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Abstract

We develop a new nonparametric method to estimate shares of income and wealth accruing to the
different deciles and percentiles of the distribution. Whereas methods usually employed in the literature
are parametric, inasmuch as they are typically based on the assumption that the top of the income
distribution follows a Pareto distribution, we are able to relax any assumption on the shape of the
distribution. Namely, we evaluate non-parametrically the distribution after estimating the empirical
"generalized Pareto curve". It is defined as the curve of inverted Pareto coefficients bppq, where p is
the percentile rank and bppq is the ratio between the average income above percentile p and the income
threshold at percentile p (i.e. bppq “ E ry|F pyq ě ps {F´1ppq).

We exploit income tax tabulations from 1915 to 2012 in France to generate new series that we can
compare to existing WTID series for top shares. We find that old and new series are almost equal
throughout the period. This confirms that the Paretian form fits indeed relatively well the top of the
distribution. However, the Pareto hypothesis is only valid locally, whereas the method elaborated here
allows derivation of estimates for the whole income distribution. In particular, we provide computer codes
that can be used to simulate reliable synthetic micro-files from income tabulations. Another potential
application is the homogenization of series obtained for individual-based tax systems and for household-
based tax systems, and for the income concept. Finally, we provide a preliminary application to French
1901-2000 inheritance tabulations and the distribution of wealth.



Acknowledgements

I would like to thank Thomas Piketty for his insightful comments and suggestions, his support, and
the time he devoted to supervise this work.

I am also grateful to Facundo Alvaredo for having accepted to be the referee for this master’s thesis.



Contents

1 Introduction 8

2 Existing literature on the Pareto law in income and wealth distributions 11
2.1 Previous attempts to estimate and generalize Pareto distributions . . . . . . . . . 11

2.1.1 The Pareto distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Common estimation methods . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Usual representations of the income distribution . . . . . . . . . . . . . . . 19

2.2 Theoretical models yielding Pareto distributions . . . . . . . . . . . . . . . . . . . 27
2.2.1 Earnings distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Accumulation models for wealth distribution . . . . . . . . . . . . . . . . 32

3 Generalized Pareto curves: theory and evidence 40
3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 The income distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.2 Pareto curve and quantile function . . . . . . . . . . . . . . . . . . . . . . 41
3.1.3 Lorenz curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Evidence using micro-files for France 2006 . . . . . . . . . . . . . . . . . . . . . . 46
3.2.1 The Pareto curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.2 Asymptotic decline of the Pareto curve for finite populations . . . . . . . 51
3.2.3 Estimations using tabulations of the income tax . . . . . . . . . . . . . . . 52

4 Application to French income and inheritance tax tabulations 1901-2012 61
4.1 Application to income tabulations for France 1915-2012 . . . . . . . . . . . . . . 61

4.1.1 The income tax in France . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.1.2 Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.1.3 Estimations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Application to inheritance tax tabulations 1902-1994 . . . . . . . . . . . . . . . . 79
4.2.1 The inheritance tax in France . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2.2 Estimations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Conclusion 85

A Pareto curves of usual parametric distributions 87

B Estimating the generalized Pareto curve 94
B.1 A first try: approximation by a suited functional form . . . . . . . . . . . . . . . 94
B.2 Shape-preserving interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

B.2.1 Review of basic interpolation methods . . . . . . . . . . . . . . . . . . . . 97
B.2.2 Piecewise cubic Hermite polynomial interpolation . . . . . . . . . . . . . . 102

B.3 Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4



B.3.1 Lower incomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
B.3.2 Top of the distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

C Simulation of synthetic micro-files 106
C.1 Simulation of a population using tax tabulations . . . . . . . . . . . . . . . . . . 106

C.1.1 The inversion method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
C.1.2 Matlab code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

C.2 Comparison of the results with microdata . . . . . . . . . . . . . . . . . . . . . . 115

