate this, since they
satisfy the principle of population. The notable exceptions are the modified

6However, this type of response to a transfer might well be appropriate for poverty measures
since these tools are designed for rather different purposes.

7Whether a Dalton index satisfies scale independence or not will depend on the particular
cardinalisation of the function U that is used.
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East West
A:(6,7,8) A:(30,30,130)
B:(6,6,9) B:(10,60,120)
A B A B

ȳ 7.00 7.00 ȳ 63.33 63.33
G 0.063 0.095 G 0.351 0.386
A1 0.007 0.019 A1 0.228 0.343
A2 0.014 0.036 A2 0.363 0.621
T 0.007 0.020 T 0.256 0.290

East and West combined
A:(6,7,8,30,30,130)
B:(6,6,9,10,60,120)

A B
ȳ 35.16 35.16
G 0.562 0.579
A1 0.476 0.519
A2 0.664 0.700
T 0.604 0.632

Table 3.3: The break-down of inequality: poor East, rich West

information-theoretic indices: if β = 0 (the original Theil index) the population
principle is satisfied, but otherwise as the population is increased the measure
will either increase (the case where β < 0) or decrease (the case where β > 0,
including Herfindahl’s index of course). However, as we shall see in a moment,
it is possible to adapt this class of measures slightly so that the population
principle is always satisfied.

Decomposability. This property implies that there should be a coherent re-
lationship between inequality in the whole of society and inequality in its con-
stituent parts. The basic idea is that we would like to be able to write down a
formula giving total inequality as a function of inequality within the constituent
subgroups, and inequality between the subgroups. More ambitiously we might
hope to be able to express the within-group inequality as something like an
average of the inequality in each individual sub-group. However, in order to do
either of these things with an inequality measure it must have an elementary
consistency property: that inequality rankings of alternative distributions in the
population as a whole should match the inequality rankings of the corresponding
distributions within any the subgroups of which the population is composed.
This can be illustrated using a pair of examples, using artificial data specially

constructed to demonstrate what might appear as a curious phenomenon. In the
first we consider an economy of six persons that is divided into two equal-sized
parts, East and West. As is illustrated in Table 3.3, the East is much poorer
than the West. Two economic programmes (A and B) have been suggested
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East West
A:(60,70,80) A:(30,30,130)
B:(60,60,90) B:(10,60,120)

A B A B
ȳ 70.00 70.00 ȳ 63.33 63.33
G 0.063 0.095 G 0.351 0.386
A1 0.007 0.019 A1 0.228 0.343
A2 0.014 0.036 A2 0.363 0.621
T 0.007 0.020 T 0.256 0.290

East-West combined
A:(60,70,80,30,30,130)
B:(60,60,90,10,60,120)

A B
ȳ 66.67 66.67
G 0.275 0.267
A1 0.125 0.198
A2 0.236 0.469
T .126 0.149

Table 3.4: The break-down of inequality: the East catches up

for the economy: A and B each yield the same mean income (7) in the East,
but they yield different income distribution amongst the Easterners; the same
story applies in the West — A and B yield the same mean income (63.33) but a
different income distribution. Taking East and West together, then it is clear
that the choice between A and B lies exclusively in terms of the impact upon
inequality within each region; by construction income differences between the
regions are unaffected by the choice of A or B. Table3.3 lists the values of four
inequality measures — the Gini coefficient, two Atkinson indices and the Theil
index — and it is evident that for each of these inequality would be higher under
B than it would be under A. This applies to the East, to the West and to the
two parts taken together.

All of this seems pretty unexceptionable: all of the inequality measures would
register an increase overall if there were a switch from A to B, and this is con-
sistent with the increase in inequality in each component subgroup (East and
West) given the A→B switch. We might imagine that there is some simple for-
mula linking the change in overall inequality to the change in inequality in each
of the components. But now consider the second example, illustrated in Table
3.4. All that has happened here is that the East has caught up and overtaken
the West: Eastern incomes under A or B have grown by a factor of 10, while
Western incomes have not changed from the first example. Obviously inequality
within the Eastern part and within the Western part remains unchanged from
the first example, as a comparison of the top half of the two tables will reveal:
according to all the inequality measures presented here inequality is higher in
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B than in A. But now look at the situation in the combined economy after the
East’s income has grown (the lower half of Table 3.4): inequality is higher in B
than in A according to the Atkinson index and the Theil index, but not accord-
ing to the Gini coefficient. So, in this case, in switching from A to B the Gini
coefficient in the East would go up, the Gini coefficient in the West would go
up, inequality between East and West would be unchanged, and yet... the Gini
coefficient overall would go down. Strange but true.8

Two lessons can be drawn from this little experiment. First, some inequality
measures are just not decomposable, in that it is possible for them to register an
increase in inequality in every subgroup of the population at the same time as a
decrease in inequality overall: if this happens then it is obviously impossible to
express the overall inequality change as some consistent function of inequality
change in the component subgroups. The Gini coefficient is a prime example
of this; other measures which behave in this perverse fashion are the logarith-
mic variance, the variance of logarithms and the relative mean deviation. The
second lesson to be drawn is that, because decomposability is essentially about
consistency in inequality rankings in the small and in the large, if a particu-
lar inequality measure is decomposable then so too is any ordinally equivalent
transformation of the measure: for example it can readily be checked that the
variance V is decomposable, and so is the coefficient of variation c which is just
the square root of V .
In fact there is a powerful result that clarifies which inequality measures will

satisfy decomposability along with the other properties that we have discussed
so far:

Theorem 5 Any inequality measure that simultaneously satisfies the properties
of the weak principle of transfers, decomposability, scale independence and the
population principle must be expressible either in the form

Eθ =
1

θ2 − θ

"
1

n

nX
i=1

·
yi
ȳ

¸θ
− 1
#

or as J(Eθ), some ordinally-equivalent transformation of Eθ, where θ is a real
parameter that may be given any value, positive, zero or negative.

I have used the symbol “E” to denote this family of measures, since they
have become known in the literature as the generalised entropy measures. A
quick comparison of this formula with that of the modified information-theoretic
measures defined on page 52, shows that the two are very closely related: in
fact the generalised entropy measures are just the modified-information theoretic
family again, now normalised so that they satisfy the population principle, and
with the parameter θ set equal to β − 1.9 In view of this “family connection”

8 In fact there is a bit more to the decomposability story and the Gini coefficient, which is
explained in the technical appendix — see page 147.

9 In the first edition (1977) the modified information-theoretic measure was denoted Iβ and
extensively discussed. Since that time the literature has more frequently used the normali-
sation of the Generalised entropy family given here as Eθ. Formally one has E1 = I0 = T, if
θ = 1 (β = 0), and Eθ = Iβ−1nβ−1 for other values of θ.
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it is clear that the generalised entropy measures has other connections too:
inspection of the generalised entropy formula reveals that the case θ = 2 yields
an index that is cardinally equivalent to the Herfindahl index H (and hence
ordinally equivalent to V and c); putting θ = 1 − ε in the formula we can
see that - for values of θ < 1 - the measures are ordinally equivalent to the
welfare-theoretic indices Aε and Dε.
As with our discussion of welfare-based and information- theory based mea-

sures we have now have a collection or family of inequality measures that in-
corporates a set of principles for ranking income distributions. And, as we have
just seen there are close connections between all the indices derived from three
approaches. Let us see if we can narrow things down a bit further.

3.5 CHOOSINGAN INEQUALITYMEASURE
Now that we have seen three approaches to a coherent and comprehensive anal-
ysis of inequality, how should we go about selecting an appropriate inequality
measurement tool? For a start let us clarify what the nature of the choice that
we are to make. We need to make the important distinction between choos-
ing a family of inequality measures and choosing a particular member from the
family. This sort of distinction would apply to the selection of mathematical
functions in other contexts. For example if we were decorating a piece of paper
and wanted to decide on a particular curve or shape to use in the pattern, of
we might consider first the broader choice between families of curves or shapes -
squares, circles, triangles, ellipses,... — and then having decided upon ellipses for
the design perhaps we would want to be more specific and pick a particular size
and shape of ellipse. Some of the broad principles that we have considered under
“building an inequality measure” are rather like the questions at the level of the
“squares, circles or ellipses?” stage of designing the decorative pattern. Let us
see what guidance we now have in choosing a family of inequality measures.
The first four of the basic properties of inequality measures that we listed ear-

lier — the weak transfer principle, scale independence, the population principle
and decomposability — would probably command wide although not universal
support. As we have seen they define an extended family of measures: the gen-
eralised entropy family and all the measures that are ordinally equivalent to it.
It may be worth trying to narrow this selection of measures a bit further, and
to do this we should discuss the fifth on the list of the basic principles.

Strong Principle of Transfers. Let us recall the concept of “distance” be-
tween people’s income shares, introduced on page 51 to strengthen the principle
of transfers. Consider a distance measure given by

d = h(s1)− h(s2)

where s2 is greater than s1, and h(s) is one of the curves in Figure 3.8. Then
consider a transfer from rich person 2 to poor person 1. We say that the inequal-
ity measure satisfies the principle of transfers in the strong sense if the amount
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of the reduction in inequality depends only on d, the distance, no matter which
two individuals we choose.
For the kind of h-function illustrated in Figure 3.8, the inequality measures

that satisfy this strong principle of transfers belong to the family described
by formulas for the modified information-theoretic family (of which the Theil
index and the Herfindahl index are special cases) or the generalised entropy
family which, as we have just seen is its virtually equivalent. Each value of
β - equivalently each value of θ — defines a different concept of distance, and
thus a different associated inequality measure satisfying the strong principle of
transfers.
In effect we have found an important corollary to Theorem 5. Adding the

strong principle of transfers to the other criteria means that Theorem 5 can be
strengthened a bit: if all five properties listed above are to be satisfied then the
only measures which will do the job are the generalised entropy indices Eθ.
Why should we want to strengthen the principle of transfers in this way?

One obvious reason is that merely requiring that a measure satisfy the weak
principle gives us so much latitude that we cannot even find a method of ranking
all possible income distributions in an unambiguous order. This is because, as
theorem 4 shows, the weak principle amounts to a requirement that the measure
should rank income distributions in the same fashion as the associated Lorenz
curves — no more, no less. Now the strong principle of transfers by itself does
not give this guidance, but it points the way to an intuitively appealing method.
Several writers have noted that an inequality measure incorporates some sort of
average of income differences. The “distance” concept, d, allows one to formalise
this. For, given a particular d, one may derive a particular inequality measure
by using the strong principle as a fundamental axiom.10 This measure takes
the form of the average distance between each person’s actual income and the
income he would receive in a perfectly equal society, and is closely related to
Eθ.11 The advantage of this is that instead of postulating the existence of a
social-welfare function, discussing its desired properties, and then deriving the
measure, one may discuss the basic idea of distance between income shares then
derive the inequality measure directly.
Most of the ad hoc inequality measures do not satisfy the strong principle

of transfers as they stand, although some are ordinally equivalent to measures
satisfying this axiom. In such cases, the size of a change in inequality due to
an income transfer depends not only on the distance between the shares of the
persons concerned, but on the measured value of overall inequality as well. It
is interesting to note the distance concept implied by these measures. Implicit
in the use of the variance and the coefficient of variation (which are ordinally
equivalent to H) is the notion that distance equals the absolute difference be-
tween income shares. The relative mean deviation implies a very odd notion
of distance — zero if both persons are on the same side of the mean, and one

10For the other axioms required see Cowell and Kuga (1981) and the discussion on page 167
which give an overview of the development of this literature.
11This is clear from the second in the three ways in which the information-theoretic measure

was written down on page 52.
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if they are on opposite sides. This property can be deduced from the effect of
the particular redistribution illustrated in Figure 2.6. The measures υ, υ1and G
are not even ordinally equivalent to a measure satisfying the strong principle.
In the case of υ and υ1 this is because they do not satisfy the weak principle
either; the reason for G’s failure is more subtle. Here the size of the change
in inequality arising from a redistribution between two people depends on their
relative location in the Parade, not on the absolute size of their incomes or their
income shares. Hence a redistribution from the 4th to the 5th person (arranged
in parade order) has the same effect as a transfer from the 1 000 004th to the 1
000 005th, whatever their respective incomes. So distance cannot be defined in
terms of the individual income shares alone.
A further reason for recommending the strong principle lies in the cardinal

properties of inequality measures. In much of the literature attention is focused
on ordinal properties, and rightly so. However, sometimes this has meant that
because any transformation of an inequality measure leaves its ordering proper-
ties unchanged, cardinal characteristics have been neglected or rather arbitrarily
specified. For example, it is sometimes recommended that the inequality mea-
sure should be normalised so that it always lies between zero and one. To use
this as a recommendation for a particular ordinally equivalent variant of the
inequality measure is dubious for three reasons.

1. It is not clear that a finite maximum value of inequality, independent of
the number in the population, is desirable.

2. There are many ways of transforming the measure such that it lies in
the zero-to-one range, each such transformation having different cardinal
properties.

3. And, in particular, where the untransformed measure has a finite maxi-
mum, the measure can easily be normalised without altering its cardinal
properties simply by dividing by that maximum value.12

However, because measures satisfying the strong principle of transfers can be
written down as the sum of a function of each income share, they have attrac-
tive cardinal properties when one considers either the problem of decomposing
inequality by population subgroups (as in the East-West example discussed
above), or of quantifying changes in measured inequality. In fact, the family
Eθ (all of which satisfy the strong principle) may be written in such a way that
changes in inequality overall can easily be related to (a) changes in inequality
within given subgroups of the population, and (b) changes in the income shares
enjoyed by these subgroups, and hence the inequality between the groups. The
way to do this is explained in the appendix, from which it is clear that a mea-
sure such as Aε, though formally ordinally equivalent to Iβ for many values of
ε, does not decompose nearly so easily. These cardinal properties are, of course,
very important when considering empirical applications, as we do in Chapter 5.
12This assumes that the minimum value is zero; but the required normalisation is easy

whatever the minimum value.
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Now let us consider the second aspect of choice: the problem of selecting
from among a family of measures one particular index. As we have seen, many,
though not all, of the inequality measures that are likely to be of interest will be
ordinally equivalent to the generalised entropy class: this applies for example
to inequality measures that arise naturally from the SWF method (for example
we know that all the measures Aε are ordinally equivalent Eθ, for θ = 1 − ε
where ε > 0). Let us then take the generalised entropy family of measures13

— extended to include all the measures that are ordinally equivalent - as the
selected family and examine the issues involved in picking one index from the
family.
If we are principally concerned with the ordering property of the measures,

then the key decision is the sensitivity of of the inequality index to information
about different parts of the distribution. We have already seen this issue in our
discussion on page 54 of whether the distance between Rich R and quite-well-
off Q was greater than the distance between Q and poor P. Different distance
concepts will give different answers to this issue. The distance concept can be
expressed in terms of the value of the parameter β or, equivalently in terms of
the generalised entropy parameter θ (remember that θ is just equal to 1+β).In
some respects we can also express this sensitivity in terms of the SWF inequality-
aversion parameter ε since, in the region where it is defined, ε = 1 − θ (which
in turn equals −β). We have already seen on page 39 how specification of
the parameter ε implies a particular willingness to trade income loss from the
leaky bucket against further equalisation of income; this choice of parameter ε
also determines how the “tie” will be broken in cases where two Lorenz curves
intersect — the problem mentioned in Chapter 2.
To illustrate this point, consider the question of whether or not the Switzer-

land of 1982 was “really” more unequal than the USA of 1979, using the data in
Figure 3.914. As we can see from the legend in the figure the Gini coefficient is
about the same for the distributions of the two countries, but the Lorenz curves
intersect: the share of the bottom ten percent in Switzerland is higher than the
USA, but so too is the share of the top ten percent. Because of this property we
find that the SWF-based index Aε will rank Switzerland as more unequal than
the USA for low values of inequality aversion ε — see the left-hand end of Figure
3.10 — and will rank the USA as more unequal for high values of ε (where the
SWF and its associated distance concept are more sensitive to the bottom of
the distribution).
The value of ε or θ that is chosen depends on two things:

• our intrinsic aversion to inequality;

• the discriminatory power of the resulting inequality measure.
13Although we could have constructed reasonable arguments for other sets of axioms that

would have picked out a different class of inequality measures — see the Technical Appendix
for a further discussion.
14 Source: Bishop et al. (1991) based on LIS data
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Of course the first point is just a restatement of our earlier discussion relating
ε to our willingness to sacrifice overall income in order to pursue an egalitarian
redistribution; a practical example occurs in Chapter 5. The detail of the second
point has to be deferred to Chapter 5; however, the main point is that if very
high inequality aversion is specified, nearly all income distributions that are
encountered will register high measured inequality, so that it becomes difficult
to say whether one state is more unequal than another.

3.6 SUMMARY

The upshot of the argument of Chapters 2 and 3, then, is as follows. If we are
interested in dealing with any and every possible income distribution, it may
be reasonable to require that a property such as the weak principle of transfers
should be satisfied. In choosing a measure that conforms to this principle it is
useful to have one that may either be related to an inequality-aversion parameter
(such as Aε or Dε) or to a concept of distance between income shares (the
information-theoretic measures or the family Eθ). In order to do this we need
to introduce some further assumptions about the measurement tool — such as
the decomposability property — which may be more contentious.

Even if these assumptions about building an inequality measure are accepted,
this still leaves the question of various cardinal characteristics open. Invariance
with respect to proportional changes in all incomes or with respect to increases
in the population may be desirable under certain circumstances. Standardis-
ation of the measure in a given range (such as 0 to 1) has only a superficial
attractiveness to recommend it: it may be well worth while sacrificing this in
order to put the measure in a cardinal form more useful for analysing the com-
position of, and changes in, inequality. The way these conclusions relate to the
measures we have mentioned is summarised in Table 3.5.

However, these remarks apply to comparisons of all conceivable distributions.
You may wonder whether our task could be made easier if our attention were
restricted to those distributions that are, in some sense, more likely to arise.
The next chapter attempts to deal with this issue.
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Principle of Distance
Transfers Concept

Variance, V strong Absolute differences

Coeff. of variation, c weak As for variance
Relative mean just 0, if incomes on same
deviation, M fails side of ȳ, or 1 otherwise
Logarithmic fails Differences in
variance, v (log-income)
Variance of fails As for logarithmic

logarithms, v1 variance
Equal shares just As for relative mean
coefficient fails deviation
Minimal just Similar to M (critical
majority fails income is y0, not ȳ)
Gini, G weak Depends on rank ordering

Atkinson’s index, Aε weak Difference in marginal
social utilities

Dalton’s index, Dε weak As for Atkinson’s index
Theil’s entropy index, T strong Proportional differences
Herfindahl’s index, H strong As for variance

Generalised entropy,Eθ strong Power function
Note: “just fails” means a rich-to-poor transfer may
leave inequality unchanged rather than reducing it.

Table 3.5: Which measure does what?
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Decomposable? Independent of Range in
income scale & interval
population size? [0,1] ?

Yes No: increases No
with income

Yes Yes No
No Yes No:

in [0,2]
No Yes No

No Yes No

No Yes Yes

No Yes Yes

No Yes Yes
Yes Yes Yes

Yes No No
Yes Yes No
Yes No: decreases Yes: but

with population min > 0
Yes Yes No

1.1

3.7 QUESTIONS

1. Show that the inequality aversion parameter ε is the elasticity of social
marginal utility defined on page 37.

2.

(a) Use the UK 1984/5 data (see file ET84-5 on the Website) to compute
Atkinson’s inequality index with ε = 2, making the same assumptions
as in question 4 of Chapter 2.

(b) Recompute the index in part (a) after dropping the first income class
from the data set. Why does measured inequality decrease?

(c) Rework the calculations in (b) for a variety of values of ε so as to
verify that measured inequality rises with inequality aversion for a
given data set.

3. Suppose that the assumption of constant relative inequality aversion (page
37) were to be replaced by the assumption of constant absolute inequality
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aversion, whereby the U -function may be written

U(yi) = − 1
κ
e−κyi

(a) Sketch the U -function for different values of κ.

(b) Write down the corresponding social-welfare function, and hence find
an expression for the equally-distributed equivalent income;

(c) Explain what happens to social welfare as yi goes to zero. Is the
social -welfare function defined for negative incomes?

4. Consider the following two distributions of income A:(1,4,7,10,13) B:(1,5,6,10,13)
Which of these appears to be more unequal? Many people when con-
fronted with this question will choose B rather than A. Which fundamental
principle does this response violate? [see Amiel and Cowell (1999) ].

5. Gastwirth (1974b) proposed the following as an inequality measurement
tool:

1

n2

nX
i=1

nX
j=1

|yi − yj |
yi + yj

What concept of distance between incomes does it employ? In what way
does it differ from the Gini coefficient? For the two distributions (1,2,97),
and (1,3,96) verify that it violates the transfer principle: would it also
violate the transfer principle for the distributions (2,2,96), and (1,3,96)?
[see also Amiel and Cowell (1998) , Nygård and Sandström (1981), p. 264]

6. Show that the Parade of Dwarfs for a distribution A must lie above that for
distribution B if and only if the generalised Lorenz curve for A is steeper
than the generalised Lorenz curve of B. [see Thistle (1989b)].



Chapter 4

MODELLING
INEQUALITY

“I distrust all systematisers and avoid them, The will to a system
shows a lack of honesty” - F.W. Nietzsche, Maxims and Missiles.

Up till now we have treated information about individual incomes as an
arbitrary collection of nuts and bolts which can be put together in the form
of an inequality statistic or a graph without any preconception of the general
pattern which the distribution ought to take. Any and every logically possible
distribution can be encompassed within this analysis, even though we might
think it unlikely that we should ever meet any actual situation approximating
some of the more abstruse examples. By contrast we might want instead to
have a simplified model of the way that the distribution looks. Notice that I
am not talking about a model of the causes of inequality, although that would
be interesting too and might well make use of the sort of models we are going
to be handling here. Rather, we are going to examine some important special
cases which will enable us to get an easier grip upon particular features of the
income distribution. This entails meeting some more specialised jargon, and so
it is probably a good idea at the outset to consider in general terms why it is
worth while becoming acquainted with this new terminology.
The special cases which we shall examine consist of situations in which it is

convenient or reasonable to make use of a mathematical formula that approxi-
mates the distribution in which we are interested. The inconvenience of having
to acquaint yourself with a specific formulation is usually compensated for by
a simplification of the problem of comparing distributions in different popula-
tions, or of examining the evolution of a distribution over time. The approach
can be extremely useful in a variety of applications. You can use it to represent
particular parts of the income distribution where a distinctive regularity of form
is observed; it can also be used for filling in gaps of information where a data
set is coarse or incomplete (we will be doing just that in Chapter 5); and, as

69
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I have mentioned, this technique is often used as a device to characterise the
solution to economic models of the income distribution process.

4.1 THE IDEA OF A MODEL
At the outset it is necessary to understand the concept of a functional form.
Typically this is a mathematical formula which defines the distribution function
(or the density function, depending on the particular presentation) of not just
a single distribution, but of a whole family of such distributions. Each family
member has common characteristics and can usually be simply identified within
the family by fixing certain numbers known as parameters. This can be clarified
by an easy example that may be very familiar. Consider the family of all the
straight lines that can be drawn on a simple plane diagram. The usual equation
that gives the graph of the straight line is:

y = mx+ c

where y is distance in the “vertical” direction and x is distance in the “horizon-
tal” direction. Since this formula defines any straight line in the plane, it can be
considered as a general description of the whole family - i.e. as the functional
form referred to above. The numbers m and c are, in this case, the parameters.
Fix them and you fix a particular straight line as a family member. For exam-
ple, if you set m = 1 and c = 2 you get a line with slope 1 (or, a 45◦ line) that
has an intercept on the y−axis at y = 2.
When we are dealing with functional forms that areuseful in the analysis

of inequality, however, we are not of course immediately interested in straight
lines, but rather in curves which will look like Figures 2.2 or 2.3. In this case
our parameters usually fix things such as the location of the distribution (for
example, if one of the parameters is the arithmetic mean) and the dispersion of
the distribution (for example, if one of the parameters is the variance).
Now perhaps it is possible to see the advantage of adopting a particular

functional form. Let us suppose that you have discovered a formula that fits
a particular distribution superbly. We will write down the density function of
your fitted formula thus:

f = φ(y; a, b)

The notation φ(.;.,.) simply stands for some expression the details of which
we have not troubled to specify; a and b are the parameters. This equation
gives you the height f of the smooth curve in the frequency distribution (Figure
2.2) for any value of income y. Obviously a and b have particular numerical
values which give a close fit to the distribution you are examining. However,
the empirical distribution that you are considering may be of a very common
shape, and it may so happen that your formula will also do for the distribution
of income in another population. Then all you have to do is to specify new
values of a and b in order to fix a new member of the φ-family.
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So you could go on using your formula again and again for different distri-
butions (always assuming it was a good approximation of course!), each time
merely having to reset the two numbers a and b. Let us suppose that the
problem in hand is the comparison of the distribution of income in a particular
country now with what it was ten years ago, and that it turns out that in each
case the φ-formula you have discovered very closely fits the observed shape. The
comparison is really very easy because you do not have to describe the whole
distribution, but you can neatly summarise the whole change by noting the
change in the two numbers a and b. No more is required because in specifying
a and b you have thus described the whole curve, in the same way that “slope”
and “intercept” completely describe an entire straight line.
Because this approach is so convenient it is appropriate to put in some

words of warning before going any further. Although this chapter only discusses
two functional forms in detail, a great many others have been employed in the
social sciences. The properties of some of these are described in the Technical
Appendix. However, any such formula is only a convenience. It may turn out
that it describes some distributions extremely well, but this should not lull us
into expecting it to perform miracles in every situation. Most often we find
that such a functional form characterises certain sections of a distribution. In
this case we need to be very aware of its limitations in the less convenient
parts — frequently these are the “lower tail” of the distribution. It is usually
only fortuitous that a very simple formula turns out to be a highly satisfactory
description of the facts in every respect. Finally, in the analysis of economic
inequality it is often the case that a simple theoretical caricature of the income-
or wealth-generating process leads one to anticipate in theory that a particular
functional form of the income or wealth distribution may be realised. Such a
conclusion, of course, can only be as sound as the assumptions of the model
underlying it. Therefore one is well advised to be suspicious about “laws” of
distribution in the sense of claiming that a particular formulation is the one
that is somehow metaphysically “correct”. In doing so it may be possible to
view such formulations in what I believe is the correct perspective - as useful
approximations that enable us to describe a lot about different distributions
with a minimum of effort.

