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Abstract

Perpetual licenses incent owners incentives to invest in the common value of public
resources, but impede efficient reallocation of resources to higher-valued entrants. Short-term
licenses improve allocative efficiency but discourage investment. We propose a depreciating
license that improves on this tradeoff. Licensees periodically announce valuations at which
they commit to sell their licenses, and pay a percent of these valuations as license fees.
Depreciating licenses time-stationary investment incentives while encouraging truthful value
revelation that improves allocative efficiency. The only tuning parameter, the depreciation
rate, can be chosen appropriately by targeting the observed equilibrium frequency of license
turnover.
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1 Introduction

The design of licenses for public resources, such as radio spectrum and fisheries, often trades off
allocative and investment efficiency. In this paper we propose a license design which navigates
this tradeoff more efficiently than existing alternatives: depreciating licenses.

The role of property rights in promoting the efficient use of scarce resources is perhaps the
oldest idea in mainstream economic thought. An intuition dating back to the Greek prehistory
of the field is that property rights solve the tragedy of the commons, providing incentives for
maintaining the common use value of assets.1 The role of property rights in providing robust
investment incentives is also the subject of a sizable modern literature (Grossman and Hart,
1986; Hart and Moore, 1990).

On the other hand, economists since at least George (1879), Jevons (1879) and Walras
(1896) have argued that private ownership may inhibit the efficient allocation of assets.2 While
some interpreted Coase (1960) as arguing that initial property rights allocations are irrelevant,
contemporary economic theory has shown that the assumptions under which transaction costs
are absent are narrow. Myerson and Satterthwaite (1981) show that fully efficient trade of a
privately-owned asset between a buyer and a seller is impossible if both agents have private
information about their values. This contrasts with Vickrey (1961)’s demonstration that an
appropriate auction allows publicly-owned assets to be efficiently allocated. In this sense, private
ownership is a fundamental barrier to efficient trade.

For many publicly owned natural resources, both allocative and investment efficiency are
important concerns. On the allocative side, different parties may have different values and
costs for using the resource; long-term or perpetual licenses inhibit the efficient reallocation
of resources to high-value users. On the investment side, costly development or maintenance
activities are often required to sustain the common value of the resource for all parties; short-term
licenses decrease the incentives of resource users to make such investments. Effective license
systems should provide robust and long-term incentives for investment while also promoting
efficient license reallocation.

Inspired by a taxation scheme proposed by Harberger (1965) and its benefits for value
revelation highlighted by Tideman (1969) and Plassmann and Tideman (2008), we propose a new
system for assigning resource use rights, which we call depreciating licenses. These licenses have
indefinite length, but decay at some annual rate τ. Each year, every licensee must announce a

1 “What is common to the greatest number gets the least amount of care. Men pay most attention to what is
their own; they care less for what is common; or at any rate they care for it only to the extent to which each is
individually concerned.” Aristotle, The Politics, Book XI, Chapter 3

2Walras (1896) writes “Declaring individual landownership to be in the interests of agriculture means turning our
backs to the...effects of free competition by preventing the land from being used as is most advantageous to society.
If large properties are favoured, we will see parts of the territory becoming parks or hunting-grounds...if small
properties are favoured, we will see them delivered up to the most outdated farming methods as a consequence of
ignorance and traditional practice. Hence, both economic advantageousness and justice demand that the price of
the service of land goes to the state...”’ See Posner and Weyl (Forthcoming) for a detailed history of these ideas.
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price at which she repurchases a share τ of her license from the government. The repurchase
payment can also be thought of as a self-assessed license fee. Licensees’ price announcements
are kept in a publicly available register, and any interested buyer can purchase any license from
its owner at her most recent value announcement.

In contrast to previous literature which focused only on the static allocative, revenue or
private-valued investment properties of such an mechanism (Plassmann and Tideman, 2008), we
show that depreciating licenses create high and time-stationary incentives for common-valued
investment, improving significantly upon term-limit licenses. They also promote aftermarket
trade and improve allocative efficiency, since the license fee incents licensees to announce prices
close to their true values for the license.

In Section 2, we elaborate on the argument of Plassmann and Tideman to show that the
price-setting behavior of licensees is governed by a simple economic intuition – licensees set
prices higher or lower than their true values depending on whether the annual probability of
license sale is higher or lower than the depreciation rate. Thus, the equilibrium license turnover
rate is an observable approximate sufficient statistic for setting optimal license depreciation rates,
though we also show unlike previous work that this allocative optimality must be balanced
against incentives for common-valued investment which smoothly decay with τ.

In Section 3, we construct a simple dynamic model in which a depreciating license is
repeatedly traded between many agents, who make common-valued investment and price
announcement decisions in each period. In Section 4, we calibrate the model to loosely match
moments of existing markets for durable assets, and find that depreciation rates set at roughly
half the rate of asset turnover under perpetual ownership licenses are near optimal for a range
of specifications and parameter values. This increases the net utility generated by the asset in
the stationary trading equilibrium of the model by roughly a fifth of a standard deviation in
willingness-to-pay of different potential asset buyers, which is approximately 4% of the price of
perpetual licenses in our preferred specification.

In Section 5, we analyze a number of extensions suggesting that depreciating licenses may
be robust to many other factors, such as different structures of investment technology, adverse
selection and credit constraints. In Section 6 we discuss our proposal’s relationship to literatures
on mechanism design, taxation and intellectual property. We present longer and less instructive
calculations, proofs, and calibration details in an appendix following the main text.

2 Two-stage model

Relative to perpetual licenses, depreciating licenses improve allocative efficiency but decrease
investment incentives. This tradeoff is governed by the choice of depreciation rate. We illustrate
these intuitions in a simple two-stage model in which a depreciating license owner makes some
costly common-valued investment in an asset, and then announces her valuation for the license,
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paying the self-assessed license fee and potentially selling the license to an arriving buyer.

2.1 Setup

There are two agents, S and B. There is a single asset, and S initially owns a depreciating license
for the asset. Values of S and B for the asset are, respectively,

vS = η+ γS,

vB = η+ γB.

The term γS represents S’s idiosyncratic value component for the asset; it is fixed and known to
S at the beginning of the game. γB ∼ F (·) is a random variable representing heterogeneity in B’s
value, which is not observed by S. η is a common-value component; S chooses η > 0, incurring
a convex cost c (η) to herself. Both agents are risk neutral.3

For a given η, let 1S, 1B be indicators, which respectively represent whether S and B hold the
license at the end of the game, and let y be any net transfer B pays to S. Final payoffs for S and
B respectively are

US = (η+ γS) 1S − c (η) + y,

UB = (η+ γB) 1B − y.

Prior to the beginning of the game, the government decides on a depreciation rate τ. Then, S
and B play a two-period game. In period 1, S chooses η. In period 2, S announces a price p
for the license, pays the self-assessed license fee pτ to the government, and then B can decide
whether to buy the license by paying p to S.

We solve the game by backwards induction. First, fixing η and τ, we analyze the behavior of
S in the period 2 price offer game.

2.2 Allocative efficiency

For any price p, B’s optimal strategy is to buy the license if her value is greater than p, that is,
if η+ γB > p. Let m ≡ p− η be the markup S chooses to set over the common value η. The
probability of sale under markup m is then 1 − F (m). Fixing common value η, and depreciation
rate τ, S’s optimal price offer solves:

max
m

(1 − F (m)) (η+m) + F (m) (η+ γS) − τ (η+m) − c (η) .

3See Tideman (1969) for a partial analysis of the allocative problem that allows for risk aversion.
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We can change variables to work in terms of sale probabilities. Define q ≡ (1 − F (m)), and
M (q) ≡ F−1 (1 − q). S then solves:

max
q

(η+M (q))q+ (η+ γS) (1 − q) − τ (η+M (q)) − c (η) .

Note that the socially efficient outcome corresponds to setting M (q) = γS, or equivalently
q = 1 − F (γS). We can rearrange S’s optimization problem to:

max
q

(M (q) − γS) (q− τ) + (η+ γS) (1 − τ) − c (η) .

Only the variable profit term (M (q) − γS) (q− τ) depends on the sale probability q. Thus, S’s
optimal choice of sale probability if her value is γS and the depreciation rate is τ can be written
as:

q∗ (γS, τ) ≡ arg max
q

(M (q) − γS) (q− τ) .

We can think of the objective function as the net trade profits of an agent who sells share q of
the asset to buyers, and buy share τ of the asset from the government, both at price M (q). In
the following Theorem, we show that the relationship between τ and q summarizes licensees’
incentives to markup or markdown prices.

Theorem 1. (Net trade property)

• If τ = 1 − F (γS), then q∗ (γS, τ) = τ and M (q∗ (γS, τ)) = γS.

• If τ < 1 − F (γS), then q∗ (γS, τ) > τ and M (q∗ (γS, τ)) > γS.

• If τ > 1 − F (γS), then q∗ (γS, τ) 6 τ and M (q∗ (γS, τ)) 6 γS.

Proof. See Appendix A.1.

Theorem 1 shows that the net effect of depreciating licenses on sellers’ price-setting incentives
is linked to an observable quantity: τ− q, the difference between the depreciation rate and the
probability of sale that it induces. If τ are lower than equilibrium sale probabilities, licensees can
be thought of as selling a larger share of the asset than they are buying from the government,
hence have net incentives to set prices higher than their values. Likewise, if τ is higher than
sale probabilities, licensees are buying more from the government than they are selling, thus set
prices below their values. When τ is equal to the probability of sale, asset licensees are neither
net buyers nor net sellers of their assets; thus they set prices equal to their values, leading to full
allocative efficiency.