D From households to individuals: correcting for the variations in tax units 118
D.1 Homogenization of series across countries: the problem of the changes in tax units 118

D.1.1 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
D.1.2 Method to correct for changes in tax units . . . . . . . . . . . . . . . . . . 118

D.2 Matlab code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
D.2.1 Description of the code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
D.2.2 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
D.2.3 Evidence with microdata of France 2006 . . . . . . . . . . . . . . . . . . . 121

E New series 123
E.1 Income distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

E.1.1 Taxable income . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
E.1.2 Fiscal income . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
E.1.3 Estimations for the years 2001-2012 . . . . . . . . . . . . . . . . . . . . . 133

E.2 Inheritance distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

F Empirical Pareto curves of the income and inheritance distributions 137
F.1 Pareto curves of the income distribution 1915-2012 . . . . . . . . . . . . . . . . . 137
F.2 Pareto curves of the inheritance distribution 1902-1994 . . . . . . . . . . . . . . . 138

5



List of Figures

2.1 Density of the Pareto distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 The normal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 The lognormal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Frequency distribution of incomes, France 2006 . . . . . . . . . . . . . . . . . . . 46
3.2 Pareto curve, France 2006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Pareto curve, France 2006 - Zoom . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Interpolation of the Pareto curve, France 2006 . . . . . . . . . . . . . . . . . . . . 50
3.5 Zoom on the top 0.1 percent of the Pareto curve, France 2006 . . . . . . . . . . . 51
3.6 Final drop - Comparison with simulation . . . . . . . . . . . . . . . . . . . . . . . 52
3.7 Approximation of the Lorenz curve, France 2006 . . . . . . . . . . . . . . . . . . 56
3.8 Ratios of estimated values of true values for different deciles and percentiles of the

population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Pareto curve of the income distribution, France 1981 . . . . . . . . . . . . . . . . 75
4.2 Comparison of new estimations of taxable income with estimations of Piketty [2001] 77
4.3 Evolution of the top shares of income accruing to different percentiles of the pop-

ulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4 Pareto curve of the inheritance distribution, France 1943 . . . . . . . . . . . . . . 81
4.5 Comparison of new estimations of the inheritance distribution with estimations of

Piketty [2001] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.6 Evolution of the top shares of inheritance accruing to different percentiles of the

population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.1 Pareto curves of Pareto type I and type II distributions . . . . . . . . . . . . . . 88
A.2 Pareto curves of type III and type IV Pareto distributions . . . . . . . . . . . . . 89
A.3 Pareto curves of lognormal distributions . . . . . . . . . . . . . . . . . . . . . . . 90
A.4 Pareto curves of Champernowne and Sech2 distributions . . . . . . . . . . . . . . 91
A.5 Pareto curves of Gamma distributions . . . . . . . . . . . . . . . . . . . . . . . . 92
A.6 Pareto curves of Weibull and Singh-Maddala distributions . . . . . . . . . . . . . 93

B.1 Approximation of the generalized Pareto curve, France 2006 . . . . . . . . . . . . 95
B.2 Approximation of the generalized Pareto curve, France 2006 . . . . . . . . . . . . 96
B.3 Linear interpolation of the generalized Pareto curve . . . . . . . . . . . . . . . . . 98
B.4 Cubic spline interpolation of the generalized Pareto curve . . . . . . . . . . . . . 98
B.5 PCHIP interpolation of the Pareto curve . . . . . . . . . . . . . . . . . . . . . . . 100
B.6 PCHIP interpolation of the Pareto curve - Zoom on top percentiles . . . . . . . . 101
B.7 Extrapolation of the lower part of the Pareto curve, France 2006 . . . . . . . . . 105

C.1 Comparison of simulated population and microdata . . . . . . . . . . . . . . . . . 116
C.2 Comparison of simulated population and microdata - Lorenz curve . . . . . . . . 117