4.2 THE LOGNORMAL DISTRIBUTION

In order to grasp the reason for using this apparently unusual distribution with
a complicated density function (the mathematical specification is given in the
appendix) it is helpful to come to an understanding of its historical and logical
origin. This requires a preliminary consideration of the normal distribution.
The normal distribution itself is of fundamental importance in a vast area

of applied statistics, and for an appreciation of its origin and significance ref-
erence should be made to sources cited in the notes to this chapter. For our
present purposes let us note that since “the normal curve was, in fact, to the
early statisticians what the circle was to the Ptolemaic astronomers”(Yule and
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Figure 4.1: The Normal Distribution

Kendall 1950) it is not surprising that scholars have been eager to press it
into service in the field of economics and elsewhere. If examination marks,
men’s height, and errors in experimental observation1 were supposed to have
the normal distribution, then why not look for a “normal law” governing the
distribution of observed quantities in the social sciences?
The term “normal distribution” describes one family of possible frequency

curves, two typical members of which are illustrated in Figure 4.1. As you can
see, the curves are symmetrical about the line A0A;A marks the value ı̀ which is
the arithmetic mean of the variable x whose distribution is described by curve
(1). This is also the mean of a variable with the distribution of curve (2), which
by construction has been drawn with the same mid-value. If curve (2) had a
higher mean then it would be displaced bodily to the right of its present position.
The higher the variance of the distribution, σ2, the more “spread out” will this
curve be - compare the values of σ2 for the two curves. The two numbers µ,σ2

are the curves’ parameters and so completely identify a particular member of
the family of normal distributions. If a particular variable x (such as height in
a sample of adult males) has the normal distribution with mean µ and variance
σ2, we say that x is distributed N(x;µ, σ2).
Now it is evident that the distribution of economic quantities such as income

does not fit the normal curve (although there are some latter day Ptolemaians

1 It has now been long recognised that the distributions of many such observed characteris-
tics only rarely approximate very closely to the normal distribution. This in no way diminishes
the importance of the normal in sampling theory, nor in understanding the historical origin
of much of the thought concerning the distribution of incomes.
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Figure 4.2: The Lognormal Distribution

who would like to assure us that they “really” do — see, for example, Lebergott
1959). As we have seen in Chapter 2, typical income distributions are positively
skewed, with a long right-hand tail - this is even more noticeable in the case
of the distribution of wealth. Is there a simple theoretical distribution that
captures this feature?
The lognormal distribution has been suggested as such a candidate, and

may be explained in the following manner. Suppose we are considering the
distribution of a variable y (income) and we find that the logarithm of y has
the normal distribution, then y is said to be lognormally distributed. So we
transform all our y-values to x-values thus:

x = log(y)

(the shape of the curve that describes the relation is given by the ε = 1 curve
in Figure 3.1), we will find that it has the normal distribution like the curves in
Figure 4.1. But what does the distribution of the untransformed variable y itself
look like? Two representative members of the lognormal family are illustrated
in Figure 4.2. Notice that, unlike the normal distribution, it is not defined for
negative values of the variable y. The reason for this is that as x (the logarithm
of y) becomes large and negative, y itself approaches its minimum value of zero,
and there is no real number x representing the logarithm of a negative number.
However, the perceptive reader may by now be asking himself, why choose

a logarithmic transformation to produce a distribution of the “right” shape?
There are four reasons. Firstly, the lognormal distribution has a lot of convenient
properties, some of which are explained below. Secondly, it can be shown that
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under certain kinds of “random processes” the distribution of incomes eventually
turns out to be approximately lognormal. The idea here, roughly speaking, is
that the changes in people’s incomes can be likened to a systematic process
whereby, in each moment of time, a person’s income increases or decreases
by a certain proportion, the exact proportionate increase being determined by
chance. If the distribution of these proportionate increments or decrements
follows the normal law, then in many cases the overall distribution of income
approaches lognormality, provided that you allow enough time for the process
to operate.2 Thirdly, there is still some residual notion of “individual utility”
or “social welfare” associated with the logarithm of income; it would be nice to
claim that although incomes do not follow the normal distribution, “utility” or
“welfare” does. This will not do, however, for as we have seen in Chapter 3,
even if we do introduce a social-welfare function, log(y) is just one among many
candidate “welfare indices”.3 Fourthly, the lognormal provides a reasonable sort
of fit to many actual sets of data. This I shall consider later.

¤ Simple relationship to the normal
¤ Symmetrical Lorenz curves
¤ Non-intersecting Lorenz curves
¤ Easy interpretation of parameters
¤ Preservation under loglinear transformations

THE LOGNORMAL - SPECIAL ATTRACTIONS

Our first reason for using the logarithmic transformation of the normal dis-
tribution was, unashamedly, the convenient properties which the resulting dis-
tribution possessed. These are now displayed a little more boldly in the ac-
companying box. Let us look more closely at the “small print” behind these
claims.
The first point, on the relationship with the normal curve we have already

examined in detail. However, it is worth noting that this simple transformation
enables the student very easily to look up the cumulative frequency F (y) corre-
sponding to an income y (the proportion of the population with an income no
greater than y):

• find the logarithm of y, say x, from your scientific calculator or a standard
computer program.

• “standardise” this number using the two parameters to calculate z = x−µ
σ

2Of course, other technical assumptions are required to ensure convergence to the lognor-
mal. In some cases the resulting distribution is similar to, but not exactly equivalent to, the
lognormal. This kind of process is also very useful in analysing the inequality in the size
distribution of firms.

3 Incidentally, Champernowne’s (1953, 1973) use of the term “income power” to describe
log(y) is blameless on this score. This is simply a matter of terminological convenience so that
he can look at income proportions rather than incomes themselves.
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Figure 4.3: The Lorenz curve for the Lognormal distribution

• look upF (z) in the tables of the standard normal distribution.

A further advantage of this close relationship is that a number of com-
mon statistical tests which rely on the assumption of normality can be applied
straightaway to the logarithm of income, given the lognormal assumption.
The second feature is illustrated in Figure 4.3: the Lorenz curves are sym-

metric about the line CP, where P is the point on the typical Lorenz curve at
which y attains its mean value. This is a little more than a theoretical curiosity
since it enables one to see quickly whether there is a prima facie case for using the
lognormal as an approximation to some given set of data. If the plotted Lorenz
curve does not look symmetrical, then it is not very likely that the lognormality
assumption will turn out to be satisfactory. The third feature, non-intersecting
Lorenz curves, can also be seen in Figure 4.3.4 The important conclusion to be
derived from this observation is this: given any two members of the lognormal
family of distributions, one will unambiguously exhibit greater inequality than
the other. This remark is to be understood in the sense of comparing the in-
equality exhibited by the two income distributions using any mean-independent
inequality measure that satisfies the weak principle of transfers. It is a direct
consequence of theorem 2, and it is an observation which leads us naturally on
to the next feature.
The fourth feature is well-documented. Since there is a simple link with

the normal, we may expect a simple link between the parameters µ,σ2 of the

4Please note that this does not follow from the second property. Two arbitrary Lorenz
curves, each of which is symmetric may of course intersect.
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Figure 4.4: Inequality and the Lognormal parameter σ2

lognormal distribution, written ∧(y;µ, σ2), and the normal distribution. It is
evident by definition that ı̀ is the mean of the logarithm of y (or, putting the
same point another way, µ is the logarithm of the geometric mean of the values
of y). It also happens that µ is the logarithm of the median of y — so that 50%
of the distribution lies to the left of the value y = eµ - see the shaded area in
Figure 4.2. Again by definition we see that σ2 is the variance of the logarithm
of y; this is the inequality measure we denoted by v1 in Chapter 2. As we
noted in the last paragraph, if we are comparing members of the two-parameter
lognormal family, we never have the problem of intersecting Lorenz curves.5

Furthermore, since any Lorenz curve is defined independently of the mean, it
can be shown that the family of Lorenz curves corresponding to the family of
lognormal distributions is independent of the parameter µ. Thus each lognormal
Lorenz curve is uniquely labelled by the parameter σ2. So σ (or σ2) itself is a
satisfactory inequality measure, provided that we restrict our attention to the
lognormal family. Of course, if we go outside the family we may encounter the
problems noted on page 25.
However, although σ or σ2 may perform the task of ordinally ranking log-

normal curves perfectly well, we may not be attracted by its cardinal properties.
Just because the variance of logarithms, σ2, is a convenient parameter of the
lognormal distribution we do not have to use it as an inequality measure. Fortu-
nately, it is very easy to express other inequality measures as simple functions of
σ, and a table giving the formula for these is to be found in the appendix. Some
of those which were discussed in the last two chapters are sketched against the
corresponding values of σ2 in Figure 4.4. Thus to find, say, the value of the Gini
coefficient in a population with the lognormal distribution, locate the relevant

5The problem can arise if one considers more complicated versions of the lognormal curve,
such as the three-parameter variant, or if one examine observations from a lognormal popu-
lation that has been truncated or censored. Considerations of these points is an unnecessary
detour in our argument, but you can find out more about this in Aitchison and Brown (1957)
.
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value of σ2 on the horizontal axis, and then read off the corresponding value of
the inequality measure on the vertical axis from the curve marked Gini.
The final point may seem a little mystifying, though it can be useful. It

follows in fact from a well-known property of the normal distribution: if a
variable x is distributed N(x;µ, σ2), then the simple transformation z = a+ bx
has the distribution N(z; a+bµ, b2σ

2). So the transformed variable also has the
normal distribution, but with mean and variance altered as shown.
Let us see how this applies to the lognormal distribution. Now we know that

a variable y has the lognormal distribution Λ(y;µ, σ2) if its logarithm x = log(y)
has the normal distribution N(x;µ, σ2). Suppose we consider any two numbers
A, b with the only restriction that A be positive, and write the natural logarithm
of A as a. Use these two numbers to transform y into another variable w thus:

w = Ayb

so that by the usual rule of taking logarithms we have

log(w) = a+ b log(y)

Denote log(w) by z and recall the definition that we made above of x = log(y).
Then the last equation can be more simply written

z = a+ bx

But we know (from above) that because x is distributed N(x;µ, σ2), z is
distributed N(z; a + bµ, b2σ2). In other words, the logarithm of w has the
normal distribution with mean a+ bµ, and variance b2σ2. By definition of the
lognormal, therefore, w itself has the lognormal distribution Λ(w; a+ bµ, b2σ2).
To summarize: if y is distributed Λ(x;µ, σ2), then the transformed variable

w = Ayb has the distribution Λ(w; a+ bµ, b2σ2). One of the useful applications
of this property is as follows. It has been observed that many country’s personal
tax schedules are approximated reasonably by the formula

t = y −Ayh

where t is individual tax liability and y is income.6 Then disposable income is
given by

w = Ayb

So if the distribution of pre-tax income is approximately lognormal, the distri-
bution of after-tax income is also approximately lognormal.
We will find some very similar properties when we turn to our second special

case.
6A tax function with this property has been called a “constant residual progression” tax

function after the terminology used by Musgrave and Thin (1948). The parameter b lies
between 0 and 1; the smaller is b, the more progressive is the tax schedule; and the smaller is
the inequality in the resulting distribution of disposable income.
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4.3 THE PARETO DISTRIBUTION
Although the Pareto formulation has proved to be extremely versatile in the
social sciences, in my view the purpose for which it was originally employed is
still its most useful application - an approximate description of the distribution
of incomes and wealth among the rich and the moderately rich.
Take another look at the frequency distribution of incomes that we first met

on page 17. If you cover up the left-hand end of Figure 2.2 (below about £4 000)
you will see that the rest of the underlying curve looks as though it should fit
neatly into a simple functional form. Specifically it looks as though this portion
of the curve could well be defined by a power function of the form:

f(y) = k1y
−k2

where k1 and k2 are constants. With this little exercise you have virtually
rediscovered an important discovery by Vilfredo Pareto. In the course of the
examination of the upper tails of the income distributions in a number of coun-
tries, Pareto found a remarkably close fit to the particular functional form I have
just introduced — although in Pareto’s standard version the two parameters are
specified in a slightly different way from k1 and k2, as we shall see below. Since
the functional form “worked” not only for the then current (late nineteenth
century) data, but also for earlier periods (as far back as the worthy citizens
of Augsburg in 1471), this happy empirical circumstance assumed the status of
a Law. Furthermore, since the value of the crucial parameter (now customar-
ily referred to as “Pareto’s α”) seemed to lie within a fairly narrow range, it
seemed to Pareto that α might receive the kind of dignification accorded to the
gravitational constant in physics.
Unfortunately, I must remind you of the iconoclastic remarks about “laws”

made earlier in this chapter. Although the Paretian functional form provides a
good fit for parts of many income or wealth distributions (as well as an abun-
dance of other engaging applications such as the size distribution of cities, the
frequency of contribution by authors to learned journals, the frequency of words
in the Nootka and Plains Cree languages, the distribution of the length of in-
tervals between repetitions of notes in Mozart’s Bassoon Concerto in B^ Major,
and the ranking of the billiards scores by faculty members of Indiana Univer-
sity), the reputation accorded to it by earlier and more naive interpretations
has become somewhat tarnished. Neither Davis’ mathematical interpretation
of history, nor Bernadelli’s postulate of the futility of revolutions is comfortably
supported by the facts on income distribution.7 But although the more sim-
plistic hopes (centring on the supposed constancy of Pareto’s α) may have been
dashed, the underlying distribution remains of fundamental importance for the
following reasons.
In the first place, although Pareto’s α is not a gravitational constant, as I

have pointed out, the functional form still works well for a number of sets of
data. Secondly, the distribution may once again be shown to be related to a

7Curious readers are invited to check the notes to this chapter for details.
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Figure 4.5: The Pareto Diagram. UK Income Before Tax, 1984/5. Source:
Economic Trends, November 1987.

simple “random process” theory of individual income development.8 The prin-
ciple is very similar to the process referred to on page 74, the main difference
being that a device is introduced to prevent an indefinite increase in disper-
sion over time, which as the effect of erecting a “lower barrier” income y below
which no one can fall. Thirdly, the Paretian form can be shown to result from
simple hypotheses about the formation of individual remuneration within bu-
reaucratic organisations. The idea here is quite simple: given that a hierarchical
salary structure exists and that there is a fairly stable relationship between the
remuneration of overlord and underling, the resulting frequency distribution of
incomes is Paretian. Fourthly, the functional form of the Pareto distribution has
some remarkably convenient properties in its own right which make it useful for
a description of distributional problems and for some technical manipulations,
which I discuss in the next chapter.
In order to understand the especially attractive feature of the Pareto distri-

bution you will find it helpful to construct a fresh diagram to present the income
distribution data. This will be based on the same facts as were Figures 2.1 to
2.5 but will set out the information in a different manner.

• Along the horizontal axis put income on a logarithmic scale 9

• For any income level y transform the cumulative income proportions F (y)
8The details of this are set out in full in Champernowne (1953, 1973) and the non-technical

reader will find a simple summary in Pen (1971 1974).
9This is a scale similar to that used in Figure 2.5.
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Figure 4.6: The Pareto Distribution in the Pareto Diagram

by calculating the number P = 1− F (y);

• Then plot P on the vertical axis also using a logarithmic scale.

What we have done is to plot the proportion of the population with y or
more against y itself on a double-logarithmic diagram.
Let us see what the resulting curve must look like. If we look at a low level

of income, then the corresponding value of F (y) will be low since there will
only be a small proportion of the population with that income or less. By the
same token the corresponding value of P must be relatively high (close to its
maximum value of 1.0). If we look at a much higher level of y, F (y) will be
higher (the proportion of the population with that income or less will have risen)
and, of course, the number P will be smaller (the proportion of the population
with that income or more must have fallen). As we consider larger and larger
values of y, the number P dwindles away to its minimum value of zero. Since
P is being plotted on a logarithmic scale (and the logarithm of zero is minus
infinity) this means that the right-hand end of the curve must go right off the
bottom edge of the page. The result is a picture like that of Figure 4.5. Notice
that part of this curve looks as though it may be satisfactorily approximated
by a straight line with slope of about -212 . This gives us the clue to the Pareto
distribution.
If the graph we have just drawn turns out to be exactly a straight line

throughout its length, then the underlying distribution is known as the Pareto
distribution. The slope of the line (taken positively) is one of the parameters of
the distribution, usually denoted by α. The income corresponding to the inter-
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cept of the line on the horizontal axis gives the other parameter; write this as
y. Two examples of the Pareto family, each with the same y, but with different
values of α are illustrated in Figure 4.6. The corresponding frequency distribu-
tions are drawn in Figure 4.7. It is apparent from a superficial comparison of
this picture with Figure 2.2 or other frequency distributions based on different
data sets that, for income distributions at least, the Paretian functional form
is not likely to be a very good fit in the lower and middle income classes but
may work pretty well in the upper ranges, as suggested at the beginning of the
section. We shall consider this question of fit further below.

¤ Linearity of the Pareto diagram
¤ Van der Wijk’s law
¤ Non-intersecting Lorenz curves
¤ Easy interpretation of parameters
¤ Preservation under loglinear transformations

PARETO - SPECIAL ATTRACTIONS

Let us, then, take a look at some of the special attractions of the Pareto
distribution, as advertised, in the accompanying box. Once again we ought to
look at the facts behind these assertions.
One particular advantage of the first feature - the simple shape of the Pareto

diagram - is that it is easy to work out the distribution function F (y): to



82 CHAPTER 4. MODELLING INEQUALITY

Ratio of average income above you α
to your own income

1.50 3
1.75 2.333
2.00 2
2.50 1.667
3.00 1.5

Table 4.1: Pareto’s α and “average/base” Inequality B

calculate the proportion of the population that has y or less. To do this, divide
y by the required income level y; raise the resulting number to the power α;
subtract this result from 1.
On the second point, we find van der Wijk’s name attached to a particularly

simple law which holds only for the Pareto distribution.10 Take any income
level y as a “base” income. Then the average income of the subgroup who have
an income at least as great as this base income is simply By, where

B =
α

α− 1
So there is a simple proportionality relationship between this average and

the base income level, whatever the chosen value of chosen base income. The
constant of proportionality B can itself be seen as a simple inequality measure:
“the average/base” index. Notice that if α increases then B falls: the gap
between your own income and the average income of everyone else above you
necessarily gets smaller.
The third assertion (of non-intersecting Lorenz curves) is illustrated in Figure

4.8, and can be readily inferred from the explicit formula for the Lorenz curve
of the Pareto distribution given in the technical appendix. From that formula it
may be seen that if we choose any value of F in Figure 4.8 (measured along the
horizontal axis), then as we choose successively larger values of α, each lying on
a new Lorenz curve, the corresponding value of ϕ must become progressively
larger. In other words, as we choose larger values of α all the points on the
relevant Lorenz curve must lie closer to the diagonal. So no two Paretian Lorenz
curves can cross.
These observations take us naturally on to our fourth point — the inter-

pretation of the parameters. You may already have come to suspect that the
parameter α reveals something about the amount of inequality exhibited by a
particular Pareto distribution. Since it is evident that, within the Pareto family,
Lorenz curves associated with higher values of α are closer to the line of perfect
equality, it follows that if we compare two Pareto distributions with the same
mean, the one with the higher value of α exhibits the less amount of inequality

10This is true for all continuous distributions. There is a distribution defined for discrete
variables (where y takes positive integer values only) which also satisfies the Law. See the
technical appendix, page 143.
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Figure 4.8: The Lorenz curve for the Pareto distribution

for all inequality measures satisfying the weak principle of transfers.11

Once again, just because the parameter α is convenient in the case of the
Pareto distribution, this does not mean that there is any particular merit in
using it as a measure of equality. We may prefer the cardinal characteristics of
some other measure, in which case we may compute the alternative measure as
a function of α using the table in the appendix, or using Figure 4.9. This figure
is to be interpreted in a manner very similar to that of Figure 4.4 in the case of
the lognormal distribution. The interpretation of the parameter y can easily be
seen from Figure 4.9, which has been drawn with y set arbitrarily to one. This
parameter may assume any positive (but not zero) value, and gives the lower
income limit for which the distribution is defined. By a simple application of
van der Wijk’s law, putting yourself at minimum income y, it can be seen that
mean income for the whole population is

α

α− 1y

So average income is proportional to minimum income, and is a decreasing
function of α.12

11An intuitive argument can be used here. Using Van der Wijk’s law you find the gap
between your own income and the average income of everyone above you diminishes the larger
is α. Thus the “unfairness” of the income distribution as perceived by you has diminished.
12Another apparently paradoxical result needs to be included for completeness here. Spec-

ify any social welfare function that satisfies properties 1 to 3 of Chapter 3 (note that we
are not even insisting on concavity of the SWF). Then consider a change from one Pareto
distribution to another Pareto distribution with a higher α but the same value of minimum
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The formal meaning of the fifth and final point in our list is the same as in
the case of the lognormal distribution. A proof is not difficult. Suppose that
the quantity y has the Pareto distribution with parameters y and α. Then from
the appendix we find that the proportion of the population with incomes less
than or equal to y is given by

F (y) = 1−
·
y

y

¸−α
.Now consider another quantity w related to y by the formula,

w = Ayb

where of course the minimum value of w is w = Ayb. Then we see that

y

y
=

·
w

w

¸1/b
Substituting in the formula for F we find

F (w) = 1−
·
w

w

¸−α/b
In other words the transformed variable also has the Pareto distribution

with parameters and α/b. Therefore we once again have the simple result that
if pre-tax incomes are distributed according to the Pareto law, and if the tax
system is closely approximated by the constant residual progression formula,
then post-tax incomes are also distributed according to the Pareto law.

income (for example the two curves in Figure 4.7). We find that social welfare decreases with
α although, as we ave seen, inequality also decreases for any “sensible” mean-independent
inequality measure. Why does this occur? It is simply that as α is increased (held con-
stant) mean income, (which equals α/[α− 1]) decreases, and this decrease in average income
is sufficient to wipe out any favourable effect on social welfare from the reduction in equality.
Of course, if α is increased, and minimum income is increased so as to keep constant, social
welfare is increased for any individualistic, additive and concave social welfare function.
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Time Adult Rates. Source: New Earnings Survey, 1998

4.4 HOW GOOD ARE THE FORMULAS?

An obviously important criterion of suitability of a functional form is that it
should roughly approximate the facts we wish to examine. It is too much to
hope that one formula is going to fit some of the data all of the time or all of the
data some of the time, but if it fits a non-negligible amount of the data a non-
negligible amount of the time then the mathematical convenience of the formula
may count for a great deal. One immediate difficulty is that the suitability of
the functional form will depend on the kind of data being analysed. I shall deal
with this by arbitrarily discussing four subject areas which are of particular
economic interest. In doing so I am giving a mere sketch of the facts which may
provide those interested with a motivation to enquire further.
Aitchison and Brown (1957) argued that the lognormal hypothesis was par-

ticularly appropriate for the distribution of earnings in fairly homogeneous sec-
tions of the workforce. Thus, for example, in British agriculture in 1950 we
find that the distribution of earnings among cowmen, the distribution among
horsemen, that among stockmen and that among market gardeners proves in
each case to be close to the lognormal. This evidence is also borne out in other
sectors of the labour market. Weiss (1972) shows the satisfactory nature of the
hypothesis of lognormality for graduate scientists’ earnings in different areas of
employment — particularly for those who were receiving more than $10 000 a
year.
When we look at more comprehensive populations a difficulty arises in that
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UK USA
1688 1.58 1866-71 1.40-1.48
1812 1.31 1914 1.54
1843 1.50 1919 1.71
1867 1.47 1924 1.67
1893 1.50 1929 1.42
1918 1.47 1934 1.78
1937-38 1.57 1938 1.77
1944-45 1.75 1941 1.87
1949-50 1.95 1945 1.95
1954-55 2.10
1959-60 2.32
1964-65 2.33
1969-70 2.55
Sources: For UK 1949 onwards, Board of Inland Revenue (1972),p.2.
Other data taken from Bronfenbrenner (1971), p.46
Figures refer to income before tax.

Table 4.2: Pareto’s α for income distribution in the UK and the USA

the aggregate of several distinct lognormal distributions may not itself be lognor-
mal. Suppose you have a number of different subgroups within the population
(for example cowmen, horsemen, stockmen, etc.) and within each subgroup the
distribution in the resulting population (all agricultural workers) will only be
lognormal if, among other things, the dispersion parameter σ2 may be taken
as uniform throughout the groups. If your lognormal pigmen have a higher σ2

than your lognormal tractor drivers, then you are in trouble. Possibly because
this restrictive condition is not generally satisfied, systematic departures from
lognormality are evident in many earnings distributions — although it is inter-
esting to note that Figure 4.10 illustrates that the lognormal distribution is not
bad approximation for male manual earnings in the UK. Because of this diffi-
culty of aggregation Lydall (1968), in attempting to find a general description
of his “standard distribution” of pretax wages and salaries for all adult non-
agricultural workers, makes the following observations. The central part of the
distribution (from about the 10th percentile to the 80th percentile) is approxi-
mately lognormal. But the observed distribution has more of its population in
its tails than a member of the lognormal family should have. In fact the upper
tail (about the top 20% of the population) approximates more closely to the
Pareto distribution

.

If we are going to use current receipts as some surrogate measure of eco-
nomic welfare then it is clear that a more comprehensive definition of income
is appropriate. When we examine the distribution of income (from all sources)
we find that the lognormal assumption is less satisfactory, for reasons similar
to those which we discussed when dealing with the aggregation of earnings —
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compare the logarithmic transformation in Figure 2.5 with the “ideal” shape
of Figure 4.1 just above. We are quite likely to find substantial departures at
the lower tail, for reasons that are discussed in the next chapter. However, for
the middle part of the income distribution, lognormality remains a reasonable
assumption in many instances, and the assumption of a Paretian upper tail re-
mains remarkably satisfactory, as the evidence of Figure 4.5 bears out. In the
case of incomes, the values of α tend to be in the range 1.5 to 2.5 and generally
reveal a secularly increasing trend - see Table 4.2. As we have seen it is this close
approximation of the upper tail which led to some of the more optimistic con-
jectures of Pareto’s disciples. It is perhaps otiose to mention that since Pareto’s
data necessarily related to high incomes alone, his law can hardly be expected
to apply to the income distribution as a whole.
The “Paretian upper tail” that has emerged from a study of income distri-

butions works well for the distribution of wealth. There is a superficial reason
to suppose that a curve like Pareto’s might be useful in this application. Wealth
data are usually compiled with any accuracy only for the moderately wealthy
and above. Hence — excluding those whose wealth is unrecorded — we typically
find a single-tailed distribution. Evidence on the linearity of the Pareto diagram
(and hence on the close fit of the Pareto formula) is clear from Figure 4.11; no-
tice that the straight line approximation is particularly good if we drop the first
three observations (see the broken line) rather than trying to fit a line to all the
observations. The Paretian property of the tail of the wealth distribution is also
demonstrated admirably by the Swedish data examined by Steindl (1965) where
α is about 1.5 to 1.7. Once again, we usually find an increase in α over time
indicating, for that part of the distribution where the Paretian approximation
is suitable, a trend toward greater equality.
For our final application, the analysis of the distribution of firms by size, suc-

cinct presentation of the evidence and comparison with the special functional
forms can be found in Hart and Prais (for the UK) and in Steindl (for the USA
and Germany). The Pareto law only works for a small number of firms that
happen to be very large - but, as Steindl points out, although this represents a
small proportion of individual business units, it accounts for a large proportion
of total corporate assets. You typically find α in the (rather low) 1.0 to 1.5
range. However, the lognormal functional form fits a large number of distri-
butions of firms by size — where size can variously be taken to mean corporate
assets, turnover or number of employees. These approximations work best when
industries are taken in broad groupings rather than individually.
This preliminary glimpse of evidence is perhaps sufficient to reinforce three

conclusions which may have suggested themselves earlier in the discussion.