Theorem 2 of Section 3 shows that the net trade property generalizes to our dynamic model.
In a setting with many licensees with heterogeneous values, no single depreciation rate can give
all licensees incentives to truthfully reveal their values; however, we show in our calibration
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of Section 4 that depreciation rates equal to average sale probabilities across sellers are close
to allocatively optimal. Thus, the license turnover rate serves as an observable approximate
sufficient statistic for setting depreciation rates.

We proceed to quantify the comparative statics of allocative welfare with respect to the
depreciation rate. Assuming F (·) is twice continuously differentiable, S’s first-order condition is

M ′ (q) (q− τ) + (M (q) − γS) = 0,

so that by the Implicit Function Theorem,

∂q?

∂τ
=

M ′ (q? (γS, τ))
2M ′ (q? (γS, τ)) +M ′′ (q? (γS, τ)) (q? (γS, τ) − τ)

=
1

2 +
M ′′(q?−τ)

M ′

=
1

2 −
M ′′(M−γS)

(M ′)2

,

where the last equality invokes the first-order condition and drops arguments. Cournot (1838)
showed that this quantity equals the pass-through rate ρ (q? (γS, τ)) of a specific commodity tax
into price; see Weyl and Fabinger (2013) for a detailed discussion and intuition. ρ is closely
related to the curvature of the value distribution; it is large for convex demand and small for
concave demand. It is strictly positive for any smooth value distribution and is finite as long as
S is at a strict interior optimum.4

The marginal gain to social welfare from a unit increase in the probability of sale is equal to
the gap between γB and γS, which is by construction (M (q? (γS, τ)) − γS). Thus, the marginal
allocative gain from raising τ is (M (q? (γS, τ) − γS)) ρ (q? (γS, τ)) , or (M− γS) ρ for short. Since
(M− γS) ρ is 0 at q = 1 − F (γS), the first-order social welfare gain from raising τ approaches 0
as we approach the allocatively optimal turnover rate of 1 − F (γS). On the other hand, when
τ = 0, we have (M− γS) ρ > 0, hence increasing τ from 0 creates a first-order welfare gain.

2.3 Investment efficiency

The variable profit term (M (q) − γS) (q− τ) in S’s objective function is independent of η. Hence,
S chooses investment to maximize the sunk profit term (1 − τ)η− c (η) . The first-order condition
for this optimization problem is:

c′ (η) = 1 − τ.

We can define the investment supply function Γ (·) as:

Γ (s) ≡ c′−1 (s) .

4Myerson (1981)’s regularity condition is sufficient but not necessary for this second-order condition, as we show
in Appendix A.2.
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The value of a unit of investment η is always 1, so the socially optimal level of investment is
Γ (1), whereas investment is only Γ (1 − τ) when the depreciation rate is τ. The social value of
investment is always 1, whereas S only invests up to the point where c ′ = 1 − τ. Thus, the
marginal distortion from under-investment is τ. The marginal increase in investment from a
rise in τ is Γ ′ = 1

c ′′ by the inverse function theorem. Thus, the marginal social welfare loss from
raising τ is Γ ′τ, or τ

1−τΓεΓ , where εΓ is the elasticity of investment supply. Note that as τ→ 0,
this investment distortion goes to 0, so that there is no first-order loss in investment welfare
when τ = 0. Since there is a first-order gain in allocative welfare from raising the depreciation
rate when τ = 0, the optimal choice of τ is strictly greater than 0.

2.4 Allocation-investment tradeoff

Figure 2.4 graphically illustrates the tradeoff between allocative and investment welfare. Alloca-
tive welfare increases monotonically in τ on the interval τ ∈ [0, 1 − F (γS)]. The marginal gain in
allocative welfare from raising the depreciation rate is (M (q?) − γS) ρ (q

?); thus, the marginal
allocative gain is 0 when τ = 1 − F (γS) and M (q?) = γS. Similarly, the marginal investment loss
is Γ ′τ, which is 0 at τ = 0. These properties hold independently of the cost function and demand
distribution; intuitively, this reflects the fact that both the marginal trades when τ = 1 − F (γS),
and the marginal units of investment when τ = 0, have no social value. Thus, regardless of
the underlying cost and demand functions, the efficient depreciation rate τeff lies strictly in the
interior of the interval [0, (1 − F (γS))].

In Figure 2.4, allocative welfare is concave and investment losses are convex in τ, so total
social welfare is a concave function of τ. While this is not true for all cost functions and demand
distributions, it tends to hold for most well-behaved choices of the primitives. Since the markup
M (q?) is decreasing in τ, allocative marginal gains (M (q?) − γS) ρ (q

?) tend to be decreasing
in τ, and since the marginal investment loss Γ ′τ contains a τ term, marginal investment losses
tend to be increasing in τ. Intuitively, as we raise τ from 0, the first trades that go through are
the highest value trades, and the first investment losses are those which are both privately and
socially marginal. As we raise τ, the allocative wedge M (q?) − γS decreases, so new trades are
less valuable, and the investment wedge τ increases, so the new investment losses are more costly
to society. Thus, for relatively smooth demand forms and cost functions, the social optimization
problem of maximizing the allocative gain less the investment loss will be concave.

In Appendix A.3, we formally derive sufficient conditions on the cost function c (·) and
the inverse demand function M (·) for concavity of the social optimization problem. Under
concavity, the following first-order condition, which resembles an optimal tax formula, uniquely
characterizes the welfare-maximizing depreciation rate:

τeff
1 − τeff

=
(M (q? (γS, τeff)) − γS) ρ (q? (γS, τeff))

Γ (1 − τeff) εΓ (1 − τeff)
. (1)
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Figure 1: Allocative, Investment, and Total Welfare vs τ

Notes. Qualitative behavior of allocative (red), investment (blue) and total (purple) welfare vs.
depreciation rate.

The left-hand side is a monotone-increasing transformation of τ that appears frequently in
elasticity formulas in the optimal tax literature; see, for example, Werning (2007). The right-
hand side is the ratio of two terms: the allocative benefit of higher depreciation rates and the
investment distortion of higher depreciation rates. The allocative benefit equals the product of
the mark-up and the pass-through rate, whereas the investment distortion equals the product of
the equilibrium investment size and its elasticity with respect to 1 − τ.

3 Dynamic model

In this section, we construct a simple dynamic extension of the two-stage model. The economic
intuitions are similar to those of the static model, but the dynamic model has well-defined
quantities such as turnover rates, asset prices, and stationary value distributions, which we use
to calibrate the model to data in Section 4.

3.1 Agents and utilities

Time is discrete, t = 0, 1, 2 . . .∞. All agents discount utility at rate δ. There is a single asset,
which an agent S0 owns at time t = 0. In each period, a single buyer Bt arrives to the market
and bargains with the period-t licensee St to purchase the license, through a procedure we detail
in Subsection 3.2 below. Hence, the set of agents is A = {S0,B0,B1,B2 . . .}. We will use St as an
alias for the period-t licensee, who may be a buyer Bt′ from some period t′ < t. We will use A
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to denote a generic agent in A .
In period t, agent A has period-t use value γAt for the asset. The values of entering buyers

γBtt are drawn i.i.d. from some distribution F. Values evolve according to a Markov process: for
any agent A with period-t use value γAt , her use value in the next period γAt+1 is drawn from the
transition probability distribution G (γt+1 | γt).

Assumption 1. F (M) = 1 for some finite M.

Assumption 2. γt > γ′t implies G (γt+1 | γt) >FOSD G (γt+1 | γ′t).

Assumption 3. G (γ′ | γ) is continuous and differentiable in γ for any γ′.

In any period, there is a single user of the asset. Let 1At denote agent A being the user of the
asset in period A. Given 1At and γAt , agent A’s utility is:

∞∑
t=0

δt
[
1At γ

A
t + yAt

]
.

Where, yAt is any net monetary payment made to agent A in period t.

3.2 Game

The license has some fixed depreciation rate τ. We define the following dynamic depreciating
license game. At t = 0, agent S0 owns the license, and observes her own use value γS0

t for the
asset. In each period t:

1. Buyer arrival: Buyer Bt arrives to the market; his use value γBtt is drawn from F (·), and is
observed by himself but not the period-t seller St.

2. Seller price offer: The licensee St makes a take-it-or-leave-it price offer pt to buyer Bt, and
immediately pays license fee τpt to the government.

3. Buyer purchase decision:

• If Bt chooses to buy the license, she pays pt to St. Bt becomes the period-t asset user,
1Btt = 1, and enjoys period-t use value γBtt from the asset. Bt becomes the licensee in
period t+ 1, that is, St+1 ≡ Bt. Seller St receives payment pt from Bt, and seller St
leaves the market forever, with continuation utility normalized to 0.

• If Bt chooses not to purchase the license, St becomes the period-t asset user, 1Stt = 1,
and she enjoys period-t use value γStt from the asset. St becomes the licensee in
period t+ 1, that is, St+1 ≡ St. Buyer Bt leaves the market forever, with continuation
utility normalized to 0.
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4. Value updating: γSt+1
t+1 , the period t+ 1 value for licensee St+1, is drawn from the distribu-

tion G
(
γt+1 | γ

St+1
t

)
according to her period-t value γSt+1

t .

3.3 Equilibrium

Equilibrium in the dynamic depreciating license game requires that, in all histories, all sellers
make optimal price offers, and all buyers make optimal purchase decisions. Since τ, F, G are
constant over time, the problem is Markovian: the optimal strategies of buyers and sellers may
depend on their types γStt ,γBtt respectively, but not on the period t. Hence we can characterize
equilibria of the game by a stationary value function V (γ) which describes the value of being a
type γ seller in any given period.

In any period t, we can think of St as choosing a probability of sale qt, where buyers in period
t make purchase decisions according to the inverse demand function p (qt). If the continuation
value in period t+ 1 for seller type γt+1 is V (γt+1), the optimization problem that St faces is:

max
qt

qtp (qt) + (1 − qt)
[
γt + δEG(·|·) [V (γt+1) | γt]

]
− τp (q) .

Simplifying and omitting t subscripts, optimality for sellers requires V (γ) to satisfy the following
Bellman equation:

V (γ) = max
q

(q− τ)p (q) + (1 − q)
[
γ+ δEG(·|·)

[
V
(
γ′
)
| γ
]]

. (2)

Buyer optimality pins down the relationship between p (·) and V (·). If buyer Bt with value
γt purchases the license, he receives value γt in period t, and then becomes the seller in period
t+ 1, receiving utility δV

(
γBtt+1

)
. Hence the period-t willingness-to-pay of buyer type γt is:

WTP (γt) = γt + δEG(·|·) [V (γt+1) | γt] .

Thus, in equilibrium, optimality for the buyer implies that the inverse demand function p (·)
satisfies:

p (q) =
{
p : Pγ∼F(·)

[
γ+ δEG(·|·)

[
V
(
γ′
)
| γ
]
> p

]
= q
}

. (3)

Fixing τ, a value function V (·) which satisfies Equations 2 and 3 defines an equilibrium of the
dynamic depreciating license game.

Under Assumptions 1–3, we can prove that the net trade property from the two-stage
depreciating license game applies to the dynamic game: net sellers set prices above their
continuation values, and net buyers set prices below their continuation values.

Theorem 2. (Dynamic net trade property) Under Assumptions 1–3, in any τ-equilibrium of the dynamic
depreciating license game,
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• For type γ with τ = 1 − F (γ), we have q∗ (γ) = τ and p (q∗ (γ)) = γ+ EG(·|·) [V (γ′) | γ] .

• For types γ with τ < 1 − F (γ), we have q∗ (γ) > τ and p (q∗ (γ)) > γ+ EG(·|·) [V (γ′) | γ] .

• For types γ with τ > 1 − F (γ), we have q∗ (γ) 6 τ and p (q∗ (γ)) 6 γ+ EG(·|·) [V (γ′) | γ] .

Proof. See Appendix A.4.

As we discuss in Appendix A.4, equilibria are guaranteed to exist. However, we were only
able to prove uniqueness of equilibrium under an additional assumption:

Assumption 4. γt+1 6 γt with probability 1.

The proof of equilibrium uniqueness given Assumption 4 is presented in the online appendix.
This assumption is strong, but is satisfied in all specifications we use for our calibration. In
versions of the calibration in which γt+1 > γt with some probability but decreases on average, we
can numerically solve for equilibria and the equilibria appear to be unique; thus, our calibration
results do not appear to be very sensitive to Assumption 4.

3.4 Investment

Suppose that at the beginning of each period t, the current licensee St can make common-valued
investment ηt in the asset at cost c (ηt). As before, we assume that all investments are fully
observable to all agents. We will allow investments to have long-term effects on common values:
suppose that, in period t′ > t, investment ηt increases the common value of the asset for all
agents by some Ht′−t (ηt). In Appendix A.5, we show that common-valued investment affects
the equilibrium of the trading game by shifting all offered prices by some constant.

The social value of investment is the discounted sum:

∞∑
t=0

δtHt (η) .

and, the social FOC sets:

c′ (η) =
∞∑
t=0

δtH′t (η) .

The following proposition states that depreciating licenses distorts longer term investments more
than shorter-term investments. Intuitively, if licensees make investments that pay off t periods
in the future, they have to pay license fees for t+ 1 periods on their investments, generating an
investment wedge of (1 − τ)t+1 relative to the social optimum.
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Proposition 1. In any τ-equilibrium of the dynamic depreciating license game, all agents choose a
constant level of investment η such that:

c′ (η) =
∞∑
t=0

δt (1 − τ)t+1H′t (η) .

Proof. See Appendix A.5.

4 Calibration

In this section, we computationally solve our dynamic model under parameters chosen to match
moments of various markets for durable assets. We model trade under full private ownership as
the solution to our dynamic depreciating license game when the depreciation rate is set to 0. We
then evaluate the effects of increasing the depreciation rate from 0 on allocative and investment
welfare.

4.1 Methodology

The dynamic depreciating license game requires us to specify a number of unknowns: the dis-
count rate δ, the distribution of entering buyer values F (γ), the transition probability distribution
G (γ′ | γ), the investment cost function c (η), and the investment benefit functions Ht (η).

We use the standard choice of annual discount rate δ = 0.95. We assume that the distribution
of entering buyer values F (·) is log-normal, with log mean normalized to 0. The log standard
deviation σ is a spread parameter controlling the amount of dispersion in idiosyncratic values.
While this F does not satisfy boundedness, as required by Assumption 1, we will approximate F
using a bounded grid distribution.

We will use a variety of stochastic decay processes for the transition distribution G (γ′ | γ).
In our baseline calibration, we will assume that if an agent has value γt in period t, her period
t+ 1 value is χγ, where χ has a beta distribution with mean β. Thus, values decay by a factor β
in expectation in each period. We will also show results from a variety of specifications using a
bimodal mixtures of beta distributions, and a specification in which values either stay constant
or jump to 0. These choices of stochastic decay distributions are designed to vary the dispersion
in the stationary distribution of seller values; our results show that this dispersion significantly
influences the welfare gains from implementing depreciating licenses.

Given these choices for F and G (γ′ | γ), the parameters to be determined are the log standard
deviation σ of F, and various shape parameters for the decay processes G (γ′ | γ). For each
transition distribution, we fix all but one parameter affecting the mean of G (γ′ | γ) in advance;
these choices for different specifications of G (γ′ | γ) are described in Appendix B.3. We then
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determine σ and the parameter moving the mean of G (γ′ | γ) by choosing the values of two
moments.

First, we target the relative standard deviation of buyer valuations. A large empirical
literature studies static auctions for various use rights for government resources; these papers
tend to find fairly high dispersion in the willingness-to-pay of different buyers for identical
assets. The ratio of the standard deviation of idiosyncratic buyer values to its mean is found to
be roughly 0.5 for timber auctions (Athey, Levin and Seira, 2011), 0.18 for highway procurement
contracts (Krasnokutskaya and Seim, 2011), and roughly 0.2 for oil drilling rights (Li, Perrigne
and Vuong, 2000). For our baseline specification, we will require that the standard deviation of
the allocative component of equilibrium willingness-to-pay of entering buyers is 0.20 times its
mean. We will refer to this as the SDmean moment.

Second, we require the annual turnover rate in equilibrium when τ = 0 in our baseline
specification to be 5%; this is likely to be fairly low for many of the assets we consider, hence
this choice should give a conservative estimate the extent of allocative distortions, and thus the
welfare gains from depreciating licenses. We will refer to this as the saleprob moment.

Increasing the rate of value decay lowering the mean of G (γ′ | γ) should increase the efficient
probability of sale, the equilibrium probability of sale, as well as the optimal license depreciation
rate. Increasing the lognormal standard deviation σ should increase the dispersion of values,
the dispersion of prices, and the total achievable allocative welfare gains. Thus, intuitively, the
saleprob moment should be matched mostly by the parameter controlling the posterior mean
of G (γ′ | γ), while the SDmean moment should be matched mostly by σ. We confirm these
intuitions and show the effects of changing moment values on our calibration results in Figure 4,
which we discuss further in Subsection 4.2 below.

We will assume that investment has geometrically depreciating value over time: Ht (η) =
θtη, θ < 1. For our calibrations, we will set θ = 0.85, which is similar to depreciation rates from
in the literature on capital depreciation (Nadiri and Prucha, 1996). We will report results for
our baseline specification assuming that investment value constitutes a fraction 0%, 10%, 40%
or 70% of total average asset value; we find that optimal depreciation rates and welfare gains
are relatively insensitive to the total value of investment welfare. In Appendix B.1, we derive
analytical expressions for the equilibrium investment level and investment welfare for any value
of τ. In Appendix B.2 we describe further details of the numerical procedure we use to analyze
the game and solve for equilibria.

4.2 Results

In Figure 2, we plot the equilibrium stationary distribution of use values for different values
of τ in the baseline specification. As we increase τ from 0 to 15%, probability mass moves
from relatively low values towards higher values, as a result of lower markups and increased
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frequency of sales to high-value entering buyers. However, starting at around 5%, increasing τ
also moves mass from the highest values towards somewhat lower values, though this effect
does not become pronounced until τ reaches 15%. Intuitively, this is because the highest value
licensees set prices below their values, causing the license to occasionally be purchased by buyers
with values lower than that of the licensee.

In Figure 3, we show the behavior of various quantities in stationary equilibrium as functions
of τ, assuming that investment is 40% of total asset value. The topmost panel shows allocative,
investment and total welfare, in units of percentages of the average license transaction price
when the depreciation rate is 0. Allocative welfare is maximized at a τ = 8.7%, which optimizes
the trade-off between moving mass away from low value quantiles and away from the highest
quantiles. The horizontal line labeled eff alloc welfare represents the max possible allocative
welfare, calculated by solving for the steady-state distribution of use values assuming that the
asset is always transferred to the agent with higher value in any period. The allocatively optimal
depreciation rate τalloc achieves over 80% of the total possible allocative welfare gains. If we
take into account investment welfare, the optimal depreciation rate is 4.0%, and this increases
total welfare by 5.4% of the baseline average asset price. Investment losses are not globally
convex, likely due to the complex interactions of depreciating licenses with persistent investment.
However, allocative welfare is still concave, and thus total social welfare is also concave in τ for
depreciation rates below and near the efficient depreciation rate.

The second panel shows the equilibrium sale frequency and the average quantile markup
set by sellers, as well as a line of slope 1 representing the depreciation rate τ itself. When the
depreciation rate is set equal to the efficient probability of trade, the equilibrium average trade
probability is also equal to the efficient probability of trade, and the average quantile markup is
near 0. However, the optimal depreciation rate is lower than the efficient probability of trade,
likely because the right-skew of the lognormal distribution means that the losses from excessive
turnover by high value sellers outweigh the gains from eliminating inefficiently low turnover
rates by low value sellers.