• Neither the Pareto nor the lognormal hypothesis provides a “law” of dis-
tribution in the strict sense that one particular member of either family
is an exact model of income or distribution in the long run. In particular
it is nonsense to suppose that the Pareto curve (where applicable) should
remain stable over long periods of history. As it happens, α has been
increasing nearly everywhere until recently.
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Figure 4.11: Pareto Diagram. UK Wealth Distribution 1995. Source: Inland
Revenue Statistics 1998, Table 13.3

• However, interpreting the Pareto or the lognormal “law” as a description of
the shape of particular distributions is more promising. Neither hypothesis
usually works very well,13 since the real world is too complicated for this,
unless we look at a very narrow and well-defined piece of the real world
such as the earnings of cowmen or the wealth of people with more than
100 000 kronor.

• Nevertheless one or other functional form is a reasonable approximation
in a heartening number of cases. The short cuts in empirical analysis
that are thus made possible amply repay the trouble of understanding the
mechanics of the mathematical formulas in the first place.

This simplification will perhaps be more readily appreciated when we come
to wrestle with some of the difficulties that arise in the next chapter.

4.5 QUESTIONS
1. Suppose {u1, u1, , .., ut, ...} is a sequence of independently and identically
distributed normal variables. If ut is distributed N(0, v2) what is the
distribution of Λut where Λ is a positive constant? Now suppose that
successive values of the variable xt are determined by the following process:

xt = λxt−1 + µt

13 See the next chapter for a brief discussion of the criteria of fit.
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or t = 1, , ..., where ut satisfies the assumptions just described and is
independent of xt. Write xt as a function of the initial value x0 and the
sequence {u1, u1, , .., ut, ...}. Show that

var(xt) = λ2tvar(x0) + v2
1− λ2t

λ2t − 1

2. Suppose income at time 0, y0, is distributed lognormally. Over a sequence
of periods t = 1, 2, 3, ... the logarithm of income xt then follows the above
process. Give a simple economic interpretation of what is happening.
What will be the distribution of income in period t? Under what condi-
tions will the distribution of income converge in the long run? If there is
convergence what is the long-run value of the Gini coefficient?

3. Using the data for the earnings distribution (“NES 1998” on the Website)
compute the mean and the coefficient of variation on the assumptions (i)
from the raw data and (ii) using the fitted lognormal distribution illus-
trated in 10 (use the relevant formula in Table A.2 on page 139).

4. Show that the “first guess” at the Pareto distribution given by the for-
mula for the frequency distribution on page 4.3 really does correspond to
the formula for the distribution function F on page 140of the Technical
Appendix. What is the relationship of the constants k1 and k2 to the
parameters y and α?

5. Use the formula given in the Table A.2 to sketch the relationship between
coefficient of variation c and α in Figure 4.9. Why is c undefined for
α ≤ 2?

6. Use the formula on page 140 of the Technical Appendix. to derive the
generalised Lorenz curve for the Pareto distribution.

7.

(a) Using the data for the UK wealth distribution 1995 (see the file “IR
wealth 94,95” on the Website) compute the Gini coefficient on the
assumptions (i) that persons not covered by the wealth table are
simply excluded from the calculation, and (ii) individuals in a given
wealth interval class possess the mean wealth of that interval.

(b) Rework the calculation in part (a) on the alternative assumption that
the group excluded by assumption (i) actually consists of n persons
each with a wealth y0, where n and y0 are positive numbers (chosen
by you). What would be reasonable ranges of possible values for
these numbers? How does the computed Gini coefficient vary with n
and y0?

8.
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(a) Using the same source on the Website as in question 7 for the lower
bound of each wealth interval y compute P (as defined on page 80)
and then use ordinary least squares to fit the equation

log(P ) = β0 + β1 log(y)

then the estimate of Pareto’s α? Use this estimate to compute
the Gini coefficient on hypothesis that the underlying distribution
is Paretian.

(b) Repeat part (a) after dropping the first three intervals.

(c) Compare your answers with those for question 7.

(d) Suppose the Pareto-type density given on page 78 applies only to
a bounded income interval [a, b] rather than to the whole range of
incomes. Compute the mean and the variance of this distribution,
and compare them with the results for the standard Pareto Type I
distribution given on page 140.

(e) Suppose that in a set of official income data you are told the upper
and lower boundaries of a particular income interval, the numbers
of incomes in the interval and the total amount of income in the
interval. Show how you could use the formula derived in part (a)
for the mean to derive an estimate of the value of Pareto’s α in the
interval [see also the discussion on page 114 in Chapter 5 and page
A.7.2 in the Technical Appendix].



Chapter 5

FROM THEORY TO
PRACTICE

“What would life be without arithmetic, but a scene of horrors?”
— Rev. Sydney Smith (1835)

So where do we go now? One perfectly reasonable answer to this would be
to return to some of the knotty theoretical issues to which we accorded only
scant attention earlier.
Were we to follow this course, however, we should neglect a large number

of issues which must be wrestled with before our ideas on inequality can be
applied to numbers culled from the real world. In this chapter we shall review
these problems in a fairly general way, since many of them arise in the same form
whatever concept of income, wealth or other personal attribute is examined, and
whatever the national or international source from which the data are drawn.

¤ Data
¤ Computation
¤ Appraising the results
¤ Special functional forms
¤ Interpretation

A CATALOGUE OF PROBLEMS

It is expedient to subdivide the practical problems that we shall meet into
five broad groups: those that are associated with getting and understanding the
original data; those arising from computations using the data; those involved
in an appraisal of the significance of these calculations; the problems connected
with the use of special functional forms for income distribution; and the inter-
pretation of results. Of course many of these problems interact. But we shall
try to deal with them one at a time.

91
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5.1 THE DATA
The primary problem to be dealt with by anyone doing quantitative research
into inequality is that of defining the variable y which we have loosely called
“income”, and then getting observations on it. In this section we deal with some
of these conceptual and practical issues.
For certain specific problem areas the choice of variable and of source ma-

terial is usually immediately apparent. For example, if one is interested in the
inequality of voting power in a political system, the relevant variable is the
number of seats allocated per thousand of the population (the fraction of a
representative held by a voting individual); in this situation it is a straightfor-
ward step to impute an index of voting power to each member of the electorate.
However, in a great many situations where inequality measures are applied, a
number of detailed preliminary considerations about the nature of the “income”
variable, y, and the way it is observed in practice are in order. The reasons for
this lie not only in the technique of measurement itself but also in the economic
welfare connotations attached to the variable y. For in such cases we typically
find that a study of the distribution of income or wealth is being used as a surro-
gate for the distribution of an index of individual well-being. We shall consider
further some of the problems of interpreting the data in this way once we have
looked at the manner in which the figures are obtained.
There are basically two methods of collecting this kind of information:

• You can ask people for it.
• You can make them give it to you.

Neither method is wholly satisfactory since, in the first case, some people
may choose not to give the information, or may give it incorrectly and, in the
second case, the legal requirement for information may not correspond exactly
to the data requirements of the social analyst. Let us look more closely at what
is involved.

5.1.1 Method 1: Asking people.

This approach is commonly used by those organisations that desire the raw infor-
mation for its own sake. It involves the construction of a carefully stratified (and
thus representative) sample of the population, and then requesting the mem-
bers of this sample to give the information that is required about their income,
wealth, types of asset-holding, spending patterns, household composition, etc.
This method is used in the UK’s Family Expenditure Survey, and in the Current
Population Surveys conducted by the US Bureau of the Census. Obviously the
principal difficulty is, as I mentioned, that of non-response or misinformation
by those approached in the survey. The presumption is that disproportionately
many of those refusing to cooperate will be among the rich, and thus a poten-
tially significant bias may be introduced into the results. However, the response
rate in some of the major surveys is surprisingly good (typically some 60% to
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Figure 5.1: Frequency Distribution of Income, UK 1996/97, Before and After
Tax. Source: Inland Revenue Statistics, 1998, Table 3.3

80%), and usually the raw data are weighted in order to mitigate the effect of
non-response bias. A manifest advantage of this method of data collection is
that if a person volun teers to take part in a survey, it may be possible to secure
much more detailed and diverse information than could be arranged under a
method involving compulsion, thus potentially broadening the scope of social
enquiry.

5.1.2 Method 2: Compulsion.

Useful information on income and wealth is often obtained as a by-product to
such tiresome official obligations as making tax returns. The advantages of this
conscript data over the volunteered survey data are obvious. Except where the
tax administration is extremely informal (as in commonly supposed to be true in
some Mediterranean countries) such that evasion introduces a substantial bias,
it is usually possible to obtain a larger and more representative sample of the
population. Non-response bias is less important, and it may be that in some
countries legal penalties act as a suitable guarantee to ensure the minimum of
misinformation.
However, the drawbacks of such data are equally evident. In the study of

income distributions, the income concept is that for which it is expedient for the
authorities to define the tax base, rather than a person’s “net accretion of econ
omic power between two points in time” (Royal Commission on the Taxation
of Profits and Income 1955), which is considered to be ideal for the purposes
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Figure 5.2: Disposable Income (Before Housing Costs). UK 1996/7. Source:
Households Below Average Income, 1999

of the economist. Hence many components of a comprehensive definition of
income — such as capital gains, fringe benefits, home production, the imputed
value of leisure time and of owner-occupancy - may be imperfectly recorded,
if recorded at all. Indeed, one may suppose that frequently both the rich and
the not-so-rich will have taken steps legally to avoid the tax by transforming
some part of their income into non-taxable — and unpublished — forms. These
warnings apply with increased emphasis in the case of wealth. Furthermore
the sample population whose income or wealth is reported in the official figures
often inaccurately represents the poor, since those with income or wealth below
the tax exemption limit may either be excluded, or be recorded in insufficient
detail.
The picture of inequality that would emerge from this sort of study is seen in

Figure 5.1, which illustrates the UK distribution of income before and after tax
in 1996/97, based on tax returns. It is tempting to contrast this with the picture
that we have already seen based on the more comprehensive Economic Trends
data for 1984/5 (compare the broken curve in Figure 5.1 here with Figure 2.2
on page 17 above). Of course this is not an entirely satisfactory comparison
between the distributions to be obtained from the two data sources; after all
the diagrams refer to periods that are four years apart. However if we try to
bring the comparison up to date we encounter a difficulty that is common even
in countries with well-developed statistical services: the Economic Trends series
no longer exists.
To make a reasonable comparison of the pictures of income distribution that
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would emerge from the two principal methods of data-gathering we could use a
more recently published alternative data source. xvHouseholds Below Average
Income (HBAI) provides estimates of disposable income in based on the UK’s
Family Resources Survey, the results of which are summarised in Figure 5.2,
using the same income groupings as in Figure 5.1. In comparing this figure with
the Inland Revenue Statistics distribution of income after tax (the solid line
in Figure 5.1) we immediately notice the interesting shape of the lower tail in
Figure 5.2 by contrast to the manifestly incomplete picture of the lower tail in
Figure 5.1.

¤ What is included?
¤ Which heads are counted, and who shares in the cake?
¤ To what time period does it relate?
¤ What valuation procedure has been used?
¤ Which economic assumptions have been made?

The variable y: a user’s guide

With little mental effort, then, we see that the practical definition of the
variable y - and hence the picture of its distribution — is only going to be as
good as the way in which the information on it is compiled. So if you, as
a student of inequality, are being asked to “buy” a particular set of data on
income or wealth, what should you watch out for? For a quick assessment, try
the checklist in the accom panying panel. Let us briefly examine each of these
five items in turn.

5.1.3 What is included?

Recalling the argument of Chapter 1, if we concern ourselves with a narrowly
defined problem there is relatively little difficulty: an inquiry into, say, the
inequality in earnings in some particular occupation will probably require a
simple definition of the income variable. I shall use this approach later in the
chapter when we look at inequality in the income reported to the tax authorities
in the USA. For a wide interpretation of inequality, of course, you obviously need
to reflect on whether the definition of income is as all-embracing as suggested
on page 93 that it should be. Furthermore, if you want to arrive at people’s
disposable incomes, then careful consideration must be given to the adjustment
that has been made for direct and indirect taxes, for social security benefits
and other money transfer incomes, and for benefits received “in kind” from the
state, such as education.
This point raises issues that deserve a chapter — if not a book — to themselves.

However, we can get a feel for the practical impact of an adjustment in the
concept of income by referring again to the data source used for Figure 5.2.
Some have argued that, because of the way in which housing is pro vided in the
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Figure 5.3: Disposable Income (After Housing Costs). UK 1996/7. Source:
Households Below Average Income, 1999

UK, the costs of housing should be treated as though they were a tax, and should
therefore be deducted to get a truer picture of disposable income. Irrespective
of the economic merits of this argument, it is interesting to note the impact of
this on the apparent inequality of the income distribution — see Figure 5.3 which
presents the after-housing-cost distribution using the same income groupings as
for Figures 5.1 and 5.2.

5.1.4 Which heads are counted?

The answer is obvious in some cases — for example in a study of the distribution
of voting power one considers each enfranchised person. In other cases, such as
those where tax returns are used, the choice of “heads” is made for us — they are
the “tax units”, which sometimes means all men and women individually, but
often refers to nuclear families and to unrelated individuals. For wealth data, the
unit is in general a single “estate”, the benefits of which may be enjoyed by one
person, or by a number in a family group. Unfortunately detailed information
such as family composition of the income or wealth-holding tax-units is available
for few countries, whereas this detail can usually be obtained from voluntary
sample surveys. Where this detail is available one may allow for differing family
size by taking two distinct steps:

• Adjusting each family’s income to allow for differences in needs between
different types of families. The process - known in the jargon as “equiv-
alising” the incomes — involves dividing the income by an index such as
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before after
housing costs

Two adults 1.00 1.00
Single adult 0.61 0.55
Second adult 0.42 0.45
Third adult 0.36 0.45
Fourth adult 0.36 0.40

Child aged 0-1 years 0.09 0.07
2-4 0.18 0.18
5-7 0.21 0.21
8-10 0.23 0.23
11-12 0.25 0.26
13-15 0.27 0.28
16-18 0.36 0.38

Examples
Married couple 1.00 1.00

couple + child aged 4 1.18 1.18
couple + children aged 2,4 1.36 1.36

couple + children aged 2,4,13 1.63 1.64
Source: (Coulter et al. 1992a)

Table 5.1: The McClements Equivalence Scale

that displayed in the accompanying box (for example on this scale a mar-
ried couple with two children aged 2 and 4 and a nominal income of £10
000 would have an equivalised income of £10 000/1.36 =£7 352.94). The
equivalence scale could in principle be derived in a number of ways: by
using expert assessments of budgets required to meet minimum standards,
by comparing the actual expenditure patterns of different types of family
on particular categories of goods, or by taking the relative needs implicit
in official income support scales, for example.

• Weighting each family’s representation in the sample so that the income
distribution is amongst persons rather than arbitrary family units. This
is usually done by weighting in proportion to the number of persons in
the family (so the above imaginary family of a married couple and two
children would be weighted by a factor of four).

There is a variety of alternative assumptions that could be made about
each of these two steps, and you should be warned that these adjustments can
significantly affect the picture of inequality that emerges (see question 2 for an
example of this).
You may well conclude that big enough problems are raised in dealing with

the heterogeneous people who are there in the sample population; but an even
bigger problem is posed by those who aren’t there. This remark applies gener-
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ally to tax-based data, and particularly to wealth. Only those estates that are
sufficiently extensive to attract the attention of the tax authorities are usually
included in the data, and hence there is a large proportion of the population
which although not destitute does not appear in the published figures. Basically
you have to do one of three things: leave these people out altogether (and so
underestimate the amount of inequality); include them, but with zero wealth
(and so overestimate inequality); or make some estimate of the wealth to be im-
puted per capita, by using information from alternative sources on total wealth,
or - more ambitiously - by guessing at the distribution among these excluded
persons.

5.1.5 What time period?

Income — as opposed to wealth — is defined relative to a particular time unit,
and you will generally find that measured inequality is noticeably lower if the
personal income concept relates to a relatively long period than if quite a short
time interval such as a week or a month is considered. The reason is simply that
people’s incomes fluctuate, and the longer you make the time unit, the more you
“average out” this volatility. As we noted in Chapter 1 the ultimate extension
of this is to examine the distribution of lifetime average income. However, apart
from the conceptual difficulties involved, sufficiently detailed data are just not
available, and fairly sophisticated techniques must be used to draw inferences
about the interpersonal distribution of this quantity.

5.1.6 What valuation procedure has been used?

As we have seen there are substantial problems of incorporating non-monetary
items into the income or wealth aggregate such as income in kind or assets
for which no easily recognised market price exists. In addition to these prob-
lems, the question of the valuation procedure arises particularly when analysing
trends of inequality over time, or in making comparisons between countries.
For, when looking at time trends, we must recognise that changes in consumer
goods’ prices will affect the purchasing power of the poor and of the rich in
different ways if the spending patterns of these two groups are signifi cantly
different. In some advanced economies during the recent past, price increases
happen to have affected necessities disproportionately more than luxuries, and
as a consequence looking at inequality purely in money-income terms conceals an
increasing trend in inequality of real purchasing power. If we want to compare
inequality within different countries, or to examine inequality among countries
in per capita income, then even worse trouble lies ahead: one must wrestle with
diverse definitions of income, differing relative prices (as in the time trend prob-
lem), different levels and forms of public expenditure, and artificial exchange
rates — which collectively are giants barring the way to comparability in income-
or wealth-valuation.
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5.1.7 Which economic assumptions have been made?

To procure certain versions of the income or wealth variable some economic
sleight-of-hand is essential, and it is important to grasp the legitimate tricks
involved. Let us briefly consider two of the most frequently encountered issues.
First, how are we to allow for people’s reactions to price and income changes?

Taxation generally involves distortion of prices - those of commodities, and the
value of time available for work. Now people’s choices of the amount they work
and the amount they save may be affected by changes in these prices, which
means in turn that the income distribution itself is affected. So if you want to
infer from the published figures what the shape of the income distribu tion would
be without government intervention, you must allow for this income response,
which in practice usually means flatly ignoring it. This remark applies to the
effects of indirect taxation as well as to income tax.
The second issue concerns the assumptions about markets. Time and again

one has to sum unlike components in an income or wealth aggregate. To get
an overall measure of net worth one adds a person’s current wealth (in terms of
marketable assets) to a present valuation of future income receipts from other
sources. To evaluate a family’s disposable income after all forms of intervention
one must include the value of non- monetary government transfers along with
money income. Either exercise involves not only the selection of prices, as we
discussed above, but usually a tacit assumption about the existence of efficiently-
operating markets for capital and for government-provided goods. To see this,
note that a person with high future income but low current wealth can only
be said to be as well off as a person with high current wealth but low income
prospects if it is possible to borrow from the capital market on the strength of
one’s anticipated high earnings. Taking your cue from the Rev. S. Smith, you
might think that enough “horrors” had been met in just examining the data.
But we must press on.

5.2 COMPUTATION OF THE INEQUALITY
MEASURES

Let us assume that you have decided on the variable y that you wish to use,
and the source from which you are going to extract the data. As we shall see,
there are some potentially significant problems associated with the arithmetic
involved in proceedings from a table of raw data to a number giving the realised
value of an inequality measure. We proceed by describing a number of inequality
measures that were intro duced in Chapters 2 and 3 in a formal but economical
manner, and then using this presentation to explore the practical difficulties.
Suppose that for a particular population you know the theoretical density

function f(y), which gives the proportion of the population that has an income
in the infinitesimal interval y to y+ dy.1 This function is defined so that if it is

1For those who are uneasy about integration an intuitive description may help. Suppose
that you have a diagram of a smooth curve φ(y), drawn with y measured “horizontally” and
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summed over the entire income range the result is exactly one; formally:

Z ∞
0

f(y)dy = 1

Now let us suppose that the desired inequality measure, or an ordinally
equivalent transformation of the desired inequality measure, can be written in
the following way, which we shall refer to as the basic form:

J =

Z ∞
0

h(y)f(y)dy

where h(.) is an evaluation function — some function of y that we have yet to
specify. It so happens that nearly every inequality measure that is of interest,
except the Gini coefficient, can be shown to be ordinally equivalent to some-
thing that can be written in the basic form — mathematically inclined readers
are invited to check this from TablesA.1 and A.2 in the technical appendix.
Some can be written exactly in the basic form — for example the relative mean
deviation, for which we would have the following evaluation function

h(y) =

¯̄̄̄
y

y
− 1
¯̄̄̄

or Theil’s inequality measure for which we find

h(y) =
y

y
log

µ
y

y

¶
Others are related to the basic form by a simple transformation - for example
if we specify

h(y) =

·
y

y

¸I−ε
and then consider the transformation 1 − J1/1−ε we find that we have Aε,
Atkinson’s inequality index with inequality aversion parameter ε. It is worth
re-emphasising that, as long as we have defined a sensible inequality measure,
the exact specification of the evaluation function h(.) does not matter at all,
and the basic form is just a neat way of describing a large number of measures.

φ “vertically”. Then
R b
a φ(y)dy means the area under the curve, above the horizontal axis and

bounded on either side by the vertical lines y = a and y = b. Thus in Figure 2.2
R 12,500
10,000 φ(y)dy

means the area between the smooth curve and the line OF that also lies between the points
marked 10,000 and 12,500. Instead of working out just the one single shaded rectangle it is
as though we caluclated the area of lots of rectangles of tiny base width made to fit under the
curve along this small interval. The “

R
” sign can be taken as something quite similar to the

summation sign “Σ”.
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However, the basic form gives the inequality measure in theoretical terms
using a continuous distribution function. One might specify one particular such
continuous function (for example, the lognormal or the Pareto) as a rough and
ready approximation to the facts about the distribution of income, wealth, etc.;
the problems associated with this procedure are taken up later. However, in
practice we may not wish to use such approximating devices, and we would
then want to know what modifications need to be made to the basic form in
order to use it directly with actual data.

¤
R∞
0

h(y)f(y)dy

¤ density function:f(y)
¤ evaluation function: h(y)
¤ lower bound of y-range: 0
¤ upper bound of y-range: ∞

THE MEASURE J: BASIC FORM

First of all, let us note that if we are presented with n actual observations
y1, y2, y3, ..., yn of all n people’s incomes, some of our problems appear to be
virtually over. It is appropriate simply to replace the theoretical basic form of
J with its discrete equivalent:

j =
1

n

nX
i=1

h(yi)

What this means is that we work out the evaluation function h(y) for Mr Jones
and add it to the value of the function for Ms Smith, and add it to that of Mr
Singh, ... and so on.
It is a fairly simple step to proceed to the construction of a Lorenz curve and

to calculate the associated Gini coefficient. There are several ways of carrying
out the routine computations, but the following is straightforward enough. Ar-
range all the incomes into the “Parade” order, and let us write the observations
ordered in this fashion as y[1], y[2], ..., y[n], (so that y[1] is the smallest income, y[2]
the next, and so on up to person n.) For the Lorenz curve, mark off the horizon-
tal scale (the line OC in Figure 2.4) into n equal intervals. Plot the first point
on the curve just above the endpoint of the first interval at a “height” of y[1]/n;
plot the second at the end of the second interval at a height of [y1+ y[2]]/n; the
third at the end of the third interval at a height [y1 + y2 + y3]/n; ... and so on.
You can calculate the Gini coefficient from the following easy formula:

G =
2

n2y

£
y[1] + 2y[2] + 3y[3]+, ...+ ny[n]

¤ n+ 1
n
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y[1]

A B C

y[2]
y[3]

y[4] y[5]

Figure 5.4: Income Observations Arranged on a Line

In fact this observation-by-observation approach will usually work well for
all the methods of depicting and measuring inequality that we considered in
Chapters 2 and 3 with just two exceptions, the frequency distribution and the
log frequency distribution. To see what the problem is here imagine setting out
the n observations in order along the income line as represented by the little
blocks in Figure 5.4. Obviously we have a count of two incomes exactly at
point A(y[2] and y[3]) and one exactly at point C (income y[4]), but there is a
count of zero at any intermediate point such as B. This approach is evidently
not very informative: there is a problem of filling in the gaps. In order to get
a sensible estimate of the frequency distribution we could try a count of the
numbers of observations that fall within each of a series of small fixed-width
intervals, rather than at isolated points on the income line in Figure 5.4. This is
in fact how the published HBAI data are presented — see Figure 5.5. Of course
the picture that emerges will be sensitive to the arbitrary width that is used in
this exercise (compare Figure 5.5 with the deliberately coarse groupings used
for the same data in Figure 5.3); more seriously this method is going to yield a
jagged discontinuous frequency distribution that appears to be an unsatisfactory
representation of the underlying density function. It may be better to estimate
the density function by allowing each observation in the sample to have an
influence upon the estimated density at neighbouring points on the income line
(a strong influence for points that are very close, and a weaker influence for
points that are progressively further away); this typically yields a curve that is
smoothed to some extent. An illustration of this on the data of Figure 5.5 is
provided in Figures 5.6 and 5.7 - the degree of smoothing is governed by the
“bandwidth” parameter (the greater the bandwidth the greater the influence of
each observation on estimates of the density at distant points), and the method
is discussed in detail on pages 154ff in the Technical Appendix.
Unfortunately, in many interesting fields of study, the procedures that I have

outlined so far are not entirely suitable for the lay investigator. One reason for
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Figure 5.5: Frequency Distribution of Disposable Income, UK 1996/7 (After
Housing Costs), Unsmoothed. Source: as for Figure 5.3

this is that much of the published and accessible data on incomes, wealth, etc.
is presented in grouped form, rather than made available as individual records.
However, there is a second reason. Many of the important sets of ungrouped

data that are available are not easily manipulated by the layman, even a layman
with a state-of-the- art personal computer. The problem derives not from math-
ematical intractability — the computational techniques would be much as I have
just described — but from the vast quantity of information typically involved.
An “important” study with ungrouped data usually involves the coverage of a
large and heterogeneous population, which means that n may be a number of
the order of tens of thousands. Such data-sets are normally obtained from com-
puterised records of tax returns, survey interviews and the like, and the basic
problems of handling and preparing the information require large-scale data-
processing techniques. Of course it is usually possible to download extracts from
large data sets on to storage media that will make it relatively easy to analyse
on a micro-computer. Nevertheless if you are particularly concerned with easy
availability of data, and wish to derive simple reliable pictures of inequality that
do not pretend to moon-shot accuracy, you should certainly consider the use of
published data, which means working with grouped distributions. Let us look
at what is involved.
Were we to examine a typical source of information on income or wealth

distributions, we should probably find that the facts are presented in the fol-
lowing way. “In the year in question, n1 people had at least $a1 and less than
$a2; n2 people had at least $a2 and less than $a3; n3 people had at least $a3
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Figure 5.6: Estimates of Distribution Function. Disposable Income, UK 1996/7.
(After Housing Costs), Moderate Smoothing. Source: as for Figure 5.3
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Figure 5.7: Estimates of Distribution Function. Disposable Income, UK 1996/7.
(After Housing Costs), High Smoothing. Source: as for Figure 5.3
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lower number
boundary of in group relative cumulative
of income groups mean freq freq
range (’000) income pop inc pop inc
(1) (2) (3) (4) (5) (6) (7)

(<$1 000) 3 204 -$16 823 -0.013 0.000 0.000
$1 000 6 526 $1 992 0.057 0.003 0.057 0.003
$3 000 5 860 $3 959 0.051 0.005 0.108 0.009
$5 000 5 680 $5 986 0.049 0.008 0.157 0.017
$7 000 5 593 $8 028 0.049 0.011 0.206 0.027
$9 000 5 372 $9 996 0.047 0.013 0.252 0.040
$11 000 5 555 $11 989 0.048 0.016 0.301 0.055
$13 000 5 344 $13 997 0.046 0.018 0.347 0.073
$15 000 4 837 $15 981 0.042 0.018 0.389 0.091
$17 000 4 402 $18 015 0.038 0.019 0.428 0.110
$19 000 6 507 $20 501 0.057 0.031 0.484 0.141
$22 000 5 610 $23 494 0.049 0.031 0.533 0.173
$25 000 7 848 $27 421 0.068 0.051 0.601 0.223
$30 000 12 380 $34 774 0.108 0.101 0.709 0.325
$40 000 9 099 $44 686 0.079 0.096 0.788 0.421
$50 000 13 679 $60 553 0.119 0.195 0.907 0.616
$75 000 5 374 $85 318 0.047 0.108 0.954 0.724
$100 000 4 075 $130 552 0.035 0.125 0.989 0.849
$200 000 1 007 $290 070 0.009 0.069 0.998 0.918
$500 000 178 $675 843 0.002 0.028 0.999 0.946

$1 000 000 87 $2 616 092 0.001 0.054 1.000 1.000
all ranges 118 217

positive inc 115 013 $36 892

Table 5.2: Distribution of Income Before Tax. USA 1995. Source: Internal
Revenue Service
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and less than $a4,...”. In addition we may be told that the average income of
people in the first group ($a1 to $a2) was reported to be $µ1, average income
in the second group ($a2 to $a3) turned out to be $µ2, and so on. Columns 1-3
of Table 5.2 are an example of this kind of presentation. Notice the difference
between having the luxury of knowing the individual incomes y1, y2, y3, ..., yn
and of having to make do with knowing the numbers of people falling between
the arbitrary class limits a1, a2, a3, ... which have been set by the compilers of
the official statistics.
Suppose that these compilers of statistics have in fact chopped up the income

range into a total of k intervals:

(a1, a2)(a2, a3)(a3, a4)...(ak, ak+1).

If we assume for the moment that a1 = 0 and ak + 1 = 4, then we have
indeed neatly subdivided our entire theoretical range, zero to infinity; (these
assumptions will not do in practice as we shall soon see). Accordingly, the
inequality measure in basic form may be modified to:Z a2

a1

h(y)f(y)dy +

Z a3

a2

h(y)f(y)dy + ...+

Z ak+1

ak

h(y)f(y)dy

which can be written more simply:

kX
i=1

·Z ai+1

ai

h(y)f(y)dy

¸
It may be worth repeating that this is exactly the same mathematical formula

as the “basic form” given above, the only notational difference being that the
income range has been subdivided into k pieces. However, although we have
observations on the average income and the number of people in each class
(ai, ai+1), we probably have not the faintest idea what the distribution F (y)
looks like within each class. How can we get round this problem?
In the illustrations of income distribution datasets used earlier in the book

(for example Figure 5.1 above) we have already seen one way of representing the
distribution within each class, namely that F (y) should be constant within each
class. If we used the same assumption of uniformity within each income class
for the US income distribution data in Figure 5.1 we would get a picture like
Figure 5.8. However this is not in fact a very good assumption. In order to get
the height of each bar in the histogram you just divide the number of persons in
the income class ni by the number in the total population n to give the relative
frequency in class i (columns 2 and 4 in Table 5.2), and then divide the relative
frequency ni/n by the width of the income class ai + 1 − ai (column 1). But
this procedure does not use any of the information about the mean income in
each class µi (column 3), and that information is important, as we shall see.
A better — and simple — alternative first step is to calculate from the available

information upper and lower limits on the unknown theoretical value J . That
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Figure 5.8: Frequency distribution of income before tax. US 1995

is, we compute two numbers JL and JU such that it is certain that

JL ≤ J ≤ JU

even though the value of J is unknown.
The lower limit JL is found by assuming that everyone in the first class gets

the average income in that class, $µ1, and everyone in the second class gets the
average income in that class, $µ2, ... and so on. So, to compute JL one imagines
that there is no inequality within classes (ai, ai+1) for every i = 1, 2, ..., k, as
depicted in Figure 5.9. Given that the population relative frequency in income
class i is ni/n (column 4 in Table 5.2) and the class mean is µi (column 3) we
then have:

JL =
kX
i=1

ni
n
h(µi)

Notice that if we are given the average income in each class, µ1, µ2, µ3, ..., µk,
we do not need to know the class limits a1, a2, a3, ..., ak+1, in order to calculate
JL.
By contrast, the upper limit JU is found by assuming that there is maximum

inequality within each class, subject to the condition that the assumed average
income within the class tallies with the observed number µi. So we assume that
in class 1 everyone gets either $a1 or $a2, but that no one actually receives any
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Figure 5.9: Lower Bound Inequality, Distribution of Income Before Tax. US
1995

0

$0

$1
0,

00
0

$2
0,

00
0

$3
0,

00
0

$4
0,

00
0

$5
0,

00
0

$6
0,

00
0

$7
0,

00
0

$8
0,

00
0

$9
0,

00
0

$1
00

,0
00

$1
10

,0
00

$1
20

,0
00

$1
30

,0
00

$1
40

,0
00

$1
50

,0
00

$1
60

,0
00

$1
70

,0
00

$1
80

,0
00

$1
90

,0
00

$2
00

,0
00

0

$0

$1
0,

00
0

$2
0,

00
0

$3
0,

00
0

$4
0,

00
0

$5
0,

00
0

$7
5,

00
0

$1
00

,0
00

$2
00

,0
00

y

f(y)

Figure 5.10: Upper Bound Inequality, Distribution of Income Before Tax. US
1995
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intermediate income. If we let a proportion

λ1 =
a2 − µ1
a2 − a1

of the class 1 occupants be stuck at the lower limit, $a1, and a proportion 1−λ1
of class 1 occupants receive the upper limit income $a2, then we obtain the
right answer for average income within the class, namely $µ1. Repeating this
procedure for the other income classes and using the general definition

λi =
ai+1 − µi
ai+1 − ai

we may now write:

JU =
kX
i=1

ni
n
[λih(ai) + [1− λi]h(ai+1)]

A similar procedure can be carried out for the Gini coefficient. We have:

GL =
1

2

kX
i=1

kX
j=1

ninj
n2ȳ

¯̄
µi − µj

¯̄
and

GU = GL +
kX
i=1

n2i
n2ȳ

λi [µi − ai]

The upper-bound distribution is illustrated in Figure 5.10.
We now have our two numbers JL, JU which will meet our requirements for

upper and lower bounds. The strengths of this procedure are that we have not
had to make any assumption about the underlying theoretical distribution F (y)
and that the calculations required in working out formulas for JL and JU in
practice are simple enough to be carried out on an ordinary pocket calculator.
The practical significance of the divergence between JL and JU is illustrated

for six inequality measures (c,G, T,A0.5, A1, and A2) in Table 5.3: this has been
constructed from the data of Table 5.2, on the basis of a variety of alternative
assumptions about the underlying distribution of income. Because of the nega-
tive mean in the first interval the coimputations have been performed only for
the distribution of incomes of $1,000 or more. For each inequality measure the
columns marked “Lower Bound” and “Upper Bound” correspond to the cases
JL and JU above (see Figures 5.9 and 5.10 respectively); the “Compromise”
value and the term in parentheses will be discussed a little later. Likewise the
rows marked (1),(2),(3) correspond to three alternative assumptions about what
happens to the income distribution in the upper and lower tails. Let us take
first the simplest - though not necessarily the best — of these: the central case
(2) which amounts to assuming that the lowest possible income, a1, was $1 000
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Lower Comp- Upper Lower Comp- Upper
Bound romise Bound romise romise Bound

c A0.5
(1) 2.281 *** *** *** 0.249 0.253 0.260 (0.313)
(2) 2.281 2.481 2.838 (0.358) 0.249 0.252 0.257 (0.334)
(3) 2.210 2.406 2.756 (0.359) 0.226 0.228 0.233 (0.336)

G A1
(1) 0.532 0.535 0.537 (0.667) 0.431 0.435 0.443 (0.330)
(2) 0.532 0.535 0.537 (0.667) 0.431 0.435 0.442 (0.328)
(3) 0.508 0.512 0.514 (0.667) 0.380 0.383 0.388 (0.336)

T A2
(1) 0.632 0.675 *** *** 0.690 0.701 0.725 (0.327)
(2) 0.632 0.646 0.673 (0.335) 0.690 0.701 0.725 (0.327)
(3) 0.587 0.601 0.629 (0.335) 0.590 0.593 0.600 (0.335)

(1) Top interval is a Pareto tail, bottom interval included
(2) Top interval closed at $5.5mn, bottom interval included
(3) Top interval closed at $5.5mn, bottom interval excluded

Table 5.3: Values of Inequality indices under a variety of assumptions about the
data. US 1995

and that the highest possible income ak+1, was $5 500 000. It is obvious from
the values of the six inequality measures recorded that the size of the Upper-
Lower gap as a proportion of the compromise value varies a great deal from one
measure to another. While this gap is just 1.0% for the Gini coefficient, 5.0%
for Atkinson (A2) and 6.0% for Theil, it is as much as 22.5% for the coefficient
of variation!2

Of course, the lower- and upper-bound estimates of inequality measures may
be sensitive to the assumptions made about the two extreme incomes a1, ($1
000), and ak+1, ($5 500 000). To investigate this let us first look at the lower tail
of the distribution. Consider the calculations after all income-receivers below $3
000 have been eliminated (metaphorically speaking) — see row (3) for each of the
measures presented in Table 5.3. As we expect, for all the measures the amount
of inequality is less for the distribution now truncated at the lower end. But the
really significant point concerns the imact upon the Upper-Lower gap that we
noted in the previous paragraph: it is almost negligible for every case except A2
which, as we know, is sensitive to the lower tail of the income distribution (see
page 47). Here the proportionate gap is dramatically cut to 1.8%. This suggests
that the practical usefulness of a measure such as this will depend crucially on

2Recall that c is not written exactly in the “basic form”. However, the Herfindahl index
H = [c2 + 1]/n can be written in this way. The proportionate gap between JL and JU for H
would be 46.4%.
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Figure 5.11: The coefficient of variation and the upper bound of the top interval.

the way lower incomes are treated in grouped distributions — a point to which
we return in the next section when considering SWF-based measures.
Now consider the upper tail. It is no good just putting ak+1 =∞, because

for several inequality measures this results in JU taking on the “complete in-
equality” value, whatever the rest of the distribution looks like.3 If the average
income in each class is known, the simplest solution is to make a sensible guess
as we have done in row (2) for each measure in Table 5.3. To see how important
this guess is, suppose that instead of closing off the last interval at an arbitrary
upper boundary ak+1 we assumed that the distribution in the top interval k
were Paretian: this would then yield the results in row (1) of Table 5.3. Com-
paring rows (1) and (2) we can see that for measures such as A1 or A2 there is
little discernible effect: this comes as no surprise since we noted (page 47 again)
that indices of this sort would be mainly sensitive to information at the bottom
end of the distribution rather than the top.4 By contrast the impact upon T
of changing the assumption about the top interval is substantial; and for the
coefficient of variation c — which is particularly sensitive to the top end of the
distribution — the switch to the Pareto tail is literally devastating: what has
happened is that the estimate of α for the fitted Pareto distribution is about
1.72, and because this less than 2, the coefficient of variation is effectively in-
finite hence the asterisks in Table 5.3. All this confirms that estimates of c —

3A similar problem can also arise for some inequality measures if you put a1 ≤ 0.
4There would be no effect whatsoever upon the relative mean deviation M : the reason for

this is thatnoted in Figure 2.6: rearranging the distribution on one side of the mean had no
effect on M .
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Figure 5.12: Lorenz Co-ordinates for Table 5.2

and of measures that are ordinally equivalent to c — are sensitive to the precise
assumption made about the top interval. To illustrate this further the results
reported in Table 5.3 were reworked for a number of values of ak+1: the only
measure whose value changes significantly was the coefficient of variation, for
which the results are plotted in Figure 5.11; the two outer curves represent the
lower- and upper-bound assumptions, and the four curves in the middle repre-
sent four possible compromise assumptions about which we shall say more in
just a moment.
Let us now see how to draw a Lorenz curve. From column 5 of Table 5.2

construct column 6 in an obvious way by calculating a series of running totals.
Next calculate the percentage of total income accounted for in each interval by
multiplying each element of column 5 by the corresponding number in column
4 and dividing by the population mean; calculate the cumulat ive percentages
as before by working out running totals - this gives you column 7. Columns 6
(population shares) and 7 ( income shares) form a set of observed points on the
Lorenz curve for the US Internal Revenue Service data relating to 1995. Some
of these points5 are plotted in Figure 5.12. We now have a problem similar to
those which used to occur so frequently in my sons’ playbooks — join up the
dots.
However this is not as innocuous as it seems, because there are infinitely

many curves that may be sketched in, subject to only three restrictions, men-
tioned below. Each such curve drawn has associated with it an implicit assump-
tion about the way in which income is distributed within the income classes,

5Three of the upper observations have been left out of the diagram for reasons of clarity.
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Figure 5.13: Upper and Lower Bound Lorenz Curves

and hence about the “true” value of the inequality measure that we wish to use.
If the dots are joined by straight lines, then we are assuming that there is no
inequal ity within income classes — in other words, this corresponds to the use
of JL, the lower bound on the calculated inequality measure, (also illustrated
by the distribution in Figure 5.9). This method is shown in detail by the solid
lines connecting vertices (6),(7),(8),(9) in Figure 5.13 which is an enlargement of
the central portion of Figure 5.12. By contrast you can construct a maximum
inequality Lorenz curve by drawing a line of slope ai/ȳ through the ith dot,
repeating this for every dot, and then using the resulting “envelope” of these
lines. This procedure is illustrated by the dashed line connecting points A,B,C
in Figure 5.13 (in turn this corresponds to JU and Figure 5.10). Now we can
state the three rules that any joining-up-the-dot procedure must satisfy:

• Any curve must go through all the dots, including the two vertices (0,0)
and (100,100) in Figure 5.12.

• It must be convex.
• It must not pass below the maximum inequality curve.

Notice that the first two of these rules ensure that the curve does not pass
above the minimum-inequality Lorenz curve.
One of these reasons for being particularly interested in fitting a curve sat-

isfying these requirements is that the observed points on the Lorenz curve in
Table 5.2 (columns 6 and 7) only give us the income shares of the bottom 5.7%,
the bottom 10.8%,... and so on, whereas we would be more interested in the
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shares of, say, the bottom 10%, the bottom 20%, and to get these we must inter-
polate on a curve between the points. Presumably the interpolation should be
done using neither the extreme upper- or lower-bound assumptions but rather
according to some “compromise” Lorenz curve. One suggestion for this com-
promise method is to use the basic Pareto interpolation formula (given on page
140 in the technical appendix), which is much less fearsome than it looks, be-
cause you do not have to compute the parameters α, along the way. All you
need are the population and income shares. Unfortunately this simplicity is also
its weakness. Because the formula does not use information about the µis the
resulting curve may violate the third condition cited above (the same problem
would arise if we used a Lorenz curve based on the simple histogram density
function illustrated in Figure 5.14).
An alternative method — which may be implemented so that all three con-

ditions are satisfied — is to fit a theoretical frequency distribution within each
interval in Figure 5.14), and work out the Lorenz curve from that. What fre-
quency distribution? In fact it does not matter very much what type is used:
all the standard “compromise” interpolation methods6 produce inequality esti-
mates that are remarkably similar. This is illustrated in Figure 5.11 where I
have plotted the results of four alternative interpolation methods. These three
methods (which are more easily explained using the associated density function)
are:

• a “split histogram” density function density function in each interval. This
is illustrated in Figure 5.14: contrasting this with Figure 5.8 you will note
that in each interval there are two horizontal “steps” rather than a single
step in the case of the regular histogram; this simple device enables one to
use all the information about the interval and is the procedure that was
used for the “compromise” column in Table 5.3

• a separate straight line density function fitted to each interval7

• loglinear interpolation in each interval. This is in effect a separate Pareto
distribution fitted to each interval (ai, ai+1), using all the available infor-
mation;

• a quadratic nterpolation in each interval.

The details of all of these — and of how to derive the associated Lorenz curve
for each one — are given in the technical appendix.
It is straightforward enough to use any of these three methods to compute

an compromise value for an inequality measure. But in fact if you do not
need moon-shot accuracy, then there is another delightfully simple method of
deriving a compromise inequality estimate. The clue to this is in fact illustrated
by the columns in parentheses in Table 5.3: this column gives, for each inequality

6A minimal requirement is that the underlying density function be well-defined and piece-
wise continuous (Cowell and Mehta 1982).

7A straight line density function implies that the corresponding Lorenz curve is a quadratic.
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Figure 5.14: The “split histogram” compromise.

measure, the relative position of the compromise estimate in the interval (JL,JU )
(if the compromise estimate were exactly halfway between the lower and the
upper bound, for example, then this entry would be 0.500).- For most inequality
measures that can be written in the standard form a good compromise estimate
can be found by taking 2

3 of the lower bound and adding it to
1
3 of the upper

bound (see for example the results on the Atkinson and Theil indices). One
notable exception is the Gini coefficient; for this measure, the compromise can be
approximated by 1

3GL+
2
3GU which works extremely well for most distributions,

and may also be verified from Table 5.3. Given that it requires nothing more
than simple arithmetic to derive the lower and upper bound distributions from
a set of grouped data, this 13 − 2

3 rule (or
2
3 − 1

3 rule) evidently provides us with
a very handy tool for getting good estimates from grouped data.

5.3 APPRAISING THE CALCULATIONS
We have now seen how to calculate the indices themselves, or bounds on these
indices from the raw data. Taking these calculations at face value, let us see
how much significance should be attached to the numbers that emerge.
The problem may be introduced by way of an example. Suppose that you

have comparable distribution data for two years, 1985, 1990, and you want
to know what has happened to inequality between the two points in time.
You compute some inequality indices for each data set, let us say the coef-
ficient of variation, the relative mean deviation, Theil’s index, and the Gini
coefficient, so that two sets of numbers result: {c1985,M1985, T1985, G1985} and
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{c1990,M1990, T1990,G1990}, each set giving a picture of inequality in the ap-
propriate year. You now have another play-book puzzle - spot the difference
between the two pictures. This is, of course, a serious problem; we may notice,
say, that c1990 is “a bit” lower than c1985 - but is it noticeably lower, or are
the two numbers “about the same”? Readers trained in statistical theory will
have detected in this a long and imprecise way round to introducing tests of
significance.
However, this thought experiment reveals that the problem at issue is a bit

broader than just banging out some standard statistical significance tests. In
fact, given that we are looking at the difference between the observed value of
an inequality measure and some base value (such as an earlier year’s inequality)
there are three ways in which the word “significance” can be interpreted, as
applied to this difference:

• statistical significance in the light of variability due to the sampling pro-
cedure;

• statistical significance in view of the arbitrary grouping of observations;
• social or political significance.
The last of these three properly belongs to the final section of this chapter.

As far as the first two items are concerned, since space is not available for
a proper discussion of statistical significance, I may perhaps be forgiven for
mentioning only some rough guidelines - further reference may be made to the
appendix and the notes to this chapter.
Let us suppose that we are dealing with sampling variability in an ungrouped

distribution (unfortunately, rigorous analysis with grouped data is more diffi-
cult). The numbers y1, y2, y3, ..., yn are regarded as a sample of independent
random observations. We perform the calculations described earlier and arrive
at a number J . An essential piece of equipment for appraising this result is
the standard error8 of J which, given various assumptions about the underly-
ing distribution of y and the manner of drawing the sample can be calculated
from the observations y1, ..., yn. Since the ys are assumed to be random, the
number J must also be taken to be an observation on a random variable. Given
the theoretical distribution of the ys it is possible to derive in principle the
distribution of the values of the computed number J . The standard deviation
or square-root-of-variance of this derived distribution is known as the standard
error of J . Given this standard error an answer can be provided to the kind of
question raised earlier in this section: if the difference c1990 − c1985 is at least
three times the standard error for c, then it is “quite likely” that the change in

8A couple of technical words of warning should be noted. Firstly, in an application we
ought to examine carefully the character of the sample. If it is very large by comparison
with the whole finite population, the formulas in the text must be modified; this is in fact the
case in my worked example - although the qualitative conclusions remain valid. If it is non-
random, the formulas may be misleading. Secondly for some of the exercises carried out we
should really use standard error formulas for differences in the Js; but this is a complication
which would not affect the character of our results.
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Standard error Assumed underlying
Inequality measure approximation distribution∗

coefficient of variation c c
q

1+2c2

n normal

relative mean deviation M
q

c2−M2

n normal

Gini coefficient G G
q

0.8086
n symmetrical

variance of logarithms v1 v1

q
2
n lognormal

∗ See Kendall and Stuart (1977)

Table 5.4: Approximation Formulas for Standard Errors of Inequality Measures

inequality is not due to sampling variability alone; if this is at least three times
the standard error, then it is almost certain that the change in c is not a result
of sampling variability and thus this drop is significant.
Some rule-of-thumb formulas for the standard errors are readily obtainable if

the sample size, n, is assumed to be large, and if you are prepared to make some
pretty heroic assumptions about the underlying distribution from which you are
sampling. Some of these are given in Table 5.4, but I should emphasise that
they are rough approximations intended for those who want to get an intuitive
feel for the significance of numbers that may have been worked out by hand.
I would like to encourage even those who do not like formulas to notice from

the above expressions that in each case the standard error will become very
small for a large sample size n. Hence for a sample as large as that in Table 5.2,
the sampling variability is likely to be quite small in comparison with the range
of possible values of the inequality measure on account of the grouping of the
distribution. A quick illustration will perhaps suffice. Suppose for the moment
that the compromise value of c = 2.481 given in Table 5.3 were the actual value
computed from ungrouped data. What would the standard error be? Noting
that the sample size is about 116 million, the standard error is about

2.481×
r
1 + 2× 2.4812
116× 106 = 8. 404 2× 10−4

Hence we can be virtually certain that sampling variability introduces an error of
no more than three times this, or 0.001384 on the ungrouped value of c. Contrast
this with the gap between the upper bound and lower bound estimates found
from Table 5.3 as 2.838−2.281 = 0.557. Hence for this kind of distribution, the
grouping error may be of the order of six hundred times as large as the sampling
variability.As we have noted, the grouping variability may be relatively large in
comparison to the value of the measure itself. This poses an important question.
Can the grouping variability be so large as to make certain inequality measures
useless? The answer appears to be a qualified “yes” in some case. To see this,
consider Atkinson’s measure Aε for the data of Table 5.2. Instead of tabulating
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Figure 5.15: The Atkinson index for grouped data, US 1995. Source, as for
Table 5.2.

the calculations of the lower and upper bounds and compromise value as in Table
5.3, let us represent them pictorially as in Figure 5.15. This gives a glimpse of
the problem that arises when lower incomes are included. For values of ε ≥ 1,
the range of possible values of the measure is extremely large. In fact for ε = 2,
the range of possible values amounts to some 42% of the compromise value of the
inequality measure itself. Obviously, then, it will be hard to say unequivocally
whether A2 is greater or less than it was in some other year simply because the
grouping bounds are so wide.
However, Figure 5.15 in some respects under-represents the problem: the

principal reason for this is that in analysing the inequality represented by the
data in Table 5.2 we had to drop the first interval which contained a negative
mean, so that only incomes over $1 000 were left in the data. Consider instead
the Czechoslovakian data presented in Table 5.5.9 Notice that the first interval
is quite wide and has a lower limit of 1 crown per year. If we plot the Atkinson
index for these data and drop the first interval (as we did for the American
data) it appears that inequality is quite low — see the picture in Figure 5.16 —
and this picture is in fact borne out by other inequality measures as well as Aε.
But if we attempt to take account of all the data — including the first interval
— then the picture of Figure 5.17 emerges. Notice that not only is the upper-
bound estimate of inequality seriously affected for ε> 1 (which we might have
guessed) but so too is the compromise value. Obviously truncating the data (or
manipulating in some other way the assumption about a1 which is causing all

9Taken from Atkinson and Micklewright (1992) Table CSI1
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Income range (crowns) Number of Persons Mean
1-9,600 176,693 8,421

9,601-10,800 237,593 10,290
10,801-12,000 472,988 11,545
12,001-13,200 640,711 12,638
13,201-14,400 800,156 13,845
14,401-15,600 1,003,174 15,036
15,601-16,800 1,160,966 16,277
16,801-18,000 1,257,160 17,420
18,001-19,200 1,277,633 18,610
19,201-20,400 1,104,486 19,814
20,401-21,600 974,158 21,008
21,601-22,800 871,624 22,203
22,801-24,000 738,219 23,406
24,001-25,200 665,495 24,603
25,201-26,400 579,495 25,810
26,401-27,600 490,502 26,998
27,601-28,800 434,652 28,217
28,801-30,000 367,593 29,419
30,001-31,200 315,519 30,616
31,201-32,400 280,371 31,804
32,401-32,400 245,630 32,976
33,601-34,800 206,728 34,176
34,801-36,000 163,851 35,418
36,001-38,400 257,475 37,154
38,401& over 605,074 48,338

All ranges 15,327,946 21,735

Table 5.5: Individual distribution of household net per capita annual income.
Czechoslovakia 1988.
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Figure 5.16: The Atkinson Index for Grouped Data: First interval deleted.
Czechoslovakia 1988

the trouble) is convenient, but in one sense this is to avoid the problem, since
we are deliberately ignoring incomes in the range where our inequality measure
is designed to be particularly sensitive. The unpalatable conclusion is that
because of grouping error (and perhaps sampling error too) either we shall have
to discard certain sensitive measures of inequality from our toolkit on empirical
grounds, or the distribution must provide extremely detailed information about
low incomes so that measures with high inequality aversion can be used, or the
income distribution figures will have to be truncated or doctored at the lower
end in a way which may reduce their relevance in the particular area of social
enquiry.