In the third panel of Figure 3 we show the behavior of various stock/flow quantities as we
vary τ. License prices rapidly decrease and revenues from license fees rapidly increase as we
increase τ. Intuitively, if agents have to pay license fees at rate τ every period, this is roughly
equivalent to discounting by rate δ (1 − τ); thus, increasing τ has a similar effect to increasing
discounting, and rapidly lowers license prices.

In Table 1, we show results for different choices of the fraction of Invfrac, the share of
investment value in asset prices. The optimal depreciation rate ranges from 2.1% to 8.7%. Total
gains from depreciating licenses range from 1.8% to 12.9%. In all cases, setting the depreciation
rate equal to 2.5%, or half the license turnover rate in existing markets, achieves most of the
welfare gains from the optimal rate.

In Table 2, we report results from other specifications for the transition process G (γ′ | γ) .
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Qualitatively, depreciating licenses perform worse under transition processes which induce
more dispersion in seller values. However, for all transition processes we tried, depreciating
license gains can achieve at least 50% of all achievable welfare gains, amounting to at least 1% of
asset prices. Moreover, depreciation rates set at 2.5% achieve most of the gains from setting the
optimal depreciation rate.

We propose a simple and conservative rule-of-thumb for depreciating license design: de-
preciation rates should be set to roughly half the rates of trade in markets for similar assets
owned under long-term or perpetual licenses. From Table 1, across most specifications, the
optimal depreciation rate is close to the private market trade rate of 5%, but a rate half this
achieves most welfare gains. The probability of trade in equilibrium when τ = 0 is lower than
the socially optimal probability of trade; by further halving this amount, such a rule will tend to
choose depreciation rates significantly below the allocative optimum. However, total welfare
is increasing and concave in τ for depreciation rates between 0 and the optimal rate, so any
depreciation rate smaller than the optimal value is welfare-improving relative to pure private
ownership, and in fact fairly low rates can capture a large fraction of all possible welfare gains
from depreciating licenses.

In Figure 4, we show the behavior of calibration outcomes as we change the two input
moments: SDmean, the relative standard deviation of prices, and saleprob, the probability of
asset trade when τ = 0. As we change the SDmean moment, the optimal depreciation rate
increases slightly, and welfare gains increase approximately proportionately with SDmean. As
we increase saleprob, welfare gains increase slightly, and optimal depreciation rates increase
significantly. The allocatively optimal depreciation rate increases approximately proportionately
with saleprob, whereas the total welfare-optimizing depreciation rate increases slightly less
than proportionately. In all cases, our rule-of-thumb setting depreciation rates equal to half of
observed sale probabilities achieves a large fraction of all possible welfare gains.

The particular quantities we find for welfare gains and optimal depreciation rates in our
calibration will likely vary for different classes of assets; however, we emphasize two qualitative
takeaways from the calibration. First, depreciating licenses can achieve welfare gains comprising
a significant fraction of allocative distortions in private markets. Second, our rule-of-thumb,
setting depreciation rates equal to half the observed rates of asset trade, chooses conservative
depreciation rates that achieve a large fraction of all possible welfare gains.

5 Robustness

In this section, we discuss the robustness of our results to relaxing various assumptions of our
model. In Subsection 5.1, we discuss depreciating licenses when there may be multiple agents
and goods. In Subsection 5.2, we discuss our assumptions regarding observability of investment.
In Subsection 5.3, we discuss our assumptions regarding additive separability of allocative and
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Figure 2: Stationary Use Value Distribution

Notes. Stationary distributions of log use values in trading equilibrium, for different values of
the depreciation rate τ. The gray line shows the distribution of entering buyers, which is
lognormal with log mean 0.

Table 1: Calibration results
Invfrac Optimal τ Total gain Alloc gain Inv loss τ = 2.5% gain

0% 8.60% 12.85% 12.85% 0.00% 9.30%
10% 7.00% 10.60% 11.38% -0.79% 8.19%
40% 4.00% 5.36% 6.60% -1.24% 4.93%
70% 2.10% 1.79% 2.47% -0.68% 1.76%

Notes. All gains are in units of percentages of the average asset transaction price at τ = 0. All
columns show welfare changes from the optimal τ, except for the last column, which shows the
total welfare gain from imposing a 2.5% rate. Invfrac is the ratio of total investment value to
the average asset price at τ = 0.

Table 2: Alternative specifications
Transition process Optimal τ Total gain Alloc gain Inv loss τ = 2.5% gain % max gain
Baseline 4.00% 5.36% 6.60% -1.24% 4.93% 83.42%
Mixbeta 3.10% 3.37% 4.17% -0.80% 3.31% 73.95%
Jump 1.90% 1.86% 2.18% -0.33% 1.76% 52.92%

Notes. All gains are in units of percentages of average asset prices at τ = 0. For all specifications,
we assume Invfrac = 0.4, so investment is 40% of average asset price. The “% max gain”
column shows what fraction of total possible allocative welfare gains, under the social planner’s
optimum assuming all welfare-improving trades are made, are captured by the allocatively
optimal depreciation rate.
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Figure 3: Comparative statics vs τ

Notes. In the first panel, all welfare changes are in units of percentages of the average asset
transaction price at τ = 0. In the third panel, license prices are average prices of licenses
conditional on sale occurring.
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Figure 4: Sensitivity to moments

Notes. In the left column, the SDmean moment is varied holding fixed Saleprob = 0.05. In the
right column the Saleprob moment is varied holding fixed SDmean = 0.2. The top row shows
the allocative and total optimal depreciation rates, and the bottom row shows the welfare gain
from the optimal and rule-of-thumb depreciation rates, as a fraction of the initial asset price.
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investment welfare. In Subsection 5.4, we show that depreciating licenses lower, but do not
distort, private-valued investments.

5.1 Multiple agents and goods

Our analysis above assumes that there is a single potential buyer of the license. In many settings,
several bidders may be competing to buy the license. In such settings, we might implement
depreciating licenses by allowing potential buyers to participate in an auction for the asset,
with reserve price equal to the value announcement of the current licensee. We briefly analyze
optimal depreciation rates in such an auction model.

Suppose the license belongs to S, and assume for simplicity that γS = 0. There are multiple
potential buyers B1 . . .Bn, with values drawn i.i.d. from distribution F. The license is sold in
a second-price auction, where S can set a reserve price p. S pays a license fee based on her
reserve price p. Let y1 represent the highest bid, and let y2 represent the second-highest bid. S’s
objective function is

πS = y21y1,y2>p + p1y1>p>y2 + η1y1,y2<p − pτ.

Taking expectations over y1,y2 and then taking derivatives with respect to p yields

dE [πS]

dp
= P (y1 > p > y2) − τ−m

dP (y1,y2 < p)

dp
,

where, as in Section 2, we define the markup m ≡ p− η.
Setting this to 0 and rearranging, we have that

m
dP (y1,y2 < p)

dp
= P (y1 > p > y2) − τ.

This implies that the markup m depends on the difference between τ, the depreciation
rate, and P (y1 > p > y2), the probability that the asset is sold at the reserve price, rather than
the total probability of sale. Intuitively, this is because S’s reserve price announcement only
affects her profits if the reserve price is binding. Thus, if there are multiple buyers, allocatively
optimal depreciation rates can be lower than the probability of sale. In the limit as buyer
competition eliminates the welfare loss from seller markups, optimal depreciation rates decrease
to 0. However, many of the assets we consider trade infrequently in secondary markets, hence
it is unlikely that competition between high-value buyers will be sufficient to eliminate all
bargaining inefficiency.

Throughout the paper, we study trade of a single asset. This can be thought of as a reduced-
form representation of a richer model in which agents with unit demand consider buying and
selling multiple differentiated products; for example, agents may consider purchasing spectrum
use rights at different frequencies in different regions, or oilfields with different capacities and
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drilling costs. In this richer model, when bargaining over a given asset, both the buyer and the
seller have the outside option of purchasing any other asset in the market, though the seller may
face transaction or adjustment costs for doing so. The buyer’s willingness-to-pay and the seller’s
minimum acceptable sale price in bargaining for the asset in question take into account these
outside options; thus, in our reduced-form model, we do not explicitly model transaction or
adjustment costs or the availability of outside options.

An important simplification of our model is that agents have unit demand, and we do not
consider preferences for bundles of goods. Posner and Weyl (2017) propose an extension where
licensees could determine their own packaging of licenses they hold. Analyzing such a proposal
is interesting, but beyond the scope of our analysis here.

5.2 Observability

Throughout the paper, we have assumed that investment is commonly observed by agents;
in such a setting the government could conceivably achieve first-best investment incentives
by directly rewarding observed investment. We follow the literature on property rights and
incomplete contracts (Grossman and Hart, 1986; Hart and Moore, 1990) in assuming away this
possibility; see Maskin and Tirole (1999) and Hart and Moore (1999) for further discussion.
We believe that this assumption is particularly justified in the context of license design. The
government structures licenses for resources such as radio spectrum to dictate the rules of
asset use and trade over long time horizons; it may be difficult to predict optimal uses and
investment for these assets as technology shifts over time, and granting the discretion necessary
to adapt to changing circumstances to agencies regulating licenses may create opportunities
for capture and corruption. Moreover, license design often simultaneously affects large classes
of heterogeneous assets; the nature of optimal investment may be very different, for example,
for oilfields or radio spectrum at different geographical locations. While the local costs and
benefits of common-valued investments, such as oil wells or radio antenna, are likely relatively
well-observed to market participants, asset heterogeneity makes it difficult for the government to
observe and enforce optimal investment separately for each individual asset. Our mechanism is
a simple system that gives users of heterogeneous assets robust, though suboptimal, incentives
for investment.5

Government policy towards resource rights has attempted to directly enforce common-valued
investment to the extent possible; examples include the FCC’s complex buildout and coverage
requirements for radio spectrum licensees (2017a), and various systems of quantity limits and
minimum size requirements for recreational fishing (2017b). If common-valued investment is
observable and homogeneous enough to be directly enforced, property rights are not necessary

5 This argument loosely relates to the literature on complexity-based foundations of incomplete contracts (Segal,
1999), as well as recent work on robustness-based justifications of simple contracts (Carroll, 2015).
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for providing investment incentives, and total welfare is maximized by selling use rights in
frequent auctions; this is effectively a rental system, as is commonly used to allocate durable
goods such as cars and hotel rooms. When governments can partially enforce investment, the
investment distortion is lessened and optimal depreciation rates are higher.