5.4 SHORTCUTS: FITTINGFUNCTIONAL FORM10

And now for something completely different. Instead of attempting to work out
inequality statistics from empirical distribution data directly, it may be expe-
dient to fit a functional form to the raw data, and thus compute the inequality
statistics by indirect means. The two steps involved are as follows.

• Given the family of distributions represented by a certain functional form,
estimate the parameter values which characterise the particular family
member appropriate to the data.

10This section contains material of a more technical nature which can be omitted without
loss of continuity.
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Figure 5.17: The Atkinson Index for Grouped Data: All data included.
Czechoslovakia 1988

• Given the formula for a particular inequality measure in terms of the
family parameters,11 calculate the inequality statistics from the parameter
estimates obtained in step 1.

For the Pareto distribution, the first step involves estimation of the param-
eter α from the data, and the second step might be to write down the value of
the Gini coefficient, which for the Pareto is simply

G =
1

2α− 1
(see page 139).
For the lognormal distribution, the first step involves estimation of σ2. Since

the second step is simple once you have the formula (it usually involves merely
an ordinally equivalent transformation of one of the parameters), I shall only
consider in detail methods relating to the first step - the estimation of the
parameters.
Two words of warning. Up to now we have used symbols such as ȳ, V , etc.

to denote the theoretical mean, variance, etc., of some distribution. From now
on, these symbols will represent the computed mean, variance, etc., of the set of
observations that we have under consideration. Although this is a little sloppy,
it avoids introducing more symbols. Also, note that often there is more than one
satisfactory method of estimating a parameter value, yielding different results.

11 See the technical appendix for these formulae.
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Under such circumstances it is up to the user to decide on the relative merits
of the alternative methods.
Let us move straightaway on to the estimation of the parameters of the

lognormal distribution for ungrouped and for grouped data.
If the data are in ungrouped form — that is we have n observations, y1, y2, ..., yn

- then on the assumption that these come from a population that is lognormal,
it is easy to use the so-called method of moments to calculate estimates , 2 for
the lognormal distribution. Calculate the mean, and the Herfindahl index (the
sum of the squares of the shares — see page52) for these n incomes:

H =
nX
i=1

·
yi
ny

¸2
Then we find:

eσ2 = log(nH)
eµ = log(y)− 1

2
eσ2

While this is very easy, it is not as efficient13 as the following method.
An alternative procedure that is fairly straightforward for ungrouped data

is to derive the maximum likelihood estimates, µ̂, σ̂2. To do this, transform all
the observations y1, y2, ..., yn to their logarithms x1, x2, ..., xn. Then calculate:

µ̂ =
1

n

nX
i=1

xi

σ̂2 =
1

n

nX
i=1

[xi − µ̂]2

It is evident that µ̂ is simply log(y∗) — the logarithm of the geometric mean,
and that σ̂2 is v1, the variance of the logarithms defined relative to y∗.
In the case of grouped data, maximum likelihood methods are available, but

they are too involved to set out here. However, the method of moments can
be applied similarly to the way it was done in the ungrouped case, provided
that in the computation of H an appropriate correction is made to allow for the
grouping of observation.
We shall go straight on now to consider the estimation of the parameters of

the Pareto distribution, once again dealing first with ungrouped data.
For the method of moments, once again arrange the n observations y1, y2, ..., yn

in Parade order y[1], y[2], ..., y[n], (as on page 101). It can be shown that the

13The standard errors of the estimates will be larger than for the maximum likelihood
procedure (which is the most efficient in this case).
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expected value of the lowest observation y[1], given the assumption that the
sample has been drawn at random from a Pareto distribution with parameters
α, is ny/[n − 1]. Work out the observed mean income y. We already know
(from page 83) the expected value of this, given the Pareto assumption: it is
αy/[α−1]. We now simply equate the sample observations (y[1] and y) to their
expected values:

y[1] =
αny

αn− 1

y =
αy

α− 1
Solving these two simple equations in two unknowns α, y we find the method-
of-moments estimates for the two parameters:

eα = y − y[1]
n

y − y[1]

ey = ·1− 1eα
¸
y

However, this procedure is not suitable for grouped data. By contrast, the
ordinary least squares method for estimating α can be applied whether the data
are grouped or not. Recall the point in Chapter 4 that if y is any income level,
and P is the proportion of the population with that income or more, then under
the Pareto distribution, a linear relationship exists between log(P ) and log(y),
the slope of the line being α. In fact we may write this as

p = z − αx

where p represents log(P ), x represents log(y), and z gives the intercept of the
straight line, log(y).
Given a set of ungrouped observations y1, y2, ..., yn arranged say in ascending

size order, it is easy to set up the estimating equation for α. For the first
observation, since the entire sample has that income or more (P = 1), the
relevant value of p is

p1 = log(1) = 0

For the second observation, we have

p2 = log

µ
1− 1

n

¶
and for the third

p3 = log

µ
1− 2

n

¶
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and for the very last we have

pn = log

µ
1− n− 1

n

¶
= log

µ
1

n

¶
which gives a complete set of transformed values of the dependent variable.14

Given the values of the independent variable x1, x2, ..., xn (calculated from the
y-values) we may then write down the following set of regression equations:

p1 = z − αx1 + e1

p2 = z − αx2 + e2

... = ... ... ...

pn = z − αxn + en

where e1, e2, ..., en are error terms. One then proceeds to obtain least squares
estimates of α and z in the usual way by minimising the sum of the squares of
the es.
Of course you are at liberty to fit a lognormal, Pareto or some other function

to any set of data you like, but this is only a useful occupation if a “reasonable”
fit is obtained. What constitutes a “reasonable” fit?
An answer that immediately comes to mind if you have used a regression

technique is to use the correlation coefficient R2. However, taking a high value
of R2 as a criterion of a satisfactory fit can be misleading when fitting a curve
to a highly skewed distribution, since a close fit in the tail may mask substan-
tial departures elsewhere. This caution applies also to line-of-eye judgements
of suitability, especially where a log-transformation has been used, as in the
construction of Figure 4.11. For small samples, standard “goodness-of-fit” tests
such as the χ2-criterion may be used, although for a large sample size n you
may find that such tests reject the suitability of your fitted distribution even
though on other grounds it may be a perfectly reasonable approximation.
An easy alternative method of discovering whether a particular formula is

“satisfactory” can be found using an inequality measure. Let us look at how
it is done with grouped data and the Gini coefficient - the argument is easily

14 In the case of grouped data, let f1 be the observed proportion of the population lying in
the ith income interval, and take x1to be log(α1), that is the logarithm of the lower bound
of the interval, for every interval i = 1, 2, 3, ...k. The pi’s are then found by cumulating the
fi’s upwards from interval i and taking logarithms, thus:

p1 = log(1) = 0

p2 = log(f2 + f3 + f4 + ...+ fk−1 + fk)

p2 = log( f3 + f4 + ...+ fk−1 + fk)

p3 = log( f4 + ...+ fk−1 + fk)

... = ...

pk−1 = log( fk−1 + fk)

pk = log( +fk)
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extended to other inequality measures and their particular concept of “distance”
between income shares. Work out GL and GU , the lower and upper limits on
the “true” value of the Gini. Given the fitted functional form, the Pareto let us
say, we can calculate GΠ, the value of the Gini index on the supposition that
the data actually follow the Pareto law. If

GL ≤ GΠ ≤ GU

then it is reasonable to accept the Pareto functional form as a close approxima-
tion. What we are saying is that according to the concept of “distance between
incomes” implied by this inequality measure, it is impossible to distinguish the
theoretical curve from the “true” distribution underlying the observations. Of
course, a different concept of distance may well produce a contradictory answer,
but we have the advantage of specifying in advance the inequality measure that
we find appropriate, and then testing accordingly. In my opinion this method
does not provide a definitive test; but if the upper-and-lower-limit criterion is
persistently violated for a number of inequality measures, there seems to be
good reason for doubting the closeness of fit of the proposed functional form.
Let us apply this to the IRS data of Table 5.2 and examine the Pareto

law. Since we expect only higher incomes to follow this Law, we shall truncate
incomes below $15 000. First of all we work out from column 5 or 6 of Table
5.2 the numbers pi as (the transformed values of the dependent variable) by the
methods just discussed, and also the logarithms of the lower bounds ai given
in column 1 of Table 5.2, in order to set up the regression equations. Using
ordinary least squares on these last 13 intervals we find our estimate of α as
1.688 with a standard error of 0.0106, and R2 = 0.985. Using the formula for
the Gini coefficient on the hypothesis of the Pareto distribution (see page 121
above) we find

G =
1

2× 1.688− 1 = 0.421.

Now, noting that the upper and lower bounds on the Gini, for incomes over $17
000 are 0.413 and 0.422 respectively, we find that the Pareto certainly seems to
be an acceptable fit for the last 13 income classes.
Had we relied on the R2 criterion alone, however, we might have been seri-

ously misled, for if we reworked the calculations for all incomes above $1 000 we
would still have a high R2 (0.831) but a much lower value of α (1.143); the im-
plied value of GΠ = 0.777 lies well above the upper bound GU = 0.537 recorded
for this group of the population in Table 5.3, thus indicating that the Pareto
curve is in fact a rather poor fit for all incomes above $1 000. It is not hard to
see what is going on once we draw the Pareto diagram for these data in Figure
5.18: as we can see from the broken regression line, the straight-line Pareto
assumption is quite reasonable for $15 000 and over; if we were to fit a straight
line to all the data (the solid line), we might still get an impressive R2 because
of the predominance of the points at the right-hand end, but it is obvious that
the straight line assumption would now be rather a poor one. (This is in fact
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Figure 5.18: Fitting the Pareto diagram for the data in Table 5.2

characteristic of income distribution data: Cf the results for the UK given in
Figure 4.5.)
It seems that we have discovered three main hazards in the terrain covered

by this section.

• We should inspect the statistical properties of the estimators involved in
any fitting procedure.

• We should check which parts of the distribution have had to be truncated
in order to make the fit “work”.

• We must take care must over the “goodness-of-fit” criterion employed.
However, in my opinion, none of these three is as hard as the less technical

problems which we encounter next.

5.5 INTERPRETING THE ANSWERS
Put yourself in the position of someone who is carrying out an independent
study of inequality, or of one examining the summary results of some recent
report on the subject. To fix ideas, let us assume that it appears that inequality
has decreased in the last five years. But presumably we are not going to swallow
any story received from a computer print-out or a journal article straightaway.
In this final and import ant puzzle of “colour the picture”, we will do well to
question the colouring instructions which the presentation of the facts suggests.
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¤ What cardinal representation has been used?
¤ Has the cake shrunk?
¤ Is the drop in inequality an optical illusion?
¤ How do we cope with problems of non-comparability?
¤ Is the trend toward equality large enough to matter?

INEQUALITY CHANGE: A CHECKLIST

Although the queries that you raise in the face of the evidence may be far
more penetrating than mine, I should like to mention some basic questions that
ought to be posed, even if not satisfactorily resolved. In doing so I shall take as
understood two issues that we have already laboured to some extent:

• that agreement has been reached on the definition of “income” and other
terms and on the choice of inequality measure(s);

• that we are satisfied that the observed changes in inequality are “signifi-
cant” in a statistical or formal sense as discussed in this chapter.

Each of these questions is of the sort that merits several journal articles in
its own right. That being said, I am afraid that you will not find that they
asked often enough.

5.5.1 What cardinal representation has been used?

The retentive reader will recall from the first chapter that two inequality mea-
sures, although ordinally equivalent (so that they always rank any list of social
states in the same order), might not have equivalent cardinal properties, so that
percentage changes in inequality could appear different according to the two
measures.
As examples of this, take the Herfindahl index H and the coefficient of

variation c. Since

H =
c2 + 1

n

for the same population size H and c will always rank any pair of states in the
same order. However, the relative size of any difference in inequality will be
registered differently by H and by c. To see this, re-examine Table 5.2 where
we noted that the minimum and maximum values of c were 2.281 and 2.838,
which means that there is a difference in measured inequality of about 22.5%
which is attributable to the effect of grouping. If we did the same calculation
for H, we would find that the gap appeared to be much larger, namely 46.4%.
In fact H will always register larger proportional changes in inequality than c,
as long as c lies above one (exactly the reverse is true for c less than one).
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What this implies more generally is that we should not be terribly impressed
by a remark such as “inequality has fallen by x% according to inequality mea-
sure J” unless we are quite clear in our own minds that according to some
other sensible and ordinally equivalent measure the quantitative results is not
substantially different.17

5.5.2 Has the cake shrunk?

Again you may recollect that in Chapter 1 we noted that for much of the for-
mal work it would be necessary to take as axiomatic the existence of a fixed
total of income or wealth to be shared out. This axiom is implicit in the def-
inition of many inequality measures so that they are insensitive to changes in
mean income, and insofar as it isolates a pure distribution problem seems quite
reasonable. However, presuming that society has egalitarian preferences,18 the
statement “inequality has decreased in the last five years” cannot by itself im-
ply “society is now in a better state” unless one is quite sure that the total to
be divided has not drastically diminished also. Unless society is very averse to
inequality, a mild reduction in inequality accompanied by a significant drop in
average income may well be regarded as a definitely retrograde change.
We can formulate this readily in the case of an inequality measure that is ex-

plicitly based upon a social-welfare function: by writing down the social-welfare
function in terms of individual incomes y1, y2, ..., yn we are specifying both an
inequality ranking and a tradeoff between average income and an inequality
index consistent with this ranking.19 Atkinson’s measure Aε and the social-
welfare function specified on page 37 form a good example of this approach: by
definition of Aε, social welfare is an increasing function of [1−Aε]. Hence a fall
in inequality by one per cent of its existing value will be exactly offset (in terms
of this social-welfare function) if average income also falls by an amount

gmin =
Aε

1−Aε

17A technical note. It is not sufficient to normalise so that the minimum value of J is 0,
and the maximum value 1. For, suppose J does have this property, then so does J” where m
is any positive number, and of course, J and J” are ordinally, but not cardinally, equivalent.
18This is implied in the use of any inequality measure that satisfies the weak principle of

transfers.
19Actually, this requires some care. Notice that the same inequality measure can be consis-

tent with a variety of social welfare functions. For example, if we do not restrict the SWF to
be additive, the measure Aε could have been derived from any SWF of the form:

φ (ȳ)
nX
i=1

y1−�i − 1
1− �

which means that virtually any trade-off between equality and income can be obtained, de-
pending on the specification of φ. Pre-specifying the SWF removes this ambiguity, for exam-
ple, if we insist on the additivity assumption for the SWF then φ=constant, and there is the
unique trade-off between equality and mean income.
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Figure 5.19: The minimum income growth to offset a 1% growth in inequality

Likewise a rise in inequality by one per cent of its existing value will be
wiped out in social welfare terms if average income grows by at least this same
amount. Call this minimum income growth rate gmin: obviously gmin increases
with Aε which in turn increases with ε. So, noting from Figure 5.15 that for
ε = 1

2 , Aε = 0.25, we find that on this criterion gmin = 0.33: a one percent
reduction in inequality would be exactly wiped out by a 0.33% reduction in
income per head. But if ε = 3, Aε = 0.833, and a one per cent reduction in
inequality would need to be accompanied by a 5 percent reduction in the cake
for its effect on social welfare to be eliminated. Obviously all the remarks of
this paragraph apply symmetrically to a growing cake accompanied by growing
inequality.
I should perhaps stress again that this is a doubly value- laden exercise: first

the type of social-welfare function that is used to compute the equality-mean
income trade off is itself a judgment; then the choice of ε along the horizontal
axis in Figure 5.19 is obviously a matter of social values too.

5.5.3 Is the drop in inequality an optical illusion?

Unfortunately this may very well be so if we have not taken carefully into
consideration demographic, social and occupational shifts during the period.
Some of these shifts you may want to include within the ambit of inequality
anyway, but the treat ment of others is less clear. Let us follow through two
examples.
First, suppose there is higher inequality of earnings among doctors than
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among dockers, that relative remuneration and inequality within occupations
have not altered over time, but that there are now relatively more dockers.
Inequality in the aggregate will have decreased, although the inequality of earn-
ings opportunity facing a new entrant to either occupation will have remained
unchanged. Whether or not one concludes that inequality has “really” gone
down is in large part a matter of interpretation, though my opinion is that it
has done so.
However I would not be so confident in the case of the second example: sup-

pose income inequality within age groups increases with the age of the group
(this is very often true in fact). Now imagine that the age distribution is gradu-
ally shifting in favour of the young, either because the birth rate has been rising,
or because pensioners are dying earlier, but that inequality within age groups
remains unaltered. It will appear that inequality is falling, but this is due en-
tirely to the demographic change. In fact, if your chances of physical survival are
closely linked to your income, the appearance that inequality is decreasing can
be quite misleading, sine the death rate may have been substantially boosted
by the greater inequality among the old.
There are obviously several social and economic factors which ought to be

considered in a similar way. Among these are changes in the frequency of mar-
riage and divorce, shifts (possibly cyclical) of the numbers of wives, children and
other part-time or temporary workers in the labour force, and price changes that
affect people’s real incomes in different ways depending on their position in the
Parade of incomes.

5.5.4 How do we cope with problems of non-comparability?

This question follows naturally from the last and can be approached in two
ways: non-comparability of types of income, and non-comparability of groups
of income recipients. In the first case we may well want to examine, say, the
inequality of labour earnings, of income from property and the relationship of
these quantities to overall inequality. We evidently need to have a detailed
breakdown of the income distribution both by income type and recipient —
information that is usually hard to come by. Furthermore the mechanics of
the relationship between inequality of components of income and inequality of
income as a whole are by no means straightforward — see the technical appendix.
In the second case, while examining the effect of demo graphic and other

shifts, we may conclude that crudely lumping together different groups of the
population and thus treating them as comparable in every way is unwarranted.
In order to handle this difficulty, it helps to have an inequality measure that can
be conveniently decomposed into a component representing inequality within
groups, and a component giving inequality between groups. It would look some-
thing like this:

Itotal = w1I1 + w2I2 + ...+ wkIk + Ibetween

where Itotal is the value of inequality in the aggregate, I1, I2, ..., Ik is the value
of inequality within subgroup 1, 2, ..., k respectively, w1, w2, ..., wk form a set of
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weights, and Ibetween is the between-group inequality, found by assuming that
everyone within a particular group has the same income. The details of this
decomposition and in particular the specification of the weights for different
inequality measures can be found in the appendix. Given different problems of
non-comparability of income recipients there are, broadly speaking, two courses
of action open to us, each of which I shall illustrate by an example.
Firstly, suppose that each group corresponds to a particular family-size class,

with the family taken as the funda mental income-receiving unit. Then we may
be able to avoid the problem of non-comparability between groups by adjusting
incomes to an “adult-equivalent” basis, as mentioned earlier. If the weights w
depend on the shares of each group in total income, then such an adjustment will
involve increasing the weights for a group containing small families, decreasing
the w for a group of large families. The value of Ibetween would have to be
recomputed for average “per-adult equivalent” income in each group. A similar
procedure can be adopted in the case of an aggregation of economically diverse
nations within a political grouping such as the European Union; because of
artificiality of exchange rates of other reasons listed on page 98, average income
in each nation and thus the weights for each nation may have to be adjusted.
In the second place, there may be little point in trying to adjust Ibetween

since “between-group” inequality may be intrinsically meaningless. A case can
be made for this in examining income distributions that are differentiated by age
group. Although the measured inequality within an age group can be seen as
reflecting a genuine disparity among people’s economic prospects, the between-
group component merely reflects, for the most part, the fact that people’s in-
comes are not uniform over their lives. The expression Ibetween may thus not
reflect inequality in the conventional sense at all. This being so, the problem of
non-comparability of people at different points in the lifecycle can be overcome
by dropping the Ibetween component and adopting some alternative weighting
scheme that does not involve income shares (perhaps, for example, population
shares instead) so as to arrive at an average value of inequality over the age
groups.

5.5.5 Is the trend toward equality large enough to matter?

The discussion of significance in its formal, statistical sense leaves some unsettled
questions. All that we glean from this technical discussion are guidelines as
to whether an apparent change in inequality could be accounted for simply
by sampling variability or by the effect of the grouping of observations in the
presentation. Whether a reduction in inequality that passes such significance
tests is then regarded as “important” in a wider economic or social sense is
obviously a subjective matter - it depends on the percentage change that you
happen to find personally exciting or impressive. However, I do not think that
we have to leave the matter there. In the case of economic inequality there are
at least two ways of obtaining a crude independent check.
The first method is to contrast the historical change with some other eas-

ily measured inequality difference. An interesting exercise is to compare the
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magnitude of the reduc tion in inequality in the population as a whole during
a number of years with the change in inequality over the life cycle as observed
for the age groups in any one year. Alternatively, we might consider the secular
change in inequality alongside the apparent20 redistribution achieved in any one
year by a major government policy instrument such as the income tax. Neither
of these comparisons yields an absolute standard of economic significance, of
course, but each can certainly put a historical trend into a clear current pers
pective.
The second device is applicable to measures based on social-welfare func-

tions, and may be taken as an extension of the earlier shrinking-cake question.
We noted there that a 1% reduction in Aε is equivalent in social welfare terms
to a Aε/[1−Aε]% increase in income per head. So let us suppose that, for some
value of ε, at the beginning of the period Aε = 0.5 (so that Aε/[1 − Aε] = 1).
Then if economic growth during the period raised per capita income by 10%,
an accompanying fall of Aε to say 0.45 would be quite impressive, since the
gain to society through reduction in inequality would be as great as the benefit
to society of the increase in average living standards. However, the procedure
in general obviously depends on your acceptance of the social-welfare function
approach, and the particular result depends on the inequality aversion which
you are prepared to impute to society.

5.6 A SORT OF CONCLUSION

Finding and asking the right questions is an irksome task. But it is evidently
a vital one too, since our brief enquiry has revealed several pitfalls which affect
our understanding of the nature of inequality and the measurement of its extent
and change. It has been persuasively argued by some writers that inequality is
what economics should be all about. If this is so, then the problem of measure-
ment becomes crucial, and in my opinion handling numbers effectively is what
measuring in equality is all about.
Technical progress in computing hardware and statistical software has greatly

alleviated the toil of manipulation for layman and research worker alike. So the
really awkward work ahead of us is not the mechanical processing of figures.
It is rather that we have to deal with figures which, instead of being docile
abstractions, raise fresh challenges as we try to interpret them more carefully.
However the fact that the difficulties multiply the more closely we examine the
numbers should reassure us that our effort at inequality measurement is indeed
worthwhile.

“Problems worthy Of Attack
Prove their worth By hitting back.”

20The qualification “apparent” is included because, as we noted on page 99, the observed
distribution of income before tax is not equivalent to the theoretical distribution of income
“without the tax”.
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1st 2nd 3rd 4th 5th 6th 7th 8th 9th 1
No of h’holds 2464 2465 2469 2463 2471 2463 2465 2469 2465 2

Average per household, £ per y
Original Income £2,119 £3,753 £5,156 £9,365 £14,377 £18,757 £23,685 £29,707 £36,943 £65
Cash benefits £4,262 £5,351 £5,552 £4,794 £3,907 £2,979 £2,506 £1,551 £1,252 £
Gross income £6,381 £9,104 £10,708 £14,159 £18,284 £21,736 £26,191 £31,258 £38,195 £66

Dir Taxes -£803 -£1,029 -£1,269 -£2,144 -£3,185 -£4,183 -£5,414 -£6,855 -£8,760 -£16
Disp income £5,578 £8,075 £9,439 £12,016 £15,099 £17,554 £20,777 £24,403 £29,434 £49
Indirect taxes -£2,238 -£2,150 -£2,365 -£2,940 -£3,587 -£4,055 -£4,611 -£5,065 -£5,527 -£7

Post-tax income £3,340 £5,925 £7,074 £9,076 £11,511 £13,498 £16,166 £19,338 £23,908 £42
Benefits in kind £4,604 £3,771 £3,501 £3,294 £3,457 £3,219 £2,787 £2,468 £2,187 £2
Final income £7,945 £9,696 £10,575 £12,370 £14,969 £16,717 £18,953 £21,806 £26,095 £44

Table 5.6: Average income, taxes and benefits by decile groups of all households.
UK 1998-9

- Piet Hein.

5.7 QUESTIONS
1. The data in Table 5.6 show the distribution by decile groups according
to five different concepts of income corresponding to five successive no-
tional stages of government. intervention. Draw the Lorenz curves and
Generalised Lorenz curves. What effect on income inequality does each
tax or benefit component appear to have? Does the distribution of final
income welfare-dominate the distribution of original income according to
the principles in Theorem 3 on page 42 . [See file “ET TaxesAndBenefits”
on the Website for a copy of the data and a hint at the answers].

2. Consider an income distribution in which there are two families. Family 1
contains 1 person with an income of $10, 000; family 2 contains 2 persons
with a combined income of $15, 000. Assume that the formula for the
number of equivalent adults in a family of size s is given by sη where η
is an index of sensitivity to size. What situations do the cases η = 0 and
η = 1 represent?

(a) Compute the generalised entropy measure (θ = −1) for this economy
on the assumption that each family is given an equal weight and that
income is family income per equivalent adult. Do this for a range of
η-values from 0 to 1 and plot the results on a graph.

(b) Repeat the exercise for the cases θ = 0.5 and θ = 2. Do you get the
same relationship between measured inequality and η?

(c) Repeat the exercise for the case where each family is weighted accord-
ing to the number of individuals in it. Does the reweighting affect
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1980 1983 1986
y Obs Exp y Obs Exp y Obs Exp
0 12 3.5 0 5 0.3 0 3 1.1
80 33 30.3 100 21 10.9 100 16 16
100 172 184.8 150 81 65.8 150 73 65.3
150 234 273.8 200 418 385.2 200 359 355.4
200 198 214.1 300 448 463.6 300 529 561.9
250 146 133.3 400 293 305.1 400 608 598.4
300 190 145.2 500 212 247.8 500 519 503.2

800 15 16 600 657 672.8
1000 5 3.3 800 346 330.4

1000 237 248.3
1500 40 38.4
2000 13 8.8
5000

all ranges 985 985 1498 1498 3400 3400
y: lower limit of income interval (yuan pa)

Source: Statistical office, Jiangsu Province„ Rural household budget survey.

Table 5.7: Observed and expected frequencies of household income per head.
Jiangsu, China.

the results?[See the file “Equiv. and Weight” on the Website for the
answers. See also Coulter et al. (1992b) for further discussion.]

3 Suppose you have income data which has been grouped into three inter-
vals: ($0,$2000),($2000,$4000),($4000,$6000). There are 1000 individuals
in each interval and the mean of each interval is at the midpoint. Draw the
lower-bound and upper-bound Lorenz curves as described on page 112.

4 Compute the mean and variance for a split histogram distribution over an
interval [a, b]: i.e. a distribution for which the density is a constant f1 for
a ≤ y < ȳ and f2 for ȳ ≤ y < b. Given the US data in 5.2 (see file “IRS”
on the Website) find the numbers f1 and f2 for each interval.

5 For the same data set as in question 2 verify the lower bound and the
upper bound estimates of the Atkinson index A0.5 given in Table 5.3.

6 Apply a simple test to the data in Table 5.7 (also available in file “Jiangsu”
on the Website) to establish whether or not the lognormal model is appro-
priate in this case. What problems are raised by the first interval here?
(Kmietowicz and Ding 1993).



Appendix A

TECHNICAL APPENDIX

A.1 OVERVIEW
This appendix assembles some of the background material for results in the
main text as well as covering some important related points that are of a more
technical nature. The topics covered, section by section, are as follows:

• Standard properties of inequality measures both for general income dis-
tributions (continuous and discrete) and for specific distributions.

• The properties of some important standard functional forms of distribu-
tions, focusing mainly upon the lognormal and Pareto families.

• Interrelationships amongst important specific inequality measures
• Inequality decomposition by population subgroup.
• Inequality decomposition by income components.
• Negative incomes.
• Estimation problems for (ungrouped) microdata.
• Estimation problems for grouped data, where the problem of interpolation
within groups is treated in depth.

• Using the website to work through practical examples.

A.2 MEASURES AND THEIR PROPERTIES
This section reviews the main properties of standard inequality indices; it also
lists the conventions in terminology and notation used throughout this appendix.
Although all the definitions could be expressed concisely in terms of the distribu-
tion function F , for reasons of clarity I list first the terminology and definitions

135
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suitable specifically for discrete distributions with a finite population, and then
present the corresponding concepts for continuous distributions.

A.2.1 Discrete Distributions

The basic notation required is as follows:, The population size is n, and the
income of person i is yi, i = 1, ..., n The arithmetic mean and the geometric
mean are defined as

ȳ =
1

n

nX
i=1

yi.

y∗ = exp

Ã
1

n

nX
i=1

log yi

!
= [y1y2y3...yn]

1/n

From this we may define the share of person i in total income to be si = yi/ [nȳ].
Table A.1 lists the properties of many inequality measures mentioned in this

book, in the following format:

• A general definition of inequality measure given a discrete income distri-
bution

• The maximum possible value of each measure on the assumption that all
incomes are non-negative. Notice in particular that for ε ≥ 1 the maximum
value of Aε and Dε is 1, but not otherwise. Note that the minimum value
of each measure is zero with the exception of the Herfindahl index for hich
the minimum is 1

n .

• The transfer effect for each measure: the effect of the transfer of an in-
finitesimal income transfer from person i to person j where it is assumed
that yj > yi.

A.2.2 Continuous distributions

The basic notation required is as follows. If y is an individual’s income F (y)
denotes the proportion of the population with income less than or equal to y.
The operator

R
implies that integration is performed over the entire range of y;

i.e. over [0,∞) or, equivalently for F , over the range [0, 1] The arithmetic mean
and the geometric mean are defined as

ȳ =

Z
y dF.

y∗ = exp

µZ
log y dF.

¶
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Name Definition Maximum Transfer effect

Variance V = 1
n

nP
i=1
[yi − ȳ]2 ȳ2 [n− 1] 2

n [yj − yi]

Coefficient
of variation

c =
√
V
ȳ

√
n− 1 yj−yi

nȳ
√
V

Range R = ymax − ymin nȳ
1 if yi = ymin or yj = ymax,
2 if yi = ymin and yj = ymax,
0 otherwise

Rel.mean
deviation

M = 1
n

nP
i=1

¯̄̄
yi
ȳ − 1

¯̄̄
2− 2

n

2
nȳ if yi ≤ ȳ ≤ yj
0 otherwise

logarithmic
variance

v = 1
n

nP
i=1

h
log yi

ȳ

i2
∞ 2

nyj
log

yj
ȳ − 2

nyi
log yi

ȳ

variance of
logarithms

v1 =
1
n

nP
i=1

h
log yi

y∗

i2
∞ 2

nyj
log

yj
y∗ − 2

nyi
log yi

y∗

Gini 1
2n2ȳ

nP
i=1

nP
j=1

|yi − yj | n−1
n

[j]−[i]
n2ȳ

Atkinson Aε = 1−
·
1
n

nP
i=1

h
yi
ȳ

i1−ε¸ 1
1−ε

1− n
−ε
1−ε or 1∗

y−εi −y−εj
nȳ1−ε[1−Aε]−ε

Dalton Dε = 1−
1
n

Pn
i=1 y

1−ε
i − 1

ȳ1−ε − 1
1−n−ε
1−ȳε−1 or 1

∗ 1−ε
n

y−εi −y−εj
ȳ1−ε−1

Generalised
entropy

Eθ =
1

θ2−θ

·
1
n

nP
i=1

h
yi
ȳ

iθ
− 1
¸

nθ−1−1
θ2−θ or ∞∗∗ yθ−1i −y−εj

nȳθ

Herfindahl H = 1
n

£
c2 + 1

¤ ∞ 2
n2ȳ2 [yj − yi]

Theil T =
nP
i=1

si log (nsi) logn 1
nȳ log

yj
yi

Notes: * 1 if ε ≥ 0; ** ∞ if θ < 1

Table A.1: Inequality measures for discrete distributions
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From this we may define the proportion of total income received by persons who
have an income less than or equal to y as

Φ(y) =
1

ȳ

Z y

0

zdF (z).

The Lorenz curve is the graph of (F,Φ).
Table A.2 performs the rôle of Table A.1 for the case of continuous distribu-

tions as well as other information: to save space not all the inequality measures
have been listed in both tables. The maximum value for the inequality measures
in this case can be found by allowing n→∞ in column 3 of Table A.1. In order
to interpret Table A.2 you also need the standard normal distribution function

N(x) =
1√
2π

Z x

−∞
e−2udu,

provided in most spreadsheet software and tabulated in Lindley and Miller
(1966) and elsewhere; N−1(·) denotes the inverse function corresponding to
N(·). In summary Table A.2 gives:
• A definition of inequality measures for continuous distributions.
• The formula for the measure given that the underlying distribution is
lognormal;

• The formula given that the underlying distribution is Pareto (type I).

A.3 FUNCTIONAL FORMS OF DISTRIBU-
TION

We begin this section with a simple listing of the principal properties of the
lognormal and Pareto distributions in mathematical form. This is deliberately
brief since a full verbal description is given in Chapter 4, and the formulas of
inequality measures for these distributions are in Table A.2.

A.3.1 The lognormal distribution

The basic specification is:

F (y) = Λ
¡
y; µ, σ2

¢
=

Z y

0

1√
2πσ x

exp

µ
− 1

2σ2
[log x− µ]2

¶
dx

Φ(y) = Λ
¡
y; µ+ σ2, σ2

¢
ȳ = eµ+

1
2σ

2

y∗ = eµ

and the Lorenz curve is given by:

Φ = N
¡
N−1 (F )− σ

¢
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Name Definition Λ(y;µ, σ2) Π(y; y, α)

Variance V =
R
[yi − ȳ]2 dF e2µ+σ

2
h
eσ

2 − 1
i

αy2

[α−1]2[α−2]

Coefficient
of variation

c =
√
V
ȳ

√
eσ2 − 1

q
1

α[α−2]

Rel.mean
deviation

M =
R ¯̄̄

y
ȳ − 1

¯̄̄
dF 2

£
2N

¡
σ
2

¢− 1¤ 2 [α−1]
α−1

αα

logarithmic
variance

v =
R h
log y

ȳ

i2
dF σ2 + 1

4σ
4 log α−1

α + 1
α +

1
α2

variance of
logarithms

v1 =
R h
log y

y∗

i2
dF σ2 1

α2

Equal
shares

F (ȳ) N
¡
σ
2

¢
1− £α−1α ¤α

Minimal
majority

F
¡
Φ−1(0.5

¢
) N (σ) 1− 2 α

α−1

Gini G = 1− 2 R ΦdF 2N
³

σ√
2
− 1
´

1
2α−1

Atkinson Aε = 1−
·R h

y
ȳ

i1−ε
dF

¸ 1
1−ε

1− e−
1
2 εσ

2

1− £α−1α ¤ h
α

α+ε−1
i 1
1−ε

Generalised
entropy

Eθ =
1

θ2−θ

·R h
yi
ȳ

iθ
dF − 1

¸
e[θ

2−θ]σ
2

2 −1
θ2−θ

1
θ2−θ

h£
α−1
α

¤θ α
α−θ − 1

i
Theil 1

n

nP
i=1

xi
x̄ log

¡
xi
x̄

¢
Table A.2: Inequality measures for continuous distributions
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A.3.2 The Pareto distribution (type I)

The basic specification is:

F (y) = Π(y; y, α) = 1−
·
y

y

¸α
Φ(y) = Π(y; y, α− 1)

ȳ =
α

α− 1y
y∗ = e1/αy

Clearly the density function is

f(y) =
αyα

yα+1

and the Lorenz curve is given by:

Φ = 1− [1− F ]
α−1
α

The last equation may be used to give a straightforward method of interpola-
tion between points on a Lorenz curve. Given two observed points (F0,Φ0),
(F1,Φ1), then for an arbitrary intermediate value F (where F0 < F < F1), the
corresponding intermediate Φ-value is:

Φ(y) = exp

Ã
log 1−F (y)1−F0 log 1−Φ11−Φ0

log 1−F11−Φ0

!

However if this formula is used to interpolate between observed points when the
underlying distribution is not Pareto type I then the following difficulty may
arise. Suppose the class intervals used in grouping the data {a1, a2, a3, ..., ak, ak+1},
the proportions of the population in each group {f1, f2, f3, ..., fk}, and the aver-
age income of each group {µ1, µ2, µ3, ..., µk}, are all known. Then, as described
on page 112, a “maximum inequality” Lorenz curve may be drawn through the
observed points using this information. However the above Pareto interpolation
formula does not use the information on the as, and the resulting interpolated
Lorenz curve may cross the maximum inequality curve. Methods that use all the
information about each interval are discussed below in the section “Estimation
problems” on page 157.

Van der Wijk’s Law As mentioned in Chapter 4 the Pareto type I distri-
bution has an important connection with van der Wijk’s Law. First we shall
derive the average income z(y) of everyone above an income level y. This is

z(y) =

R∞
y

uf(u)duR∞
y

f(u)du
= ȳ

1− Φ(y)
1− F (y)
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From the above, for the Pareto distribution (Type I) we have

z(y) =
α

α− 1y
·
y

y

¸α−1 ·y
y

¸−α
=

α

α− 1y.

Hence the average income above the level y is proportional to y itself.
Now let us establish that this result is true only for the Pareto (type I)

distribution within the class of continuous distributions. Letting z(y) = γy
where γ is a constant and rearranging, we haveZ ∞

y

uf(u)du = γy

Z ∞
y

f(u)du

where f(·) is unknown. Differentiate this with respect to y:
−yf(y) = −γyf(y)γ + [1− F (y)]

Define α = γ/[γ − 1]; then, rearranging this equation, we have
yf(y) + αF (y) = α

Since f(y) = dF (y)/dy, this can be treated as a differential equation in y.
Solving for F , we have

yαF (y) = yα +B

where B is a constant. Since F
¡
y
¢
= 0 when we have B = −yα. So

F (y) = 1−
·
y

y

¸α
A.3.3 Other Functional Forms

As noted in Chapter 4 many functional forms have been used other than the
lognormal and the Pareto. Since there is not the space to discuss these in the
same detail, the remainder of this section simply deals with the main types; indi-
cating family relationships, and giving the moments about zero where possible.
(If you have the rth moment about zero, then many other inequality measures
are easily calculated; for example,

Aε = 1− [µ
0
r]
1/r

µ01

where µ0r is the rth moment about zero, r = 1− ε and µ01 = ȳ.)
We deal first with family relations of the Pareto distribution. The distri-

bution function of the general form, known as the type III Pareto distribution,
may be written as

F (y) = 1− e−ky [γ + δy]−α
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where k, γ ≥ 0, and α, δ > 0. By putting k = 0 in the above equation we obtain
the Pareto type II distribution. By putting γ = 0 and δ = 1/y in the type
II distribution we get the Pareto type I distribution, Π(y; y, α). Rasche et al.
(1980) suggested a functional form for the Lorenz curve as follows:

Φ = [1− [1− F ]a]
1
b

Clearly this expression also contains the Pareto type I distribution as a special
case.
The Rasche et al. (1980) form is somewhat intractable, and so in response

Gupta (1984) and Rao and Tam (1987) have suggested the following:

Φ = F abF−1, a ≥ 1, b > 1
(Gupta’s version has a ≡ 1). A comparative test of these and other forms is
also proved by Rao and Tam (1987)
Singh and Maddala (1976) suggested as a useful functional form the follow-

ing:

F (y) = 1− £γ + δyβ
¤−α

where α, β, γ, δ are parameters such that F (0) = 0, F (∞) = 1, and F 0(y) =
f(y) ≥ 0. From this we can derive the following special cases.

• If β = 1 we have the Pareto type II distribution.
• If γ = 1, δ = [1/α] kβ and α → ∞ then the Weibull distribution is
generated: F (y) = 1− exp ¡−[ky]β¢. The rth moment about zero is given
by µ0r = k−rΓ(1 + r/β), where Γ(·) is the Gamma function defined by
Γ(x) =

R
uxe−udu.

• A special case of the Weibull may be found when β = 1, namely the
exponential distribution F (y) = 1 − exp(−ky). Moments are given by
k−rΓ(1 + r) which for integral values of r is simply k−rr!.

• If α = γ = 1 and δ = y−β, then we find Fisk’s sech2-distribution:

F (y) = 1−
"
1 +

·
y

y

¸β#−1
,

with the rth moment about zero given by

µ0r = ryr
π

β sin
³
rπ
β

´ , −β < r < β.

Furthermore the upper tail of the distribution is asymptotic to a con-
ventional Pareto type-I distribution with parameters y and β (for low
values of y the distribution approximates to a reverse Pareto distribu-
tion - see Fisk 1961, p.175). The distribution gets its name from the
transformation

£
y/y

¤β
= ex, whence the transformed density function is

f(x) = ex/[1 + ex]2, a special case of the logistic function.
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The sech2-distribution can also be found as a special case of the Champer-
nowne distribution:

F (y) = 1− 1
θ
tan−1

Ã
sin θ

cos θ +
£
y/y

¤β
!

where θ is a parameter lying between −π and π (see Champernowne 1953, Fisk
1961). This likewise approximates the Pareto type I distribution in its upper
tail and has the following moments about zero:

µ0r = yr
π

θ

sin
³
rθ
β

´
sin
³
rπ
β

´ , −β < r < β.

The required special case is found by letting θ → 0.
The Yule distribution can be written either in general form with density

function

f(y) = ABν(y, ρ+ 1)

where Bν(y, ρ + 1) is the incomplete Beta function
R ν
0
uy−1[1 − u]ρdu, ρ > 0

and 0 < ν ≤ 1, or in its special form with ν = 1, where the frequency is then
proportional to the complete Beta function B(y, ρ+ 1).1 Its moments are

µ0r =
nX
i=1

ρn!

ρ− n
∆n,r , ρ > r

where

∆n,r =


[−1]r−n

nX
i=1

nX
j=1

nX
k=j

...[ijk...]| {z }
r−n terms

if n < r

1 if n = r

The Yule distribution in its special form approximates the distributionΠ(y; Γ(ρ)1/ρ, ρ)
in its upper tail. A further interesting property of this special form is that for
a discrete variable it satisfies van der Wijk’s law.
We now turn to a rich family of distributions of which two members have

been used to some extent in the study of income distribution — the Pearson
curves. The Pearson type I is the Beta distribution with density function:

f(y) =
yξ [1− y]

η

B(ξ, η)

1The Beta and Gamma functions are extensively tabulated. Their analytical properties
are discussed in many texts on statistics, for example Keeping (1962), Weatherburn (1949).
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where 0 < y < 1,2 and ξ, η > 0. The rth moment about zero can be written
B(ξ + r, η)/B(ξ, η) or as Γ(ξ + r)Γ(ξ + η)/[Γ(ξ)Γ(ξ + η + r)]. The Gamma
distribution is of the type III of the Pearson family:

f(y) =
λφ

Γ(φ)
yφ−1e−λy

where λ, φ > 0. The moments are given by

µ0r = λ−r
Γ(φ+ r)

Γ(φ)

Three interesting properties of the Gamma function are as follows. Firstly, by
putting φ = 1, we find that it has the exponential distribution as a special case.
Secondly, suppose that λ = 1, and that y has the Gamma distribution with
φ = φ1 while w has the Gamma distribution with φ = φ2. Then the sum w+ y
also has the Gamma distribution with φ = φ1+φ2: a property that is obviously
useful if one is considering, say, the decomposition of income into constituent
parts such as earned and unearned income. Thirdly, a Beta distribution with a
high parameter η looks very similar to a Gamma distribution with high values
of parameters λ, φ. This can be seen from the formula for the moments. For
high values of x and any constant k it is the case that Γ(x)/Γ(x + k) ' x−k.
Hence the moments of the B-distribution approximate to [ξ+η]−rΓ(ξ+r)/Γ(ξ).
The relationships mentioned in the previous paragraphs are set out in Figure

A.1. Solid arrows indicate that one distribution is a special case of another.
Dotted lines indicate that for high values of the income variable or for certain
parameter values, one distribution closely approximates another.
Finally let us look at distributions related to the lognormal. The most

obvious is the three-parameter lognormal which is defined as follows. If y − τ
has the distribution Λ(µ, σ2) where τ is some parameter, then y has the three-
parameter lognormal distribution with parameters τ , µ, σ2. The moments about
zero are difficult to calculate analytically, although the moments about y = τ
are easy:

R
[y − τ ]rdF (y) = exp(rµ + 1

2r
2σ2). Certain inequality measures can

be written down without much difficulty — see Aitchison and Brown (1957),
p.15. Also note that the lognormal distribution is related indirectly to the Yule
distribution: a certain class of stochastic processes which is of interest in several
fields of economics has as its limiting distribution either the lognormal or the
Yule distribution, depending on the restrictions placed upon the process. On
this see Simon and Bonini (1958).

A.4 INTERRELATIONSHIPS BETWEEN IN-
EQUALITY MEASURES

In this section we briefly review the properties of particular inequality mea-
sures which appear to be fairly similar but which have a number of important

2This restriction means that y must be normalised by dividing it by its assumed maximum
value.
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Champernowne

Yule
Singh and
Maddala

Pareto
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Pareto
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Weibull Gamma Beta

exponential

sech
2

Figure A.1: Relationships Between Functional Forms

distinguishing features.

A.4.1 Atkinson (Aε) and Dalton (Dε) Measures

As we have seen the Atkinson index may be written

Aε = 1−
"

nX
i=1

·
yi
ȳ

¸1−ε# 1
1−ε

Rearranging this and differentiating with respect to ε, we may obtain:

log (1−Aε) +
1− ε

1−Aε

∂Aε

∂ε
=

Pn
i=1

h
yi
ȳ

i1−ε
log
³
yi
ȳ

´
Pn

i=1

h
yi
ȳ

i1−ε
Define xi = [yi/ȳ]

1−ε and x̄ = 1
n

Pn
i=1 xi. Noting that yi ≥ 0 implies xi ≥ 0

and that x̄ = [1−Aε]
1−ε we may derive the following result:

∂Aε

∂ε
=

1−Aε

x̄ [1− ε]2

"
1

n

nX
i=1

xi log (xi)− x̄ log x̄

#

The first term on the right hand side cannot be negative, since x̄ ≥ 0 and
0 ≤ Aε ≤ 1. Now x log x is a convex function so we see that the second term
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on the right hand side is non-negative. Thus ∂Aε/∂ε ≥ 0: the index Aε never
decreases with ε for any income distribution.
However, the result that inequality increases with inequality aversion for any

given distribution does not apply to the related Dalton family of indices. Let
us consider Dε for the cardinalisation of the social utility function U used in
Chapter 3 and for the class of distributions for which ȳ 6= 1 (if ȳ = 1 we would
have to use a different cardinalisation for the function U — a problem that does
not arise with the Atkinson index). We find that if ε 6= 1:

Dε = 1− ȳ1−ε [1−Aε]
1−ε − 1

ȳ1−ε − 1
and in the limiting case ε = 1:

Dε = 1− log (ȳ [1−A1])

log (ȳ)

As ε rises, ȳ1−ε falls, but Aε rises, so the above equations are inconclusive about
the movement of Dε. However, consider a simple income distribution given by
y1 = 1, y2 = Y where Y is a constant different from 1. A simple experiment
with the above formulas will reveal that Dε rises with ε if Y > 1 (and hence
ȳ > 1) and falls with ε otherwise.

A.4.2 The Logarithmic Variance (v) and the Variance of
Logarithms (v1)

First note from Table A.1 that v = v1+[log(y
∗/ȳ)]2. Consider the general form

of inequality measure

1

n

nX
i=1

h
log
³yi
a

´i2
where a is some arbitrary positive number. The change in inequality resulting
from a transfer of a small amount of income from person j to person i is:

2

nyi
log
³yi
a

´
− 2

nyj
log
³yj
a

´
+
2

na

·
∂a

∂yi
− ∂a

∂yj

¸ nX
k=1

log
³yk
a

´
If a = ȳ (the case of the measure v) then ∂a/∂yi = ∂a/∂yj and so the last term
is zero. If a = y∗ (the case of the measure v1), then

P
log(yk) = n log a, and

once again the last term is zero. Hence we see that for v or v1 the sign of the
above expression depends entirely on the behaviour of the function [1/x] log x,
which occurs in the first two terms. Now the first derivative of this function
is [1 − log x]/x2, which is positive or negative as x ≶ e = 2.71828.... Suppose
yi > yj . Then as long as yi ≤ ae, we see that because (1/x) log x is an increasing
function under these conditions, the effect of the above transfer is to increase
inequality (as we would require under the weak principle of transfers). However,
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if yj ≥ ae, then exactly the reverse conclusions apply - the above transfer effect
is negative. Note that in this argument a may be taken to be or y∗ according
as the measure under consideration is v or v1.

A.5 DECOMPOSITIONOF INEQUALITYMEA-
SURES

A.5.1 By subgroups

As discussed in Chapter 3, some inequality measures lend themselves readily to
an analysis of inequality within and between groups in the population. Let there
be k such groups so arranged that every member of the population belongs to
one and only one group, and let the proportion of the population falling in group
j be fj ;3 by definition we have

Pk
j=1 fj = 1. Write mean income in group j as

ȳj , and the share of group j in total income as gj (which you get by adding up the
income shares of all the members of group j), so that gj = fj ȳj/ȳ,

Pk
j=1 fj ȳj = ȳ

and
Pk

j=1 gj = 1. For some specified inequality measure, let inequality in group
j (in other words the inequality measures calculated for group j as if it were
a population in its own right) be denoted Ij and let inequality for the total
population be Itotal.
An inequality index I is then considered to be decomposable if there can be

found some aggregation function Ξ possessing the following basic property: for
any arbitrary income distribution we may write

Itotal = Ξ (I1, I2, ..., Ik; ȳ1, ȳ2, ..., ȳk;n1, n2, ..., nk)

In other words, total inequality should be a specific function Ξ of inequality in
each subgroup, this function depending perhaps on group mean incomes and
the population in each group, but nothing else. The principal points to note
about decomposability are as follows:

• Some inequality measures simply will not let themselves be broken up
in this way: for them no such Ξ exists. As Chapter 3 discussed, the
relative mean deviation, the variance of logarithms and the logarithmic
variance cannot be decomposed in a way that depends only on group
means and population shares; the Gini coefficient can only be decomposed
if the constituent subgroups are “non-overlapping” in the sense that they
can be strictly ordered by income levels.

• On the other hand there is a large class of measures which will work, and
the allocation of inequality between and within groups is going to depend
on the inequality aversion, or the appropriate notion of “distance” which
characterises each measure. The prime example of this is the generalised
entropy class Eθ introduced on page 59 for which the scale independence

3This is equivalent to the term “relative frequency” used in Chapter 5.
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property also holds. Another important class is that of the Kolm indices
which take the form

1

κ
log

Ã
1

n

nX
i=1

eκ[ȳ−yi]
!

where κ is a parameter that may be assigned any positive value. Each
member of this family has the property that if you add the same absolute
amount to every yi then inequality remains unaltered (by contrast to the
proportionate invariance of Eθ).

• The cardinal representation of inequality measures - not just the ordinal
properties — matters, when you break down the components of inequality.

Let us see how these points emerge in the discussion of the generalised en-
tropy family Eθ and the associated Atkinson indices. For the generalised entropy
class Eθ the inequality aggregation result can be expressed in particularly simple
terms. If we define4

Ibetween =
1

θ2 − θ

 kX
j=1

fj

·
ȳj
ȳ

¸θ
− 1


and

Iwithin =
kX

j=1

wjIj , where wj = gθj f
1−θ
j

then for any Generalised Entropy measure we have:

Itotal = Ibetween + Iwithin

From these three equations we may note that in the case of the Generalised
Entropy class

• total inequality is a simple additive function of between-group and within-
group inequality,

• the between-group component of inequality is found simply by assuming
that everyone within a group receives that group’s mean income: it is
independent of redistribution within any of the j groups.

• within-group inequality is a weighted average of inequality in each sub-
group, although the weights wj do not necessarily sum to one.

• the within-group component weights will only sum to one if θ = 0 or if
θ = 1 in which case of course we have Theil’s index T .