A related issue is the interaction of depreciating licenses with asymmetric information
between buyers and sellers, that is, the lemons problem (Akerlof, 1970). While this is an
important and potentially complex issue, we will not analyze it in this paper; see Posner and
Weyl (2017) for a more extensive discussion. We can briefly discuss a simple extreme case – in
settings where asset quality is imperfectly observed but persistent over time, depreciating licenses
decrease the potential losses to the buyer from purchasing a lemon, since the depreciating license
has a significantly lower price than a perpetual license. Hence, the total monetary risk to buyers
from unobserved asset quality is lower for assets owned under depreciating licenses, which
may decrease the extent of market breakdown due to the lemons problem.6 Depreciation also
penalizes attempts by a licensee to signal quality by raising price, potentially lessening the
tendency of adverse selection to impede asset turnover.

5.3 Additive separability

For simplicity, we have analyzed a model in which investment and allocative efficiency are
additively separable, but our results are mostly robust to relaxing this assumption. Since
the second-stage allocative game is played conditional on arbitrary first-stage investment, the
net trade property holds irrespective of the structure of investment. We modelled common-
valued investment as additive to both buyer and seller values, and we analyze private-valued
investments in Subsection 5.4 below; these two can be combined to approximate any kind of
investment whose values to agents do not depend on their types.

Considering investments with differential benefits or costs for different agent types is more
complex, and we will not attempt to formally analyze such settings. We can briefly consider
some settings in which allocative efficiency and investment are partially complementary. In some
settings, agents who have higher idiosyncratic values may optimally make larger investments
into the assets; for example, more popular wireless carriers may optimally invest more in
building efficient spectrum infrastructure. In other settings, agents’ investment costs may differ;
for example, different firms may have different costs for drilling an oilfield. In settings where
allocative value and investment are complementary, improving allocation through depreciating
licenses will tend to increase investment, counteracting the negative direct effect of license fees
on investment. Hence, assigning assets using depreciating licenses could actually increase the
value of total investments made by license holders.

6 This echoes George (1879), who argues that high taxes on land would discourage land speculation.
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5.4 Selfish investments

Suppose the licensee S can invest in increasing her private value for the asset: she can increase
her own use value for the asset by λ at cost c (λ). As before, B has value η+ γB for the asset,
and all other features of the game are identical to those in Section 2. Fixing γS and λ, S’s second
stage profits are once again:

πS (λ,γS, τ) ≡ max
q
p (q)q+ (η+ γS + λ) (1 − q) − p (q) τ.

Let q∗ (τ,γS) represent S’s choice of q for any given τ,γS. In the investment stage, S chooses λ
to maximize πS (λ,γS, τ) − c (λ). But, using the envelope theorem, we have that

dπS (λ,γS, τ)
dγ

=
∂

∂λ
[p (q∗ (τ,γS))q∗ (τ,γS) + (η+ γS + λ) (1 − q∗ (τ,γS)) − p (q∗ (τ,γS)) τ]

= 1 − q∗ (τ,γS) .

Hence, the first-order condition for S’s choice of private-valued investment λ is

c′ (λ) = 1 − q∗ (τ,γS) .

This equation defines the constrained efficient level of investment, conditional on S keeping
the license with probability 1 − q∗ (τ,γS). In words, depreciating licenses leads licensees to set
lower prices and sell their licenses more often; licensees correspondingly reduce private-valued
investments, in a manner that is both privately and socially optimal. Hence depreciating licenses
do not distort license holders’ choices of private-valued investments.

In addition to private-valued investments, we might also consider investments by licensees
that affect the value of the asset to potential buyers, but not to the licensees themselves. A
natural objection to depreciating licenses is that licensees who are unwilling to sell their assets
may set low prices to minimize license fee payments, and then purposefully damage their
assets, making them less attractive to buyers in order to deter purchase. However, at optimal
or rule-of-thumb depreciation rates, τ is smaller than the probability of sale q∗ (τ,γS) for most
licensees. Thus, most licensees are net sellers of their assets in any given period; if marginal
buyers’ values increase, licensees gain more from increased sale prices than they lose from
increased license fee payments. As a result, most licensees have net positive incentives to make
investments which increase the value of the asset only for potential buyers. Another implication
is that, under reasonable depreciation rates, most licensees set prices above their values, and
thus receive higher total utility from selling their assets than keeping them; hence most trades
induced by depreciating licenses will make both buyers and sellers better off.

Certain assets, such as trademarks, may have relatively homogeneous low values to all
potential licensees ex ante. Most of the value from these items comes from private-valued
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investments that their licensees make; for example, websites build brand capital as their users
become accustomed to visiting a given domain name over time. In such contexts, both the
socially efficient probability of asset trade and the turnover rates of assets in market equilibrium
will tend to be low. Rule-of-thumb choices of depreciation rates will be correspondingly low.
While depreciating licenses cannot greatly improve allocative efficiency in such contexts, they
will not lead to serious adverse effects on the efficiency of asset trade. Depreciating licenses with
rule-of-thumb depreciation rates are thus adaptive to the primitives of asset markets, playing a
large role only when high equilibrium turnover rates suggest that efficient dynamic reallocation
is an important concern.

Conversely, in a world in which depreciating licenses were ubiquitous, the overall level of
private-valued investments that organizations and individuals make in assets that they use
may decrease significantly. For example, if spectrum use rights at different frequencies were
traded regularly in liquid markets for depreciating licenses, device makers would have increased
incentives to develop devices that are interoperable at many frequencies, rather than tuned to
any specific frequency band that they have acquired long-term use rights for. Our arguments in
this subsection suggest that these behaviors are efficient responses to lowered probabilities of
long-term asset use.

6 Discussion

In this section, we relate our proposal to previous economic analysis and practices related to
property rights in mechanism design, asset taxation, and intellectual property. We also compare
depreciating licenses to the more common term-limit licenses, and discuss its application to
resource use rights. Posner and Weyl (2017) discuss this and other potential applications of
depreciating licenses, as well as its relationship to existing legal institutions. Milgrom, Weyl and
Zhang (2017) discuss in detail a proposal to use depreciating licenses to allocate priority access
rights for the 3.5GHz radio spectrum band.

6.1 Mechanism design

This paper is most closely related to Plassmann and Tideman (2008, 2011)’s work on self-
assessment, which was inspired by Harberger (1965)’s original proposal. The primary distinction
between our proposal and previous work is that the existing literature proposes self-assessment
for infrequent cases of government takings, while we propose self-assessment as part of a
license design to promote decentralized resource reallocation between private users. The static
environment studied by Plassmann and Tideman (2008) is similar to our static model and
they prove a theorem similar to our net trade property. However, because of there interest
in one-off purchases, they do not consider the dynamic issues, such as capital-investments,
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asset prices and license turnover rates, on which we focus. Interestingly, this more complicated
dynamic setting may actually make self-assessment easier to implement as the fee rate can
be set based on observed license turnover rates, as would be impossible in the context of
one-time government takings and the flexibility for private agents to take property may be a
more effective enforcement device than government takings. In fact, Chang (2012) found that
when a self-assessment system with only government takings was implemented in Taiwan, it
was subject to significant government lenience and corruption.

This paper is also related to a body of work that analyzes the role of property rights in
asymmetric information bargaining problems (Cramton, Gibbons and Klemperer, 1987; Segal
and Whinston, 2011, 2016). This literature focuses on optimal mechanisms, while we study a
specific extensive form, in which sellers commit to the prices they announce. While this extensive
form could be relaxed in the implementation of depreciating licenses (e.g. sellers might be
allowed to post a price, make self-assessed fee payments, and then bargain with potential buyers
for a sale below this price), our focus is not on solving for an optimal mechanism. Instead
our interest is in proposing an analyzing a simple mechanism that achieves most of the gains
possible from the larger class of mechanisms and we hope is robust; see Posner and Weyl
(2017) for a discussion of robustness. More sophisticated schemes that achieve higher welfare
levels may be possible in certain settings, but we leave the analysis of such schemes and their
robustness to future work.

6.2 Asset taxation

The depreciating license system resembles, and is inspired by, a class of proposals for self-
assessed taxation of land and other assets. Discussion of such self-assessment systems dates
back to at least ancient Greece (Posner and Weyl, Forthcoming). More broadly, a number of
schemes have aimed to use market outcomes to assess the values of assets for tax purposes; an
example is the common practice of setting property taxes based on the most recent sale price of
a house.7 A problem common to most market-based valuation schemes is that nontrivially large
taxes based on market outcomes influence the behavior of market participants.

The self-assessment scheme underlying the depreciating license design was first suggested
by Harberger (1965) as a way to enforce property taxes. He informally noted, echoing George
(1879)’s arguments for common ownership of land, that this might improve allocative efficiency.
To our knowledge, this observation was never formalized. In fact, following up on Harberger’s
work, Levmore (1982) wrote that “It is perhaps unfortunate that these... effects to self-assessment
[on turnover rates] exist,” and other critiques of self-assessed taxation (Epstein, 1993; Chang, 2012)
also suggest that the effects of self-assessment on market outcomes are generally undesirable.

Rather than using self-assessment to value assets for taxation, we propose to use self-assessed

7 California’s Proposition 13 is partially based on this principle; see for example Wasi and White (2005).
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license fees to increase the efficiency of license trade. We show that the “side effects” of
self-assessment on asset turnover are governed by a simple economic intuition, the net trade
property: asset owners announce prices above or below their values depending on whether the
self-assessed tax rate is lower or higher than the probability of license turnover. Self-assessment
will therefore not typically perfectly reveal private values for tax purposes, since no fixed tax rate
gives all license owners incentives for truthful value announcement. However, self-assessment in
the context of depreciating licenses can robustly improve allocative efficiency, since any license
fee rate lower than the license turnover rate will induce most asset owners to announce prices
closer to their values.

6.3 Intellectual property

Since intellectual property is non-rivalrous in consumption, the investment-allocation tradeoff
from property rights is particularly clear: the socially optimal allocation is to allow all parties
to use all innovations at no cost, but such a system gives innovators no incentives to develop
innovations. A fairly large literature has addressed the question of optimal ownership rights
over intellectual property, largely finding that partial ownership systems, such as limited-term
patents, are optimal. In a sense, our argument in this paper is that a similar allocative-investment
tradeoff is relevant for many assets which are rivalrous in consumption, and a similar partial
ownership system, depreciating licenses, improves on the extremes of full private or common
ownership.

Depreciating licenses qualitatively resemble patent buyout schemes (Kremer, 1998; Hopen-
hayn, Llobet and Mitchell, 2006), under which innovators’ exclusivity rights can be purchased by
entrants or the government under certain circumstances. Depreciating licenses could be useful
to help ensure turnover of licenses at fair prices to future investors in sequential innovations, in
the spirit of the mechanisms studied by Hopenhayn, Llobet and Mitchell, or to facilitate patent
pools/avoid thickets. Depreciating licenses, however, do not address market failures from the
non-rival nature of intellectual property; see Weyl and Tirole (2012) for a more elaborate partial
property mechanism with this aim.

6.4 Term-limit licenses

Use rights for most natural resources are typically assigned using term-limit licenses. The
tradeoff in the choice of term limit is similar to the choice of depreciation rate in our scheme:
shorter term limits improve allocative efficiency at the cost of investment incentives. However,
depreciating licenses are likely to dominate term limit licenses, in the sense that they can achieve
better allocative efficiency for a given level of investment incentives.

Term limit licenses grant full property rights to licensees for a set period of time and no
property rights thereafter. This may be undesirable in many settings – for example, a fishery
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licensee at the end of her term has no stake in the future of the fishery, hence may dramatically
overfish to the point of destroying the resource. In contrast, depreciating licenses can achieve
significant allocative efficiency gains while maintaining fairly large ownership stakes over long
time horizons. Depreciating licenses also have the benefit of conferring stationary property rights
over time, which is desirable both for investment and allocative efficiency. Under term-limit
licenses, trade is fully efficient when license terms end, but license holders can charge high
markups, blocking or delaying many valuable trades, in all other periods. Depreciating licenses
induce time-constant lower markups; in each period, some welfare-improving trades are blocked,
but buyers of sufficiently high value and sellers of sufficiently low value are able to trade quickly
regardless of when they meet. Similar arguments suggest that small time-stationary distortions
to investment incentives are generally preferable to occasional large distortions.8

7 Conclusion

We propose depreciating licenses primarily as a system for assigning use rights for natural
resources; we could alternatively characterize these as assets that correspond to land within
the three classical factors of production. The defining feature of land relative to capital is that
it is not created as the product of labor, hence it has no natural owner ex ante from either an
efficiency or equity perspective. The allocation of these resources between competing uses is thus
a ubiquitous problem for government policy. Modern economic thought has favored solving
this allocation problem using auctions (Coase, 1959), and a large body of work has studied the
optimal design of static auctions for allocating resource use licenses. Comparatively little work
has analyzed the optimal design of the licenses themselves.

As we discuss above, depreciating licenses significantly improve upon term-limit or perpetual
licenses in navigating the tradeoff between allocative and investment efficiency. The depreciating
license system is also simple to implement – after licenses are initially allocated, the system is
essentially self-regulating. Government intervention is unnecessary unless large-scale license
redesign, such as land or spectrum repackaging, is required. In these cases, the government can
simply purchase depreciating licenses at the prices announced by their licensees, repackaging
and then auctioning new licenses to replace them. Thus, depreciating licenses have the potential
to replace the centralized auction procedures used at present for resource allocation with a
decentralized market-like system, in which resource allocation continuously adapts to changes
in the technological and competitive environment over time.

In this paper, we have proposed depreciating licenses as a simple and robust system for
assigning resource use rights which improves on the more common system of term-limit licenses.

8 This argument resembles that of Gilbert and Shapiro (1990), who show in the context of intellectual property
rights that, since the social welfare loss from increased monopoly power in any period is likely to be convex, policies
which grant innovators time-invariant decreased monopoly power over intellectual property are often preferable to
policies granting full monopoly power for a limited period of time.

25



Depreciating licenses only have a single tuning parameter, the depreciation rate; a simple rule-of-
thumb is that depreciation rates for a given class of assets should be set equal to approximately
half the turnover rate of similar assets in private markets. We show that depreciating licenses
can achieve significant welfare gains over perpetual licenses – approximately 4% of asset prices
in our baseline specification.

We have abstracted away from a number of important issues in this paper. We assumed that
the common value of assets is fully observed by all participants, ignoring “lemons” problems
from asymmetric information about common values. We abstract away from the repeated
strategic interactions between agents that would arise in markets where the pool of potential
licensees is small. We assumed that only the current user of the asset can make investments
that affect the common value of the asset; in settings such as land allocation, agents besides
the asset owner may be able to take actions, such as emitting pollution which affect the value
of an asset. We model repeated trade of a single asset; certain assets such as radio spectrum
display high degrees of complementarity, which may cause much greater losses from market
power than occur with single assets because of hold-out problems (Kominers and Weyl, 2012).
We hope that future research will analyze the performance of depreciating licenses in settings
where these assumptions are not satisfied. Finally, this paper is only a first step in examining
the possibilities for augmenting markets with alternative systems of property ownership, and
we hope that future work continues to explore this promising area.
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Appendix

A Proofs and derivations

A.1 Net trade property

In this subsection, we prove Theorem 1, the net trade property. First, suppose τ = 1 − F (γS) .

• If S chooses sale probability q = τ, she makes no net trades, and receives 0 variable profits.
Moreover, the markup is M (q) = F−1 (1 − τ) = γS, so that also M (q) − γS = 0.

• If S chooses a higher sale probability, so that q− τ > 0, we have M (q) 6 γS, so variable
profits (M (q) − γS) (q− τ) 6 0. In words, S becomes a net seller at a price lower than her
value.
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• Symmetrically, if S chooses a lower sale probability q− τ < 0, she becomes a net buyer at a
price higher than her value, and once again variable profits (M (q) − γS) (q− τ) 6 0.

Now suppose that τ < 1 − F (γS).

• By the first part of the Theorem, license owners with higher values γ′S = F
−1 (1 − τ) have

τ = 1 − F
(
γ′S
)
, hence choose q∗

(
γ′S, τ

)
= 1 − F

(
γ∗S
)
. By construction, γS 6 γ′S; since the

variable profit function is supermodular in q and −γS, q∗ (γS, τ) > q∗
(
γ′S, τ

)
= τ.

• By the first part of the Theorem, if we set a lower rate τ′ = 1 − F (γS), we have q∗ (γS, τ′) =
1 − F (γS) and M (q∗ (γS, τ′)) = γS. By construction, τ 6 τ′. Since M (q) is a decreasing
function, the variable profit function is supermodular in q and τ, hence q∗ (γS, τ) 6

q∗ (γS, τ′) = 1 − F (γS). This implies that M (q∗ (γS, τ)) >M (q∗ (γS, τ′)) = γS.

An analogous argument shows that τ > 1− F (γS) implies that q∗ (γS, τ) 6 τ andM (q∗ (γS, τ)) 6
γS.

A.2 Myerson regularity and existence of ∂q?

∂τ

In this subsection, we prove our statement in Subsection 2.2 that Myerson (1981)’s regularity
condition is sufficient for ∂q?

∂τ to be finite for all depreciation rates below the efficient probability
of sale τ = 1 − F (γS). Myerson’s regularity condition states that marginal revenue is monotone.
A monopolist seller with value γS for the asset has revenue (M (q) − γS)q. Taking a derivative
yields M′ (q)q+ (M (q) − γS). Taking the second derivative, we have

2M′ (q) +M′′ (q)q < 0.

Now consider the monopolist’s problem under a depreciation rate τ < 1 − F (γS). By Theorem 1,
q (τ) > τ; hence, 0 < q (τ) − τ < q (τ). We want to show the following quantity exists:

∂q∗

∂τ
=

M′ (q)

2M′ (q) +M′′ (q) (q− τ)
.

So we have to show that the denominator is bounded away from 0. From our full-support
assumptions on ε, M′ (q) exists and is negative for all q. If M′′ (q) 6 0, we know q− τ > 0, so
M′′ (q) (q− τ) 6 0, and the numerator and denominator are both strictly negative; hence, their
ratio is positive and nonzero and ∂q∗

∂τ exists. So suppose M′′ (q) > 0. Then

2M′ (q) +M′′ (q) (q− τ) < 2M′ (q) +M′′ (q)q < 0

Where we first use that 0 < q (τ) − τ < q (τ), and then apply Myerson regularity. Hence, the
denominator 2M′ (q) +M′′ (q) (q− τ) is strictly negative, and the ratio ∂q∗

∂τ exists and is positive.
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A.3 Concavity of social welfare in τ

In this subsection, we discuss conditions on the cost and demand functions such that social
welfare is a concave function of the depreciation rate. From the text, the marginal benefit
of increasing the depreciation rate is M (q? (τ)) ρ (q? (τ)) and the marginal cost is Γ ′ (1 − τ) τ.
Recalling that ρ = ∂q?