4Notice that this is the same as the expression given for the generalised entropy measure in
Table A.1 for the case where fi = 1/n: in other words you can imagine the whole population
of size n as being composed of n groups each of size 1.
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The Atkinson index Aε is ordinally equivalent to Eθ for ε = 1− θ > 0 (they
will always rank any set of Lorenz curves in the same order, as we noted in
Chapter 3); in fact we have

Aε = 1−
££
θ2 − θ

¤
Eθ + 1

¤1/θ
for θ 6= 0.5 However, because this relationship is nonlinear, we do not have
cardinal equivalence between the two indices; as a result we will get a different
relationship between total inequality and its components. We can find this
relationship by substituting the last formula into the decomposition formula for
the Generalised Entropy measure above. If we do this then — for the case where
I is the Atkinson index with parameter ε - we get the following:

Ibetween = 1−
 kX
j=1

fj

·
ȳj
ȳ

¸1−ε 1
1−ε

Itotal = 1−
"

nX
i=1

1

n

·
yi
ȳ

¸1−ε# 1
1−ε

[1− Itotal]
1−ε =

h
[1− Ibetween]

1−ε + [1− Iwithin]
1−ε − 1

i
and from these we can deduce

Iwithin = 1−
1− kX

j=1

fεj g
1−ε
j

h
[1− Ij ]

1−ε − 1
i 1

1−ε

To restate the point: the decomposition formula given here for the Atkinson
index is different from that given on page 148 for the generalised entropy index
because one index is a nonlinear transformation of the other. Let us illustrate
this further by taking a specific example using the two inequality measures, A2
and E−1, which are ordinally but not cardinally equivalent. In fact we have

A2 = 1− 1

2E−1 + 1

pplying this formula and using a self-explanatory adaptation of our earlier no-
tation the allocation of the components of inequality is as follows:

E−1[within] =
kX

j=1

f2j
gj

E−1[j]

E−1[between] =
1

2

 kX
j=1

f2j
gj
− 1


E−1[total] = E−1[between] +E−1[within]
5For θ = 0 the relationship becomes:A1 = 1− e−E0 .
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whreas

A2[total] =
A2[between] +A2[within] −A2[between]A2[within]

1−A2[between]A2[within]

Now let us consider the situation in China represented in Table A.3. Te top
part of Table A.3 gives the mean income, population and inequality for each of
the ten regions, and for urban and rural groups within each region. The bottom
part of the table gives the corresponding values for A2 and E−1 broken down
into within- and between-group components (by region) for urban and regional
incomes. Notice that

• the proportion of total inequality “explained” by the interregional inequal-
ity differs according to whether we use the Generalised Entropy measure
or its ordinally equivalent Atkinson measure.

• the between-group and within-group components sum exactly to total in-
equality in the case of the Generalised Entropy measure, but not in the
case of the Atkinson measure (these satisfy the more complicated decom-
position formula immediately above).

Finally, a word about V , the ordinary variance, and v1, the variance of
logarithms. The ordinary variance is ordinally equivalent to E2 and is therefore
decomposable in the way that we have just considered. In fact we have:

V[total] =
kX

j=1

fjV[j] + V[between]

where V[j] is the variance in group j. Now in many economic models where it
is convenient to use a logarithmic transformation of income one often finds a
“decomposition” that looks something like this:

v1[total] =
kX

j=1

fjv1[j] + v1[between]

However, this is not a true inequality decomposition. To see why, consider the
meaning of the between-group component in this case. We have

v1[between] =
kX

j=1

fj
£
log y∗j − log y∗

¤2
But, unlike the between-group component of the decomposition procedure we
outlined earlier, this expression is not independent of the distribution within
each group: for example if there were to be a mean-preserving income equal-
isation in group j both the within-group geometric mean (y∗j ) and the overall
geometric mean (y∗) will be affected. As mentioned above, you cannot properly
disentangle the within-group and between-group inequality components for the
variance of logarithms.



A.5. DECOMPOSITION OF INEQUALITY MEASURES 151

Urban Rural
Pop Mean A2 E−1 Pop Mean A2 E−1

Beijing 463 93 0.151 0.089 788 58 0.135 0.078
Shanxi 564 65 0.211 0.134 1394 29 0.197 0.123

Heilongjiang 506 79 0.160 0.095 1566 33 0.178 0.108
Gansu 690 73 0.153 0.090 1345 19 0.220 0.141
Jiangsu 403 89 0.118 0.067 1945 39 0.180 0.110
Anhui 305 70 0.129 0.074 2284 33 0.112 0.063
Henan 402 75 0.195 0.121 2680 26 0.226 0.146
Hubei 764 81 0.118 0.067 2045 34 0.171 0.103

Guangdong 546 82 0.159 0.095 1475 34 0.211 0.134
Sichuan 1126 84 0.205 0.129 2698 30 0.148 0.087

All 5769 18220

Inequality Breakdown:
total 0.175 0.106 0.222 0.142
within 0.168 0.101 0.190 0.118

(96.2%) (95.5%) (86.0%) (82.7%)
between 0.009 0.005 0.047 0.025

(5.4%) (4.5%) (21.2%) (17.3%)
Source: The Institute of Economics, the Chinese Academy of Social Sciences.
Incomes: Yuan/month

Table A.3: Decomposition of inequality in Chinese provinces, Rural and Urban
subpopulations
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A.5.2 By income components

By contrast to the problem of decomposition by population subgroups there are
relatively few inequality measures that will allow a convenient breakdown by
component of income. However, the coefficient of variation c and measures that
are ordinally equivalent to it (such as V and H) can be handled relatively easily.
Nothing is lost by simplifying to a pairwise decomposition: let income be made
up of two components, A and B so that for any person: yi = yiA+yiB. Further,
let c, cA, cB be, respectively, the value of the coefficient of variation for total
income, component A income and component B, let λ be the overall amount
of component A as a proportion of total income, and let ρ be the correlation
coefficient between component A and component B of income. Then:

c2 = λ2c2A + [1− λ]
2
c2B + 2λ [1− λ] cAcBρ

Note that this is well-defined even in the presence of negative income compo-
nents.

A.6 NEGATIVE INCOMES
For a great many applications in economics it is convenient and reasonable to
assume that incomes are non-negative. In fact most of the material in this book
has proceeded on this basis. However there are some important exceptions to
this: for example personal wealth (net worth) may be negative at various points
of the lifecycle, individuals’ incomes may contain substantial losses from self
employed or unincorporated business activity.
The possibility that even a few observations may be negative raises some

issues of principle for inequality measurement. Many of the standard inequality
measures are simply undefined for negative incomes; in fact there is a substantial
class of these measures that will not work even for zero incomes.
However, the standard “ranking” tools such as quantiles and shares are well

defined for all incomes — positive, zero or negative — although they may need to
be interpreted with some care. For example the Parade diagram probably look
much the same as that depicted in figure 1 of Chapter 2, but the axes will have
been shifted vertically.
To see how the shape of the Lorenz curve and the Generalised Lorenz curve

is affected by the presence of negative incomes recall that the slope of the Lorenz
curve is given by y/ȳ, and the slope of the Generalised Lorenz curve by y. So,
if there are some negative incomes, but the mean is still strictly positive, then
both curves will initially pass below the horizontal axis (they will be downward-
sloping for as long as incomes are negative), will be horizontal at the point where
zero income is encountered, and then will adopt a fairly conventional shape over
the rest of the diagram. If mean income is actually negative, then the Lorenz
curve will appear to be “flipped vertically” (the Generalised Lorenz curve is not
affected in this way).
In fact the use of the conventional Lorenz curve is somewhat problematic in

the presence of negative incomes. For this reason it is sometimes to convenient to
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use the absolute Lorenz curve (Moyes 1987), which may be described as follows.
The ordinary (or relative) Lorenz curve can be thought of as the Generalised

Lorenz curve of the distribution
³
y1
ȳ ,

y2
ȳ , ...,

yn
ȳ

´
nd the absolute Lorenz curve is

the generalised Lorenz curve of the distribution (y1 − ȳ, y2 − ȳ, ..., yn − ȳ)

The reason that many conventional inequality tools will not work in the pres-
ence of negative incomes can be seen from “evaluation function” h(·) introduced
on page 100. Recall that many inequality measures can be defined in terms of
the evaluation function. Consider for example the generalised entropy family
which will have an evaluation function of the form

h(y) = Ayθ

This function — and hence the associated inequality measures — will be well
defined for all negative incomes for the special case where θ is a positive integer
greater than 1. However this severely restricts the choice of θ, because measures
with even moderately large values of α prove to be extraordinarily sensitive to
incomes in the upper tail. This means, for example, that in estimating inequality
from a sample of microdata, one or two large incomes will drive the estimates
of inequality by themselves. The coefficient of variation (θ = 2) is the only
member of the generalised entropy class that is likely to be of practical use.
By contrast all the Kolm indices work with negative incomes; the h function

here is

h(y) = Ae−κy

(κ > 0) which is well-defined for all values of y. Finally measures that are based
on absolute differences - such as the Gini coefficient and relative mean deviation.
— will also be able to cope with negative incomes.

A.7 ESTIMATION PROBLEMS

A.7.1 Micro Data

As noted in Chapter 5, point estimates of inequality measures from a sample
can be obtained just by plugging in the observations to the basic formulas given
in Chapters 3 and 4. The only further qualification that ought to be made is
that in practice one often has to work with weighted data (the weights could
be sampling weights for example) in which case these weights will need to be
used both in the point estimates and in the standard errors - see the notes for
further discussion of this point.
Now consider the standard errors of inequality estimates. As we noted on

page 141 inequality measures can be expressed in terms of standard statistical
moments. Correspondingly in situations where we are working with a sample
{y1, y2, ...yn} of n observations from a target population we will be interested
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in the sample moment about zero:

m0
r =

1

n

nX
i=1

yri .

Standard results give the expected value (mean) and variance of the sample
statistic m0

r:

E (m0
r) = µ0r

var (m0
r) =

1

n

h
µ02r − [µ0r]2

i
and an unbiased estimate of the sample variance of m is

cvar (m0
r) =

1

n− 1
h
m0
2r − [m0

r]
2
i

If the mean of the distribution is known and you have unweighted data, then
this last formula gives you all you need to set up a confidence interval for the
generalised entropy measure Eθ. Writing r = θ and substituting we get (in this
special case):

Eθ =
1

θ2 − θ

·
m0
θ

ȳθ
− 1
¸

where ȳ is the known mean (µ01).
However, if the mean also has to be estimated from the sample (as m0

1), or if
we wish to use a nonlinear transformation of m0

θ, then the derivation of a con-
fidence interval for the inequality estimate is a bit more complicated. Applying
a standard result (Rao 1973) we may state that if ψ is a differentiable function
of m0

r and m0
1, then the expression n [ψ (m0

r,m
0
1)− ψ (µ0r, µ01)] is asymptotically

normally distributed thus:

N

µ
0,

∂2ψ

∂m02
r

var (m0
r) +

∂2ψ

∂m0
1∂m

0
r

covm0
r,m

0
1 +

∂2ψ

∂m02
1

var (m0
1)

¶
Finally let us consider the problem of estimating the density function from

a set of n sample observations. As explained on page 101 in Chapter 5, a simple
frequency count is unlikely to be useful. An alternative approach is to assume
that each sample observation gives some evidence of the underlying density
within a “window” around the observation. Then you can estimate F (y), the
density at some income value y, by specifying an appropriate Kernel function
K (which itself has the properties of a density function) and a window width
(or “bandwidth”) w and computing the function

f̂(y) =
1

w

nX
i=1

K

µ
y − yi
w

¶
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Figure A.2: Density Estimation with a Normal Kernel

— the individual terms in the summation on the right-hand side can be seen as
contributions of the observations yi to the density estimate f̂(y). The simple
histogram is an example of this device - see for example figure 5 of Chapter 5.
All the sample observations that happen to lie on or above aj and below aj+1
contribute to the height of the horizontal line-segment in the interval (aj , aj+1).
In the case where all the intervals are of uniform width so that w = aj+1 − aj ,
we would have

K

µ
y − yi
w

¶
=

1 if
aj ≤ y < aj+1 and
aj ≤ yi < aj+1

0 otherwise

However, this histogram rule is crude: each observation makes an “all or noth-
ing” contribution to the densty estimate. So it may be more useful to take a
kernel function that is less drastic. For example K is often taken to be the
normal density so that

K

µ
y − yi
w

¶
=

1√
2π

e−
1
2 [

y−yi
w ]

2

The effect of using the normal kernel is illustrated in Figure A.2 for the case
where there are just four income observations. The upper part of Figure A.2
illustrates the use of a fairly narrow bandwidth, and the lower part the case of
a fairly wide window: the kernel density for each of the observations y1...y4 is
illustrated by the lightly-drawn curves: the heavy curve depicts the resultant
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density estimate. There is a variety of methods for specifying the kernel function
K and for specifying the window width w (for example so as to make the width
of the window adjustable to the sparseness or otherwise of the data). These are
discussed in Silverman (1986) .

A.7.2 Grouped Data

Now let us suppose that you do not have micro-data to hand, but that it has
been presented in the form of income groups. There are three main issues to be
discussed.

• How much information do you have? Usually this turns on whether you
have three pieces of information about each interval (the interval bound-
aries ai, ai+1, the relative frequency within the interval fi, and the inter-
val mean µi) or two (the interval boundaries, and the frequency). We will
briefly consider both situations.

• What assumption do you want to make about the distribution within each
interval? You could be interested in deriving upper and lower bounds
on the estimates of the inequality measure, consistent with the available
information, or you could derive a particular interpolation formula for the
density function φi(y) in interval i.

• What do you want to assume about the distribution across interval bound-
aries? You could treat each interval as a separate entity, so that there is
no relationship between φi(y) and φi+1(y); or you could require that at
the boundary between the two intervals (ai+1 in this case) the frequency
distribution should be continuous, continuous and smooth, etc. This lat-
ter option is more complicated and does not usually have an enormous
advantage in terms of the properties of the resulting estimates. For this
reason I shall concentrate upon the simpler case of independent intervals.

Given the last remark, we can estimate each function φisolely from the
information in interval i. Having performed this operation for each interval,
then to compute an inequality measure we may for example write the equation
on page 101 as

J =
kX
i=1

Z ai+1

ai

h(y)φi(y)dy

Interpolation on the Lorenz curve may be done as follows. Between the obser-
vations i and i+ 1 the interpolated values of F and Φ are

F (y) = Fi +

Z y

ai

φi(x)dx

Φ(y) = Φi +

Z y

ai

xφi(x)dx
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So, to find the share of the bottom 20%, let us say, you set F (y) = 0.20 on the
left-hand side of the first equation, substitute in the appropriate interpolation
formula and then find the value of y on the right-hand side that satisfies this
equation; you then substitute this value of y into the right- hand side of the
second equation and evaluate the integral.

Interval Means Unknown

In the interpolation formulas presented for this case there is in effect only one
parameter to be computed for each interval. The histogram density is found as
the following constant in interval i.

φi(y) =
fi

ai+1 − ai
, ai ≤ y < ai+1.

Using the formulas given on page 140 above, we can see that the Paretian density
in any closed interval is given by

φi(y) =
αaαi
yα+1

, ai ≤ y < ai+1.

α =
log (1− fi)

log ai
ai+1

We can use a similar formula to give an estimate of Pareto’s α for the top (open)
interval of a set of income data. Suppose that the distribution is assumed to be
Paretian over the top two intervals. Then we may write:

fk
fk−1

=
−a−αk

a−αk − a−αk−1

from which we obtain

log
³
1 + fk−1

fk

´
log ak

ak−1

as an estimate of α in interval k.

Interval Means Known

Let us begin with methods that will give the bounding values JL and JU cited
on page 107. Within each interval the principle of transfers is sufficient to
give the distribution that corresponds to minimum and maximum inequality:6

for a minimum all the observations must be concentrated at one point, and to
be consistent with the data this one point must be the interval mean µi; for a
maximum all the observations must be assumed to be at each end of the interval.

6Strictly speaking we should use the term “least upper bound” rather than “maximum”
since the observations in interval i are strictly less than (not less than or equal to) ai+1.
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Now let us consider interpolation methods: in this case they are more com-
plicated because we also have to take into account the extra piece of information
for each interval, namely µi, the within-interval mean income.
The split histogram density is found as the following pair of constants in

interval i

φi(y) =

(
fi

ai+1−ai
ai+1−µi
µi−ai , ai ≤ y < µi,

fi
ai+1−ai

µi−ai
ai+1−µi , µi ≤ y < ai+1.

This method is extremely robust, and has been used, unless otherwise stated,
to calculate the “compromise” inequality values in Chapter 5.
The log-linear interpolation is given by

φi(y) =
c

yα+1
, ai ≤ y < ai+1

where

c =
αfi

a−αi+1 − a−αi

and α is the root of the following equation:

α

α− 1
a1−αi+1 − a1−αi

a−αi+1 − a−αi
= µi

which may be solved by standard numerical methods. Notice the difference
between this and the Pareto interpolation method used in the case where the
interval means are unknown: here we compute two parameters for each interval,
α and c which fixes the height of the density function at ai, whereas in the other
case c was automatically set to a−αi . The last formula can be used to compute
the value of α in the upper tail. Letting i = k and ak+1 →∞ we have a−αk+1 → 0
if α < 0 and so we get:

α

α− 1ak = µk

from which we may deduce that for the upper tail α = 1/[1− ak/µk].

Warning: If the interval mean µi happens to be equal to, or
very close to, the midpoint of the interval 12 [ai + ai+1], then this
interpolation formula collapses to that of the histogram density (see
above) and α → ∞. It is advisable to test for this first rather
than letting a numerical algorithm alert you to the presence of an
effectively infinite root.

The straight line density is given by

φi(y) = b+ cy, ai ≤ y < ai+1
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where

b =
12µi − 6 [ai+1 − ai]

[ai+1 − ai]
3 fi

c =
fi

ai+1 − ai
− 1
2
[ai+1 + ai] b.

Warning: this formula has no intrinsic check that φi(y) does not
become negative for some y in the interval. If you use it, therefore,
you should always check that φi(ai) ≥ 0 and that φi(ai+1) ≥ 0.

A.8 USING THE WEBSITE
To get the best out of the examples and exercises in the book it is helpful
to run through some of them yourself. The data files — which can be used
on any personal computer that is compatible with IBM file format — makes
it straightforward to do that. The files are accessed from the Website at
http://sticerd.lse.ac.uk/research/frankweb/MeasuringInequality/index.html.
Ideally you should be able to read Excel 97 files, but, for those without this fa-
cility, the contents have also been saved the comma-separated-variable (csv)
versions.
You may find it helpful to be able to recreate the tables and figures presented

in this book using the Website: the required files are summarised in Table A.4.
Individual files and their provenance are cited in detail in Appendix B.
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Table Figure Figure
3.3 East-West 2.1 ET84-5 5.1 IR income
3.4 East-West 2.2 ET84-5 5.2 HBAI
5.2 IRS 2.3 ET84-5 5.3 HBAI
5.3 IRS ineq 2.4 ET84-5 5.5 HBAI
5.5 Czechoslovakia 2.5 ET84-5 5.6 HBAI
5.6 Czechoslovakia 2.9 Earnings Quantiles 5.7 HBAI
5.7 Jiangsu 2.10 81-2,84-5 compared 5.8 IRS
A.3 Decomp 2.11 81-2,84-5 compared 5.9 IRS

2.12 81-2,84-5 compared 5.10 IRS
2.13 81-2,84-5 compared 5.11 IRS ineq
3.1 Atkinson SWF 5.12 IRS
3.2 Atkinson SWF 5.14 IRS
3.9 LIS comparison 5.15 IRS ineq
3.10 LIS comparison 5.16 Czechoslovakia
4.5 ET84-5 5.17 Czechoslovakia
4.10 NES
4.11 IR wealth

Table A.4: Source files for tables and figures



Appendix B

NOTES ON SOURCES
AND LITERATURE

These notes describe the data sets which have used for particular examples in
each chapter; cite the sources which have been used for the discussion in the
text, and provide a guide for further reading. In addition some more recondite
supplementary points are mentioned. The arrangement follows the order of the
material in the five chapters.

B.1 CHAPTER 1

A useful general discussion of conventional terminology and approach is found
in Prest and Bauer (1973); reference may also be made to Chapter 1 of Atkinson
(1983) and Chapter 2 of Thurow (1975).
The question “inequality of what” is explicitly addressed in Sen (1980, 1992).

The issue of the measurability of the income concept is taken up in a very read-
able contribution by Boulding (1975), as are several other basic questions about
the meaning of the subject which were raised by the nine interpretations cited
in the text (Rein and Miller 1974). For an introduction to the formal analysis
of measurability and comparability, see Sen (1973, pp.43-46), and perhaps then
try going on to Sen (1974), which although harder is clearly expounded. There
are several studies which use an attribute other than income or wealth, and
which provide interesting material for comparison: Jencks (1973) puts income
inequality in the much wider context of social inequality; Addo (1976) considers
international inequality in such things as school enrolment, calorie consumption,
energy consumption and numbers of physicians; Alker (1965) discusses a quan-
tification of voting power; Russet (1964) relates inequality in land ownership
to political instability. The problem of the size of the cake depending on the
way it is cut has long been implicitly recognised (for example, in the optimal
taxation literature) but does not feature prominently in the works on inequality
measurement. For a general treatment read Tobin (1970), reprinted in Phelps

161



162 APPENDIX B. NOTES ON SOURCES AND LITERATURE

(1973) and then if you can manipulate the mathematics, go on to the other
papers in Phelps. On this see also the Okun (1975) (Chapter 4) illustration of
“leaky bucket” income transfers. The issue of rescaling nominal incomes so as to
make them comparable across families or households of different types — known
in the jargon as “equivalisation” — and its impact upon measured inequality is
discussed in Coulter et al. (1992b, 1992a) . Alternative approaches to measur-
ing inequality in the presence of household heterogeneity are discussed in Cowell
(1980) , Glewwe (1991) Jenkins and O’ Higgins (1989), Jorgenson and Slesnick
(1990).
On some of the classical principles of justice and equality, see Rees (1971),

Chapter 7, Wilson (1966). On the desirability of equality per se see Broome
(1988). The idea of basing a model of social justice upon that of economic
choice under risk is principally associated with the work of Harsanyi(1953, 1955)
concern about equality as a consumption externality see Hochman and Rodgers
(1969). A notable landmark in modern though is Rawls (1971) which, depending
on the manner of interpretation of the principles of justice there expounded, im-
plies most specific recommendations for comparing unequal allocations. Bowen
(1970) introduces the concept of “minimum practicable inequality”, which in-
corporates the idea of special personal merit in determining a just allocation.
The question of the relationship between inequality in the whole population

and inequality in subgroups of the population with reference to heterogeneity
due to age is tackled in Paglin (1975) and in Cowell (1975). The rather technical
paper of Champernowne (1974) explores the relationship between measures of
inequality as a whole and measures that are related specifically to low incomes,
middle incomes, or to high incomes. Stark’s (1972) approach to an equality
index is based on a head-count measure of poverty, and is discussed in Chapter
2; Batchelder(1971 page 30) discusses the ’poverty gap’ approach to the mea-
surement of poverty. The intuitive relationships between inequality and growth
(or contraction) of income are set out in a novel approach by Temkin (1986)
and are discussed further by Amiel and Cowell (1994b) . The link between a
measure that captures the depth of poverty and the Gini index of inequality (see
Chapter 2) was analysed in a seminal paper by Sen (1976a), which unfortunately
the general reader will find quite hard; the huge literature which ensued is sur-
veyed by Foster (1984), Hagenaars (1986), Ravallion (1994) and Seidl (1988).
The relationship between inequality and poverty measures is discussed in some
particularly useful papers by Thon (1981, 1983a).

B.2 CHAPTER 2

The main examples here are from the tables in Economic Trends, November
1987, which are reproduced on the Webpage in the file “ET84-85”: the income
intervals used are those that were specified in the original tables. If you load
this file you will also see exactly how to construct the histogram for yourself;
experience suggests that it is well worth running through this as an exercise.
The example in Figure 2.9 is taken from the 1998 New Earnings Survey data —
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see file “Earnings Quantiles” on the Webpage. The reference to the Plato as an
early precursor of inequality measurement is to be found in Saunders (1970) pp
214-215.
One often finds that technical apparatus or analytical results that have be-

come associated with some famous name were introduced years before by some-
one else in some dusty journals, but were never popularised. So it is with Pen’s
Parade, set out in Pen (1974), which had been anticipated by Schutz (1951), and
only rarely used since - Cf. Budd (1970). As we have seen, the Parade is simply
related to the cumulative frequency distribution if you turn the piece of paper
over once you have drawn the diagram: for more about this concept, and also
frequency distributions and histograms, consult any good introductory statis-
tics text such as Allen (1949), Connor and Morrell (1964) or Keeping (1962);
for an extensive empirical application of Pen’s parade see Jenkins and Cowell
(1994) . The log-representation of the frequency distribution is referred to by
Champernowne (1973, 1974) as the “people curve”.
The Lorenz curve originally appeared in Lorenz (1905). Its convex shape

(referred to on page 19) needs to be qualified in one very special case: where
the mean of the thing that you are charting is itself negative — see page 152 in
the Technical Appendix and Amiel et al. (1996). For a formal exposition of the
Lorenz curve and proof of the assertions made in the text see Levine and Singer
(1970) and Gastwirth (1971); see Fellman (1976) for a neat result on the effect
of transformations on the Lorenz curve. Lam (1986) discusses the behaviour of
the Lorenz curve in the presence of population growth.
The relationship between the Lorenz curve and Pen’s parade is also discussed

by Alker (1970). The Lorenz curve has further been used as the basis for
constructing a segregation index Duncan and Duncan (1955); Cortese et al.
(1976). For more on the Lorenz curve see also Blitz and Brittain (1964), Crew
(1982), Hainsworth (1964), Koo et al. (1981) and Riese (1987).
The famous concentration ratio — Gini (1912) - also has an obscure precursor.

Thirty six years before Gini’s work, Helmert (1876) discussed the ordinally
equivalent measure known as Gini’s mean difference — for further information
see David (1968, 1981). Some care has to be taken when applying the Gini
coefficient to indices to data where the number of individuals n is relatively
small (Allison 1978, Jasso 1979): the problem is essentially whether the term n2

or n[n−1] should appear in the denominator of the definition - see the Technical
Appendix page 137. A convenient alternative form of the standard definition is
given in Dorfman (1979):

G = 1− 1
ȳ

Z ∞
0

P (y)2dy where P (y) = 1− F (y).

The process of rediscovering old implements left lying around in the inequality-
analyst’s toolshed continues unabated, so that often several labels and descrip-
tions exist for essentially the same concept. Hence M , the relative mean devia-
tion, used by Schutz (1951), Dalton (1920) and Kuznets (1959), reappears as the
maximum equalisation percentage, which is exactly 2M (United Nations Eco-
nomic Commission for Europe 1957), and as the ‘standard average difference’
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(Francis 1972). Eltetö and Frigyes (1968) produce three measures which are
closely related to M , and Addo’s “systemic inequality measure” is essentially a
function of these related measures. See also Kondor (1971). Gini-like inequality
indices have been proposed by Basmann and Slottje (1987), Basu (1987), Berrebi
and Silber (1987), Chakravarty (1988) and Yitzhaki (1983), and generalisations
of the Gini are discussed by Bossert (1990), Donaldson and Weymark (1980),
Weymark (1981), and Yaari (1988); see also Lin (1990). The Gini coefficient
has also been used as the basis for constructing indices of relative deprivation
— see Bishop, Chakraborti, and Thistle (1991), Chakravarty and Chakraborty
(1984), Yitzhaki (1979).
The properties of the more common ad hoc inequality measures are discussed

at length in Atkinson (1970, pp.252- 257; 1973), pp.53-58), Champernowne(1974
page 805), Foster (1985), Jenkins (1991) and Sen (1973, pp.24-36). Berrebi and
Silber (1987) show that for all symmetric distributions G < 0.5: a necessary
condition forG > 0.5 is that the distribution be skew to the right. Creedy (1977)
discusses the properties of the variance of logarithms. The use of the skewness
statistic was proposed by Young (1917) , and this and other statistical moments
are considered further by Champernowne (1974); Butler and McDonald (1989)
discuss the use of incomplete moments in inequality measurement (the ordinates
of the Lorenz curve are simple examples of such incomplete moments — see the
expressions on page 101) Further details on the use of moments may be found in
texts such as Keeping. For more on the minimal majority coefficient (sometimes
known as the Dauer-Kelsay index of malapportionment) see Alker and Russet
(1964), Alker (1965) and Davis (1954, pp.138-143). Some of the criticisms of
Stark’s high/low measure are raised in Polanyi and Wood (1974). Another
such practical measure with a similar flavour is Wiles (1974) semi-decile ratio:
(Minimum income of top 5%)/(maximum income of bottom 5%). Like R, M ,
‘minimal majority’, ‘equal shares’, and ‘high/low’, this measure is insensitive
to certain transfers, notably in the middle income ranges (you can redistribute
income from a person at the sixth percentile to a person at the ninety-fourth
without changing the semi-decile ratio). In my opinion this is a serious weakness,
but Wiles thinks that the semi-decile ratio focuses on the essential feature of
income inequality to the exclusion of others.
Wiles and Markowski (1971) argue for a presentation of the facts about

inequality that captures the whole distribution, since conventional inequality
measures are a type of sophisticated average, and ’the average is a very uninfor-
mative concept’ (1971, p.351). In this respect1 their appeal is similar in spirit
to that of Sen (1973, Chapter 3) who suggests using the Lorenz curve to rank
income distributions in a “quasi- ordering” — in other words a ranking where
the arrangement of some of the items is ambiguous. The method of percentiles
is used extensively by Lydall (1959) and Polanyi and Wood (1974). The formal-
isation of this approach as a “comparative function” was suggested by Esberger
and Malmquist (1972).

1But only in this respect, since they reject the Lorenz curve as an ‘inept choice’, preferring
to use histograms instead.
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B.3 CHAPTER 3

The data set used for the example on page 64 is given in the file “LIS compari-
son” on the Website.
The traditional view of social-welfare functions is admirably and concisely

expounded in Graaff (1957). One of the principal difficulties with these func-
tions, as with the physical universe, is — where do they come from? On this tech-
nically difficult question, see Boadway and Bruce (1984, Chapter 5), Mayston
(1974) and Sen (1970, 1977). If you are sceptical about the practical usefulness
of SWFs you may wish to note some other areas of applied economics where
SWFs similar to those discussed in the text have been employed. They are in-
troduced to derive interpersonal weights in applications of cost-benefit analysis,
and in particular into project appraisal in developing countries (cf. Dasgupta
and Pearce(1972, Chapter 2), Little and Mirrlees (1974, Chapter 3). Applica-
tions of SWF analysis include taxation design (Atkinson and Stiglitz (1980),
Tuomala (1990), the evaluation of the effects of regional policy Brown (1972,
pp.81-84), the impact of tax legislation (Mera 1969), and measures of national
income and product (Sen 1976b).
For the relationship of SWFs to inequality measurement, either in general

form, or the specific type mentioned here, see Atkinson (1974, p.63; 1983, pp.56-
57), Blackorby and Donaldson (1978,1980), Dagum (1990), Dahlby (1987), and
Sen (1973, 1992). The formal relationships between inequality and social welfare
are discussed in Ebert (1987) and Dutta and Esteban (1992). The association
of Rawls (1972) concept of justice (where society gives priority to improving
the position of the least advantaged person) with a SWF exhibiting extreme
inequality aversion is discussed in Sen (1974, pp.395-398), Arrow (1973) and
Hammond (1975). Inequality measures of the type first suggested by (Dal-
ton 1920)Dalton (1920) are further discussed by Aigner and Heins (1967) and
Bentzel (1970), Kolm (1976a) suggests a measure based on an alternative to
assumption 5, namely constant absolute inequality aversion, so that as we in-
crease a person’s income y by one unit (pound, dollar, etc.) his welfare weight
U 0 drops by α% where α is the constant amount of absolute inequality aversion:
this approach leads to an inequality measure which does not satisfy the prin-
ciple of scale independence. He also suggests a measure generalising both this
and Atkinson’s measure. See also Bossert and Pfingsten (1990), Yoshida (1991).
The SWF method is interpreted by Meade (1976, Chapter 7 and appendix) in a
more blatantly utilitarian fashion; his measure of “proportionate distributional
waste” is based on an estimation of individual utility functions.
First-order dominance, principles of social welfare and Theorem 1 are dis-

cussed in Saposnik ( 1981 1983). The proofs of theorems 2 and 4 using slightly
more restrictive assumptions than necessary were established in Atkinson (1970)
who drew heavily on an analogy involving probability theory; versions of these
two theorems requiring weaker assumptions but fairly sophisticated mathemat-
ics are found in (Dasgupta et al. 1973), Kolm (1969) and Sen (1973, pp.49-58).
In fact a lot of this work was anticipated by Hardy, Littlewood, and Pólya
(1934, 1952); Marshall and Olkin (1979) develop this approach and cover in de-
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tail relationships involving Lorenz curves, generalised Lorenz curves and concave
functions (see also Arnold (1987)): readers who are happy with an undiluted
mathematical presentation may find this the most useful single reference on
this part of the subject. Shorrocks (1983) introduced the concept of Gener-
alised Lorenz curve and proved theorem 3. As a neat logical extension of the
idea Moyes (1989) showed that if you take income and transform it by some
function φ (for example by using a tax function, as in the exercises on page
TaxBenQ) then the generalised Lorenz ordering of distributions is preserved if
and only if φ is concave. Iritani and Kuga (1983) and Thistle (1989b, 1989a, and
the Generalised Lorenz curve and the distribution function. A further discus-
sion and overview of these topics is to be found in Lambert (1993). A novel way
of extending dominance results to cases where individuals differ in their needs
as well as their incomes is the concept known as sequential dominance Atkinson
and Bourguignon (1982, 1987). Further discussion of multidimensional aspects
inequality are to be found in Maasoumi (1986, 1989), Rietveld (1990).
Types of permissible “distance” function, and their relationship with in-

equality is discussed in Cowell and Kuga (1981); Love and Wolfson (1976) refer
to a similar concept as the ’strength-of-transfer effect’. The special relationship
of the Herfindahl index and the Theil index to the strong principle of transfers
was first examined in Kuga (1973). Krishnan (1981)( see also reply by Allisson
(1981) discusses the use of the Theil index as a measure of inequality interpreted
in terms of average distance.
Herfindahl (1950)’s measure (which is obviously closely related to c2, or

to Francis’ standard average square difference) was originally suggested as a
measure of concentration of individual firms — see Rosenbluth (1955). Several
other inequality measures can be used in this way, notably other members of
the Iβ family. The variable corresponding to income y may then be taken to
be a firm’s sales. However, one needs to be careful about this analogy since
inequality among persons and concentration among firms are rather different
concepts in several important ways: (i) the definition of a firm is often unclear,
particularly for small production units; (ii) in measuring concentration we may
not be very worried about the presence of tiny sales shares of many small firms,
whereas in measuring inequality we may be considerably perturbed by tiny
incomes received by a lot of people — see Hannah and Kay (1977).
A reworking of the information theory analogy leads us to a closely related

class of measures that satisfy the strong principle of transfers, but where the
average of the distance of actual incomes from inequality is found by using
population shares rather than income shares as weights, thus:

1

β

nX
i=1

1

n

·
h (si)− h

µ
1

n

¶¸
The special case β = 0 which becomes

Pn
i=1 log(ȳ/yi)/n is discussed in Theil

(1967, Chapter 4 and appendix). An ordinally equivalent variant of Theil’s index
is used in Marfels (1971); see also Gehrig (1988). Jasso (1980) suggests that an
appropriate measure of justice evaluation for an individual is log(actual share /
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just share ). From this it is easy to see that you will get a generalised entropy
measure with parameter θ = 0 (equivalently Atkinson index with ε = 1).
The social value judgements implied by the use of the various ad hoc inequal-

ity measures in Chapters 2 and 3 are analysed in Kondor (1975) who extends the
discussion in the works of Atkinson, Champernowne and Sen cited in the notes
to Chapter 2. The question of what happens to inequality measures when all
incomes are increased or when the population is replicated or merged with an-
other population is discussed in Frosini (1985), Eichhorn and Gehrig (1982) and
Kolm (1976a,1976b). Shorrocks and Foster (1987) examine the issue of transfer
sensitivity. The Atkinson and Generalised Entropy families are examples of the
application of the concept of the quasi-linear mean, which is discussed in Hardy,
Littlewood, and Pólya (1934, 1952) and Chew (1983)
The axiomatic approach to inequality measurement discussed on page 59

is not of course restricted to the generalised entropy family; with a suitable
choice of axiom the approach can be extended to pretty well any inequality
measure you like: for example see Thon’s (1982) axiomatisation of the Gini
coefficient, or Foster (1983) on the Theil index. The validity of standard axioms
when viewed in the light of people’s perceptions of inequality is examined in
Amiel and Cowell (1992, 1994a, 1999) and Cowell (1985a). Using a simulation
study Kuga (1979, 1980) and shows that distributional rankings of the Theil
index are often similar to those of the Gini coefficient. The problematic cases
highlighted in the examples on page 34 and 59 are based on Cowell (1988a).
Ebert (1988) discusses the principles on which a generalised type of the relative
meand deviation may be based.

B.4 CHAPTER 4

Most texts on introductory statistical theory give an introduction to the normal
distribution — for example Keeping (1962) or (Mood et al. 1974). For the less
mathematically inclined reader a more tender treatment is given in Reichman
(1961) or Statistics (1966). The standard reference on the lognormal and its
properties Aitchison and Brown (1957) also contains a succinct account of a
simple type of random process theory of income development. A summary
of several such theories can be found in Bronfenbrenner (1971) and in Brown
(1976). On some of the properties of the lognormal Lorenz curve, see also
Aitchison and Brown (1954).
Pareto’s original work can be consulted in Pareto (1896,1965) or in Pareto

(1972), which deals in passing with some of Pareto’s late views on the law
of income distribution. Tawney (1964) argues forcefully against the strict in-
terpretation of Pareto’s Law: “It implies a misunderstanding of the nature of
economic laws in general, and of Pareto’s laws in particular, at which no one, it
is probable, would have been more amused than Pareto himself, and which, in-
deed, he expressly repudiated in a subsequent work. It is to believe in economic
Fundamentalism, with the New Testament left out, and the Books of Leviticus
and Deuteronomy inflated to unconscionable proportions by the addition of new
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and appalling chapters. It is to dance naked, and roll on the ground, and cut
oneself with knives, in honour of the mysteries of Mumbo Jumbo”. However I do
not find his assertion of Pareto’s recantation convincing — see Pareto (1972); see
also Pigou(1952, pp.650 ff.). Unfortunately, oversimplified interpretations of the
Law persist — Adams (1976) suggests a “golden section” value of α = 2/[

√
5−1]

as a cure for inflation. Van der Wijk’s (1939) law is partially discussed in Pen
(1974 , Chapter 6). Several of the other results in the text are formally proved
in Chipman (1974). Nicholson (1969, pp.286-292) and Bowman (1945) give a
simple account of the use of the Pareto diagram.
The example of earnings displayed on page 85 can be reproduced from file

“NES” on the Website; the income example of 80 is taken from the Website
file “ET84-85” again, and the wealth example on page 88 is based on file “IR
wealth”. Evidence on the suitability of the Pareto and lognormal distributions as
approximations to actual distributions of earnings and of income can be found
in the Royal Commission on the Distribution of Income and Wealth (1975a,
Appendix C; 1976b, Appendix E). Bjerke (1970) dealing with the structure of
wages in Copenhagen in 1953 shows that the more homogenous the occupa-
tion, the more likely it would be that the distribution of earnings within it was
lognormal. Hill (1959) shows that merging normal distributions with different
variances leads to a ‘leptokurtosis’ (more of the population in the ’tails’ than
expected from a normal distribution) — typical feature of the distribution of
the logarithm of income. Other useful references on the lognormal distribu-
tion in practice are Fase (1970), Takahashi (1959), Thatcher (1968). Evidence
for lognormality is discussed in the case of India (Rajaraman 1975), Kenya
(Kmietowicz and P. 1975), Iraq (Kmietowicz 1984) and China Kmietowicz and
Ding (1993). Kmietowicz (1984) extends the idea of lognormality of the income
distribution to bivariate lognormality of the joint distribution of income and
household size.
Atkinson (1975) and Soltow (1975) produce evidence on the Pareto distri-

bution and the distribution of wealth in the UK and the USA of the 1860’s
respectively. For further evidence on the variability of Pareto’s α in the USA,
see Johnson (1937), a cautious supporter of Pareto. Some of the less orthodox
applications of the Pareto curve are in Zipf (1949). Harold T. Davis, who has
become famous for his theory of the French Revolution in terms of the value of
Pareto’s α under Louis XVI, produces further evidence on the Pareto Law in
terms of the distribution of wealth in the pre-Civil War southern states (wealth
measured in terms of number of slaves) and of the distribution of income in
England under William the Conqueror — see Davis (1954). For the latter ex-
ample (based on the Domesday Book, 1086) the fit is surprisingly good, even
though income is measured in “acres” - i.e. that area of land which produces 72
bushels of wheat per annum. The population covered includes Cotters, Serfs,
Villeins, Sokemen, Freemen, Tenants, Lords and Nobles, Abbots, Bishops, the
Bishop of Bayeux, the Count of Mortain, and of course King William himself.
However, Davis (1941) interpretation of these and other intrinsically inter-

esting historical excursions as evidence for a ’mathematical theory of history’
seems mildly bizarre: supposedly if α is too low or too high a revolution (from
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the left or the right, respectively) is induced. Although there is clearly a con-
nection between extreme economic inequality and social unrest, seeking the
mainspring of the development of civilisation in the slope of a line on a double-
log graph does not appear to be a rewarding or convincing exercise. There is a
similar danger in misinterpreting a dynamic model such as of Champernowne
(1953), in which a given pattern of social mobility always produces, eventually,
a unique Pareto distribution, independent of the income distribution originally
prevailing. Bernadelli (1944) postulates that a revolution having redistribution
as an aim will prove futile because of such a mathematical process. Finding the
logical and factual holes in this argument is left as an exercise for you.
Finally, a brief consideration of other functional forms that have been claimed

to fit observed distributions more or less satisfactorily (see the technical ap-
pendix page 141). Some of these are generalisations of the lognormal or Pareto
forms, such as the three-parameter lognormal — Metcalf (1969)) — or the gen-
eralised Pareto-Levy law, which attempts to take account of the lower tail —
see Mandelbrot (1960), Arnold (1983). Indeed, note that the formula we have
described as the Pareto distribution was only one of many functions suggested
by Pareto himself; it may thus be more accurately described as a ’Pareto type
I’ distribution — see Quandt (1966), Hayakawa (1951). Champernowne (1952)
provides a functional form which is close to the Pareto in the upper tail and
which fits income distributions quite well; some technical details on this are
discussed in Harrison (1974), with empirical evidence in Thatcher (1968): see
also Harrison (1979, 1981). Other suggestions are the Beta-distribution — Slot-
tje (1984), Thurow (1970), the Gamma-distribution Salem and Mount (1974)
Mcdonald and Jensen (1979), the sech2-distribution, which is a special case of
Champernowne (1952) distribution Fisk (1961), and the Yule distribution (Si-
mon 1955,1957; Simon and Bonini 1958); see also Campano (1987). Evans et al.
(1993) provide a very useful summary of the mathematical properties of many
of the above. The Singh and Maddala (1976) distribution is discussed further
in Cramer (1978), Cronin (1979), McDonald and Ransom (1979); Cf also the
closely related model by Dagum (1977). A generalised form of the Gamma dis-
tribution has been used by Esteban (1986), Kloek and Van Dijk (1978) and Taille
(1981). An overview of several of these forms and their interrelationships is given
in McDonald (1984) as part of his discussion of the generalised beta distribution;
on this distribution see alsoMajumder and Chakravarty (1990). Alternative ap-
proaches to parameterising the Lorenz curve are discussed in Basmann, Hayes,
Johnson, and Slottje (1990, 1991), Kakwani and Podder (1973).

B.5 CHAPTER 5

The UK data used for Figure 5.1 are from Inland Revenue Statistics (see file “IR
income” on the Website),and the US data in Table 5.2 from Internal Revenue
Service, Statistics of Income: Individual Tax Returns (see file “IRS”). The UK
data used for Figures 5.2-5.7 are taken from the fairly recent Households Below
Average Income (HBAI); summary charts and results are published in Depart-



170 APPENDIX B. NOTES ON SOURCES AND LITERATURE

ment of Social Security (1998) Appendix 9 on FRS and FES; extracts from the
micro-data of the HBAI are provided on the Website in annualised form in the
Website file “HBAI”.
If you want a fuller introduction to the problem of specifying an income

or wealth variable, see Atkinson Atkinson (1983). The quality of the data, of
course, depends crucially on the type of tax administration and official sta-
tistical service for the country in question. On the one hand extremely com-
prehensive and detailed information about income and wealth (including cross-
classifications of these two) is provided, for example, by the Swedish Central
Statistical Bureau, on the basis of tax returns. On the other, one must overcome
almost insuperable difficulties where the data presentation is messy, incomplete
or designedly misleading. An excellent example of the effort required here is
provided by the geometric detective work of Wiles and Markowski (1971) and
Wiles (1974) in handling Soviet earnings distribution data. Fortunately for the
research worker, some government statistical services, such as the UK’s Cen-
tral Statistical Office, modify the raw tax data so as to improve the concept
of income and to represent low incomes more satisfactorily. Stark (1972) gives
a detailed account of the significance of refinements in the concepts of income
using the UK data; for an exhaustive description of these data and their com-
pilation see Stark in Atkinson et al. (1978) and for a quick summary, Royal
Commission on the Distribution of Income and Wealth (1975a, Appendices F
and H). For detail on income data in the USA, and the quality of sample sur-
veys in particular see Budd and Radner (1975) and the references therein, and
(Ferber et al. ) . Wealth data in the UK are considered in detail in Atkinson
and Harrison (1978). Since publication of the first edition of this book large
comprehensive datasets of individual incomes have become much more readily
available; it is impossible to do justice to them. Two particular cases from the
USA that deserve attention from the student of inequality are the early exam-
ple based on data from the Internal Revenue Service and Survey of Economic
Opportunity discussed in Okner (1972, 1975), and the Panel Study of Income
Dynamics described in Hill (1992).
Several writers have tried to combine theoretical sophistication with em-

pirical ingenuity to extend income beyond the conventional definition. No-
table among these are the income-cum-wealth analysis of Weisbrod and Hansen
(1968), and the discussion by Morgan et al. (1962) of the inclusion of the value
of leisure time as an income component. In this latter reference and in Morgan
(1962) the effect of family grouping on measured inequality is considered; Prest
and Stark (1967) do this for the UK. For a fuller discussion of making allowance
for income sharing within families and the resulting problem of constructing
“adult equivalence” scales, consult Abel-Smith and Bagley (1970); the standard
approach to equivalence scales in the UK is that of McClements (1977). The
relationship between equivalence scales and measured inequality is examined in
Coulter et al. (1992b): for a survey see Coulter et al. (1992a). The fact that
averaging incomes over longer periods reduces the resulting inequality statistics
emerges convincingly from the work of Hanna et al. (1948): see also Benus and
Morgan (1975). The key reference on the theoretical and empirical importance
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of price changes on measured inequality is Muellbauer (1974). A further com-
plication which needs to be noted from Metcalf (1969) is that the way in which
price changes affect low-income households may depend on household composi-
tion; whether there is a male bread-winner present is particularly important.
International comparisons of inequality within countries are found in Pauk-

ert (1973) and Jain (1975), though neither discusses fully the problems of in-
ternational comparison of data; an early treatment of this is found in Kuznets
(1963, 1966). The topic is treated exhaustively in Kravis et al. (1978a, 1978b)
and Summers and Heston (1988, 1991). The issue of international comparabil-
ity of income distribution data is one of the main reasons for the existence of
the Luxembourg Income Study: see Smeeding et al. (1990)for an introduction
and a selection of international comparative studies; Lorenz comparisons de-
rived from this data source are in the website file “LIS comparison”. Atkinson
and Micklewright (1992) compare the income distributions in Eastern European
economies in the process of transition. Beckerman and Bacon (1970) provide a
novel approach to the measurement of world (i.e. inter-country) inequality by
constructing their own index of “income per head” for each country from the
consumption of certain key commodities. For a systematic analysis of this issue
using decomposition techniques see also Berry et al.(1983, 1981), Theil (1979b,
1989).
A comprehensive overview of many of the statistical issues is to be found in

Nygård and Sandström (1981, 1985). If you are working with data presented
in the conventional grouped form, then the key reference on the computation
of the bounds JL, JU is Gastwirth (1975). Now in addition to the bounds
on inequality measures that we considered in the text Gastwirth (1975) shows
that if one may assume “decreasing density” over a particular income interval
(i.e. the frequency curve is sloping downwards to the right in the given income
bracket) then one can calculate bounds J 0L,J

0
U that are much sharper — i.e.

the bounds J 0L,J
0
U lie within the range of inequality values (JL,JU ) which we

computed: the use of these refined bounds leaves the qualitative conclusions
unchanged, though the proportional gap is reduced a little. The problem of
finding such bounds is considered further in Cowell (1991). The special case
of the Gini coefficient is treated in Gastwirth (1972), McDonald and Ransom
(1981), Mehran (1975) shows that you can work out bounds on G simply from
a set of sample observations on the Lorenz curve without having to know either
mean income or the interval boundaries a1, a2, ..., ak+1 and Hagerbaumer (1977)
suggests the upper bound. of the Gini index as an inequality measure in its own
right. In the two Gastwirth references there are also some refined procedures for
taking into account the open-ended interval forming the top income bracket —
an awkward problem if the total amount of income in this interval is unknown.
As an alternative to the methods discussed in the Technical Appendix (using
the Pareto interpolation, or fitting Paretian density functions), the procedure
for interpolating on Lorenz curves introduced by Gastwirth and Glauberman
(1976) works quite well.
Cowell and Mehta (1982) investigate a variety of interpolation methods for

grouped data and also investigate the robustness of inequality estimates under
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alternative grouping schemes. Aghevli and Mehran (1981) address the problem
of optimal choice of the income interval boundaries used in grouping by consid-
ering the set of values {a1, a2, ..., } which will minimise the Gini index; Davies
and Shorrocks (1989) refine the technique for larger data sets.
For general information on the concept of the standard error see Kendall and

Stuart (1977) or (fairly easy) Reichman (1961); formulas for standard errors of
inequality measures for can be found in the following references: Weatherburn
(1949, p.144)[coefficient of variation], Kendall and Stuart (1977), David (1968,
1981), Nair (1936) [Gini’s mean difference], Gastwirth (1974a) [relative mean
deviation], Aitchison and Brown (1957 p.39) [variance of logarithms]. For more
detailed analysis of the Gini coefficient see Gastwirth et al. (1986), Glasser
(1962), Lomnicki (1952), Nygård and Sandström (1989), and Sandström et al.
(1985, 1988). Allison (1978) discusses issues of estimation and testing based on
microdata using the Theil index, coefficient of variation and Theil index. The
statistical properties of the Generalised entropy and related indices are discussed
by Cowell (1989) and Thistle (1990). A thorough treatment of statistical testing
of Lorenz curves is to be found in Beach and Davidson (1983), Beach and
Kaliski (1986) and Beach and Richmond (1985); for the generalised Lorenz
curve estimation refer to Bishop, Chakraborti, and Thistle (1989), and Bishop,
Formby, and Thistle (1989).
If you want to estimate lognormal curves from grouped or ungrouped data,

you should refer to Aitchison and Brown (1957 pp.38-43, 51-54) first. Baxter
(1980), Likes (1969), Malik (1970) and Quandt (1966) deal with the estima-
tion of Pareto’s α for ungrouped data. Now the ordinary least squares method,
discussed by Quandt, despite its simplicity has some undesirable statistical prop-
erties, as explained in Aigner and Goldberger (1970). In the latter paper you
will find a discussion of the difficult problem of providing maximum likelihood
estimates for α from grouped data. The fact that in estimating a Pareto curve
a fit is made to cumulative series which may provide a misleadingly good fit
was noted in Johnson (1937), while Champernowne (1956) provided the warn-
ing about uncritical use of the correlation coefficient as a criterion of suitability
of fit. The suggestion of using inequality measures as an alternative basis for
testing goodness-of-fit was first put forward by Gastwirth and Smith (1972),
where they test the hypothesis of lognormality for United States IRS data. To
test for lognormality one may examine whether the skewness and the kurtosis
(“peakedness”) of the observed distribution of the logarithms of incomes are
significantly different from those of a normal distribution; for details consult
Kendall and Stuart (1977).

B.6 TECHNICAL APPENDIX

Functional forms for distributions are discussed in Evans et al. (1993). The
formulas in the appendix for the decomposition of inequality measures are stan-
dard — see Bourguignon (1979), Cowell (1980) , Das and Parikh (1981, 1982) and
Shorrocks (1980). For applications of the decomposition technique see Anand
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(1983), Borooah et al. (1991), Ching (1991), Cowell (1984, 1985b), Frosini
(1989), Glewwe (1986), Mookherjee and Shorrocks (1982). For a characterisa-
tion of some general results in decomposition see Shorrocks (1984, 1988). De-
composition by income components is discussed by Satchell (1978), Shorrocks
(1982) and Theil (1979a). The relationship between decomposition of inequal-
ity and the measurement of poverty is examined in Cowell (1988b). An obvious
omission from the decomposition formulae is the Gini coefficient, the decom-
position of which presents serious problems of interpretation. However Pyatt
(1976) tackles this by “decomposing” the Gini coefficient into a component that
represents within-group inequality, one that gives between- group inequality,
and one that depends on the extent to which income distributions in different
groups overlap one another. The properties of the Gini when “decomposed”
in this way are further discussed by Lambert and Aronson (1993) and Lerman
and Yitzhaki (1984, 1989), Yitzhaki and Lerman (1991) . Braulke (1983) exam-
ines the Gini decomposition on the assumption that within-group distributions
are Paretian. Silber (1989) discusses the decomposition of the Gini index by
subgroups of the population (for the case of non-overlapping partitions) and by
income components. The empirical example from China is based on the work
of Howes and Lanjouw (1991) and Hussain et al. (1991)
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