∂τ , the second-order condition is

M′ρ2 + ρ′Mρ+ Γ ′′τ− Γ ′.

The first term is always negative (ρ > 0 > M′) and represents the quadratic nature of the
allocative distortion discussed in the text. The final term is always negative as Γ ′ > 0 and
represents the quadratic nature of the investment distortion. The two central terms are more
ambiguous. However, Fabinger and Weyl (2016) argue ρ′ is typically negative for most plausible
demand forms (those with a bell-shaped distribution of willingness to pay, as we assume in
most calibrations) and thus, given that M, ρ > 0, the second term is likely to be negative as well.
The third term is ambiguous. By the inverse function theorem, given that Γ = (c′)−1,

Γ ′′ = −
c ′′′

(c ′′)3 .

Assuming a convex cost function, this quantity is negative if and only if c ′′′ > 0. Thus, a
grossly sufficient condition (assuming ρ ′) for the first-order conditions to uniquely determine
the optimal depreciation rate is that c ′′′ > 0. However, note this term is multiplied by τ, which
is typically below 10% in our calibrations. Thus c ′′′ would have to be quite negative indeed to
cause the problem to be nonconvex.

A.4 Dynamic net trade property

In this subsection, using Assumptions 1–3, we prove Theorem 2, the net trade property for the
dynamic depreciating license game.

A.4.1 V(·) is strictly increasing

To begin with, we show, that any equilibrium V (·) must be increasing. This will allow us to
consider only increasing candidate V̂ (·) functions for the remainder of the proof.

Claim 1. In any stationary equilibrium, V (γ) is strictly increasing.

Proof. Consider a stationary equilibrium described by value function V (·). This defines an in-
verse demand function pV(·),F(·) (q). We will define the following Bellman operator for candidate
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value functions V̂ (·) for the seller’s optimization problem:

R
[
V̂ (·)

]
≡ max

q
(q− τ)pV(·),F(·) (q) + (1 − q)

[
γ+ δEG(·|·)

[
V̂
(
γ′
)
| γ
]]

. (4)

Note that R fixes the demand distribution pV(·),F(·) at the true equilibrium value function V (·),
and only depends on V̂ through the seller’s continuation value δEG(·|·)

[
V̂ (γ′) | γ

]
. As a result,

R is a standard Bellman equation satisfying Blackwell’s sufficient conditions for a contraction
mapping.

Consider a candidate value function V̂ (·) which is nondecreasing in γ. Supposing γ̃ > γ, the
single-period value (q− τ)pV(·),F(·) (q) + (1 − q)γ is strictly higher under γ̃ relative to γ for all q,
and the continuation value δEG(·|·)

[
V̂ (γ′) | γ

]
is weakly higher under γ̃, since G (γ′ | γ̃) >FOSD

G (γ′ | γ). Hence, R
[
V̂ (·)

]
(γ̃) > R

[
V̂ (·)

]
(γ), hence R

[
V̂ (·)

]
is strictly increasing in γ. Hence R

takes nondecreasing V̂ functions to strictly increasing V̂ functions; hence the true value function
V , which is the unique fixed point of R, must be strictly increasing in γ.

A.4.2 The pseudo-Bellman operator T

As we discuss in Subsection 3.3, stationary equilibria of the dynamic depreciating license game
must satisfy two conditions. First, the sellers’ value function must be satisfied for any γ:

V (γ) = max
q

(q− τ)pV(·),F(·) (q) + (1 − q)
[
γ+ δEG(·|·)

[
V
(
γ′
)
| γ
]]

.

Second, the WTP distribution pV(·),F(·) must be consistent with the value function V (γ), that is,

pV(·),F(·) (q) =
{
p : PV(·),F(·)

[
γ+ δEG(·|·)

[
V
(
γ′
)
| γ
]
> p

]
= q
}

.

We will define the following pseudo-Bellman operator T:

T
[
V̂ (·)

]
(γ) ≡ max

q
(q− τ)pV̂(·),F(·) (q) + (1 − q)

[
γ+ δEG(·|·)

[
V̂
(
γ′
)
| γ
]]

. (5)

The operator T is similar to the seller’s Bellman operator R in Equation 4. The difference is
that R fixes the inverse demand function pV(·),F(·) (·) at its true equilibrium value, whereas T

calculates the inverse demand distribution pV̂(·),F(·) (·) assuming that buyers also act according
to continuation value V̂ (·). We will likewise define the “candidate optimal sale probability
function” q∗T

(
γ; V̂ (·)

)
assuming continuation value V̂ (·), as:

q∗T
(
γ; V̂ (·)

)
≡ arg max

q
(q− τ)pV̂(·),F(·) (q) + (1 − q)

[
γ+ δEG(·|·)

[
V̂
(
γ′
)
| γ
]]

.

In words, T
[
V̂ (·)

]
, q∗T

(
γ; V̂ (γt)

)
and pV̂(·),F(·) (q) describe the values and optimal behavior of

buyers and sellers, assuming that the continuation value of a license owner of type γ in the next
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period is V̂ (γ). Equilibria of the depreciating license game are fixed points of the T operator.
Since T characterizes the equilibrium of a game rather than a single-agent optimization

problem, it is not necessarily a contraction mapping, and the standard contraction-based proofs
of uniqueness in bounded discounted dynamic programs do not apply. However, equilibrium
existence is not a problem – Assumptions 1, 2 and3, imply that T is a smooth function of V̂ ,
hence Brouwer’s fixed point theorem implies that T must have a fixed point in the convex
compact set of bounded V̂ functions.

A.4.3 T Net trade property

In Claim 2, we show that, for any increasing candidate V̂ function, the corresponding candidate
optimal sale probability q∗T

(
γ; V̂ (·)

)
respects the net trade property of Theorem 1. Since Claim

2 also applies to the true value function V (·) and policy function q∗ (·), this proves Theorem 2,
the dynamic net trade property.

Claim 2. (T net trade property) Suppose that V̂ (·) is strictly increasing. Then q∗T
(
γ; V̂ (·)

)
satisfies:

• If τ = 1 − F (γ), then q∗T
(
γ; V̂ (·)

)
= τ and pV̂(·),F(·)

(
q∗T
(
γ; V̂ (·)

))
= γ+ EG(·|·)

[
V̂ (γ′) | γ

]
.

• If τ < 1 − F (γ), then q∗T
(
γ; V̂ (·)

)
> τ and pV̂(·),F(·)

(
q∗T
(
γ; V̂ (·)

))
> γ+ EG(·|·)

[
V̂ (γ′) | γ

]
.

• If τ > 1 − F (γ), then q∗T
(
γ; V̂ (·)

)
6 τ and pV̂(·),F(·)

(
q∗T
(
γ; V̂ (·)

))
6 γ+ EG(·|·)

[
V̂ (γ′) | γ

]
.

Proof. We prove this by constructing an analogy to a two-stage depreciating license game. Fixing
any increasing candidate value function V̂ , the optimization problem for a license owner with
value γ is:

q∗T
(
γ; V̂ (·)

)
= arg max

q
(q− τ)pV̂(·),F(·) (q) + (1 − q)

[
γ+ δEG(·|·)

[
V̂
(
γ′
)
| γ
]]

.

Note that, by definition, we also have pV̂(·),F(·) (F (γ)) = γ + δEG(·|·)
[
V̂ (γ′) | γ

]
. In words,

pV̂(·),F(·) (F (γ)) is the WTP of buyer quantile F (γ), which is just the use value γ plus the
continuation value γ+ δEG(·|·)

[
V̂ (γ′) | γ

]
. Hence, we can write q∗T

(
γ; V̂ (·)

)
as:

q∗T
(
γ; V̂ (·)

)
= arg max

q
(q− τ)pV̂(·),F(·) (q) + (1 − q)pV̂(·),F(·) (F (γ)) .

Subtracting the term (1 − τ)pV̂(·),F(·) (F (γ)), which does not depend on q, we get:

q∗T
(
γ; V̂ (·)

)
= arg max

q
(q− τ)

(
pV̂(·),F(·) (q) − pV̂(·),F(·) (F (γ))

)
.

This can be interpreted as the optimization of a variable profit function from a two-stage
depreciating license game, for a seller with use value pV̂(·),F(·) (F (γ)) for keeping the asset,

33



faced with buyer values distributed as pV̂(·),F(·) (q) , q ∼ U [0, 1]. Let HV̂(·),F(·) (·) represent the
distribution of pV̂(·),F(·) (q); Theorem 1 implies that:

• If τ = 1 −H
(
pV̂(·),F(·) (F (γ))

)
, we have q∗T

(
γ; V̂ (·)

)
= τ and pV̂(·),F(·)

(
q∗T
(
γ; V̂ (·)

))
=

γ+ EG(·|·)
[
V̂ (γ′) | γ

]
.

• If τ < 1 −H
(
pV̂(·),F(·) (F (γ))

)
, we have q∗T

(
γ; V̂ (·)

)
> τ and pV̂(·),F(·)

(
q∗T
(
γ; V̂ (·)

))
>

γ+ EG(·|·)
[
V̂ (γ′) | γ

]
.

• If τ > 1 −H
(
pV̂(·),F(·) (F (γ))

)
, we have q∗T

(
γ; V̂ (·)

)
6 τ and pV̂(·),F(·)

(
q∗T
(
γ; V̂ (·)

))
6

γ+ EG(·|·)
[
V̂ (γ′) | γ

]
.

To complete the proof, we must show that H
(
pV̂(·),F(·) (F (γ))

)
= F (γ). Since pV̂(·),F(·) (·) is an

increasing function, for a seller of value γ,

pV̂(·),F(·) (q) 6 pV̂(·),F(·) (F (γ)) ⇐⇒ q 6 F (γ) ,

hence,

H
(
pV̂(·),F(·) (F (γ))

)
= P

[
pV̂(·),F(·) (q) 6 pV̂(·),F(·) (F (γ))

]
= P [q 6 F (γ)] = F (γ) .

While the notation is somewhat cumbersome, the intuition behind this sequence of equalities is
straightforwards. The WTP function p (·) is an increasing function of the F-quantile q. Thus, for
a license owner of type γ, the arriving buyer’s willingness to pay pV̂(·),F(·) (q) is lower than the
license owner’s own continuation value pV̂(·),F(·) (F (γ)) if and only if the arriving buyer has F-

quantile lower than the license owner’s quantile F (γ). Thus, the probability H
(
pV̂(·),F(·) (F (γ))

)
that the arriving buyer’s WTP is lower than the license holder’s WTP is exactly F (γ).

A.5 Persistent investment

In order to accomodate investment, we need a nonstationary definition of equilibria in the
depreciating license game. Let ζ = (ζ0, ζ1, ζ2 . . .) represent the path of common use values over
time, and suppose that this is common knowledge. The use value for any agent At in any period
is thus ζt + γAt

t . We will define the nonstationary value function Vt (γt, ζ) as the value of being
a seller with type γt in period t, if the path of common use values is ζ. Analogously to above,
we will define the inverse demand function in period t as:

pt,Vt(·,ζ),F(·) (qt) =
{
pt : PVt+1(·,ζ),F(·)

[
γBtt + ζt + δEG(·|·)

[
Vt+1

(
γBtt+1, ζ

)
| γt

]
> pt

]
= qt

}
.
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Equilibrium then requires that, in each history,

Vt (γt, ζ) = max
qt

(qt − τ)pVt+1(·,ζ),F(·) (qt) + (1 − qt)
[
γt + ζt + δEG(·|·) [Vt+1 (γt+1, ζ) | γt]

]
. (6)

We conjecture an equilibrium of this game of the following form:

Vt (γt, ζ) = V (γ) +

∞∑
t′=0

δt
′
(1 − τ)t

′+1 ζt+t′ .

One can verify that if V (·) satisfies the “allocative” equilibrium Equation 5, then Vt (γt, ζt)
satisfies Equation 6. Intuitively, as in the two-stage case, if the depreciation rate is τ, agent At
only owns (1 − τ) of the asset in period t. However, if the asset has some common value in
period t+ t′, agent At has to pay license fees t′ times on the asset before enjoying its use value;
hence she effectively only owns (1 − τ)t

′+1 of any common value of the asset in period t′.
For simplicity, we analyze the investment decision of the t = 0 agent; the problem is additive

and identical for all agents in all periods, hence all agents make the same choice of investment
in each period. Suppose investment level η0 produces common value ζt = Ht (η) in the future.
Agents’ FOC for investment is:

c′ (η0) =
∂V0 (γt, ζ (η0))

∂η0
.

This implies that

c′ (η0) =

∞∑
t=0

δt (1 − τ)t+1H′t (η0) , (7)

proving Proposition 1.

B Calibration details

B.1 Persistent investment algebra

In our calibrations, we assume that investment decays geometrically at rate θ < 1; that is,
persistent investment η0 generates period t value:

Ht (η0) = θ
tη0.

Hence, following Equation 7 in Appendix A.5, the present value of a unit of investment is:

∞∑
t=0

η0δ
tθt (1 − τ)t+1 =

η0 (1 − τ)

1 − δθ (1 − τ)
,
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and agents’ investment FOCs are thus:

c′ (η0) =
1 − τ

1 − δθ (1 − τ)
.

We will suppose that the cost function is:

c (η) =
η2

2 (1 − δθ)g
,

for some value of parameter g. This is a convenient functional form which leads to a simple
analytical solution. Total social investment welfare for investment level η0 is

Investment Welfare =

(
η0 −

η2
0

2g

)(
1

1 − δθ

)
. (8)

The socially optimal level of investment is η0 = g. The maximum possible investment NPV
is thus:

g

2 (1 − δθ)
.

As we discuss in Subsection 4.1, we choose g such that the maximum possible net present value
of investment is some target fraction invfrac of the average transaction price.

Given some depreciation rate τ, constant for all time, the seller’s FOC for investment is:

η

(1 − δθ)g
=

1 − τ

1 − δθ (1 − τ)
,

=⇒ η = g
(1 − τ) (1 − δθ)

1 − δθ (1 − τ)
.

We can plug this into Equation 8 to calculate total investment welfare for any given value of τ.

B.2 Numerical procedures

As we discuss in Appendix A.4, the equilibria of the dynamic depreciating license game are the
fixed points of the pseudo-Bellman operator T:

T
[
V̂
]
= max

q
(q− τ)pV̂(·),F(·) (q) + (1 − q)

[
γ+ δEG(·|·)

[
V̂
(
γ′
)
| γ
]]

.

We numerically solve our calibrations by iterating T on grid-supported F distributions. We
use gradient descent with our numerical equilibrium solver to find moments σ,β to match the
SDmean and saleprob moments, as we describe in Subsection 4.1 of the text. Given a candidate
value function V̂ and decay rate β, we can evaluate the continuation value EG(·|·)

[
V̂ (γ′) | γ

]
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for any type γ, and thus also the inverse demand function pV̂(·),F(·) (q). Thus, we can find the
optimal sale probability q∗T

(
γ; V̂

)
for any V̂ , and thus calculate T

(
V̂
)
. Starting from a linearly

increasing V (·) function, we iteratively apply T until convergence.
Once we have solved for V (γ), this gives us equilibrium sale probability functions q∗ (γ,V)

for every type γ. Together, the equilibrium q∗ (γ,V), the transition probability distribution
G (γ′ | γ) and the distribution of entering buyer values F (γ) define a ergodic Markov chain over
values γ of the period-t owner of the asset St. We construct this transition probability matrix of
this Markov chain, and solve for its unique stationary distribution, which we call Hτ (γ). We
plot these stationary distributions for various values of τ in Figure 2. Total achievable allocative
welfare is calculated as the average welfare from the stationary distribution of the Markov chain
generated by assuming that all welfare-improving trades happen; that is, trade occurs whenever
a buyer arrives with value higher than the seller.

Once we have solved for the equilibrium V (·), we can recover the equilibrium sale probability
function q∗ (γ,V) and inverse demand function pV(·),F(·) (·), and we can use these, together
with Hτ (γ), to recover the stationary averages of various quantities that we plot in Figure 3.
Specifically, these quantities are averages of the following variables with respect to Hτ (γ):

• Use value: γ+ η.

• Sale probability: q∗ (γ, V) .

• Quantile markup: (1 − q∗ (γ, V)) − (1 − F (γ)) .

• License fee NPV: τpV(·),F(·) (q∗ (γ,V)) .

For stationary average use values, if sale occurs in period t, we should use the buyer’s use value,
not the seller’s, in calculating the stationary average. This is accommodated by multiplying
the stationary distribution Hτ (γ) by a “buyer transition” adjustment matrix, which reflects the
probability that seller type γ “transitions” through sale of the asset to any buyer type γ′ with
pV(·),F(·) (1 − F (γ′)) > pV(·),F(·) (q

∗ (γ,V)).
For license prices, we observe in the real world prices only for successful transactions;

correspondingly, we would like to take an average of asset prices weighted by the probability of
sale for each seller value γ. Thus, average license prices in Figure 3, panel 2 are calculated as:

´
pV(·),F(·) (q

∗ (γ,V))q∗ (γ,V)dHτ (γ)´
q∗ (γ,V)dHτ (γ)

.

We include investment value in the asset price by multiplying investment flow value by a factor
1

1−δ(1−τ) , and then adding the flow cost of investment. Note that, since license fees are collected
regardless of sale, we do not weight offered prices by sale probabilities q∗ (γ,V) when we
calculate average license fee revenues. Values labelled “NPV” are calculated by taking average
flow values and multiplying by 1

1−δ .
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For the sensitivity graphs in Figure 4, in order to vary the SDmean moment, for a grid of
values of σ, we search for a value of β which keeps saleprob at its initial calibration value while
varying SDmean. Likewise, for the saleprob graphs, we use a grid of β values, searching for σ
values to vary saleprob while holding SDmean constant.

B.3 Transition distribution details

Here, we describe the choices for G (γ′ | γ) in different specifications of our calibration. In all
cases, the transition process is multiplicatively separable with respect to current-period value γt;
that is, if an agent has value γt in period t, her value in period t+ 1 is χγt for some random
variable χ. We can thus describe transition distributions by describing the distribution of χ.

• In specification baseline, χ has a Beta distribution with shape parameters 20ω, 20 (1 −ω) .

• In specification mixbeta, χ is a ω-weighted mixture of two beta distributions, with shape
parameters 30× 0.98, 30× 0.02 and 10× 0.25, 10× 0.75.

• In specification jump, χ is a Bernoulli random variable with mean ω.

Intuitively, specification baseline is a relatively smooth unimodal decay process, specification
betamix is smooth but bimodal, and specification jump is as disperse as possible. The more
disperse transition distributions induce more disperse stationary distributions of asset owner
values. Depreciating licenses function more poorly when seller values are more disperse. We
believe this is because the optimal depreciation rate depends on sellers’ valued; when seller
values are more disperse, no single depreciation rate is close to correct for all seller types, thus
sellers on average have worse incentives for truthful value revelation.
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