6



List of Tables

3.1 Income tax tabulation, France 2006 . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Tabulation corresponding to microdata - Tax scale: France 2006 . . . . . . . . . . 53
3.3 Tabulation corresponding to microdata - Tax scale: France 2012 . . . . . . . . . . 54
3.4 Thresholds corresponding to different deciles and percentiles of the population . . 57
3.5 Average income above different deciles and percentiles of the population . . . . . 57
3.6 Values taken by the Lorenz curve at different deciles and percentiles of the population 57

4.1 Share of taxable households and number of tax brackets by year, France 1915-1944 64
4.2 Share of taxable households and number of tax brackets by year, France 1945-1998 67
4.3 Deductibility of the IGR: corrective rates for incomes of the years 1916-1947 . . . 72
4.4 Deductibility of the IGR and schedular taxes: global corrective rates for incomes

of the years 1916-1970 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5 Category abatements: corrective rates for incomes of the years 1915-1998 . . . . . 75
4.6 Share of positive legacies and number of thresholds in the inheritance tax tabula-

tions by year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

C.1 Input of the Matlab program - Worksheet "Tabulation" . . . . . . . . . . . . . . 108
C.2 Input of the Matlab program - Worksheet "Average income" . . . . . . . . . . . . 108

D.1 Comparison with microdata - Thresholds . . . . . . . . . . . . . . . . . . . . . . . 122
D.2 Comparison with microdata - Average income . . . . . . . . . . . . . . . . . . . . 122

E.1 Estimations of taxable income 1919-1944 - Thresholds . . . . . . . . . . . . . . . 123
E.2 Estimations of taxable income 1945-1998 - Thresholds . . . . . . . . . . . . . . . 124
E.3 Estimations of taxable income 1919-1944 - Average income . . . . . . . . . . . . . 125
E.4 Estimations of taxable income 1945-1998 - Average income . . . . . . . . . . . . . 126
E.5 Estimations of fiscal income 1919-1944 - Thresholds . . . . . . . . . . . . . . . . . 127
E.6 Estimations of fiscal income 1945-1998 - Thresholds . . . . . . . . . . . . . . . . . 128
E.7 Estimations of fiscal income 1919-1944 - Average income . . . . . . . . . . . . . . 129
E.8 Estimations of fiscal income 1945-1998 - Average income . . . . . . . . . . . . . . 130
E.9 Estimation of fiscal income 1919-1944 - Shares . . . . . . . . . . . . . . . . . . . . 131
E.10 Estimation of fiscal income 1945-1998 - Shares . . . . . . . . . . . . . . . . . . . . 132
E.11 Estimations of income distribution 2001-2012 - Threshold . . . . . . . . . . . . . 133
E.12 Estimations of income distribution 2001-2012 - Average income . . . . . . . . . . 133
E.13 Estimations of income distribution 2001-2012 - Share . . . . . . . . . . . . . . . . 133
E.14 New estimations of inheritance distribution - Threshold . . . . . . . . . . . . . . 134
E.15 New estimations of inheritance distribution - Average income above . . . . . . . . 135
E.16 New estimations of inheritance distribution - Share . . . . . . . . . . . . . . . . . 136

7



Section 1

Introduction

During the past fifteen years, the renewed interest for the long-run evolution of income and wealth
distribution gave rise to a flourishing literature (see Piketty [2001], Atkinson and Piketty [2007,
2010], Piketty [2013]). To a large extent, this literature follows the pioneering work of Kuznets
[1953] and Atkinson and Harrison [1978] and extends it to many more countries and years. In
particular, a series of studies estimated the evolution of shares accruing to top income groups over
the long-run for a range of more than twenty countries (see Atkinson et al. [2011] and Alvaredo
et al. [2013] for recent surveys). This work was recently extended to study the long run evolution
of wealth-income ratios and top wealth shares (Piketty and Zucman [2014] and Saez and Zucman
[2014]). Existing data is available online on the World Top Income Database1 (WTID) [Alvaredo
et al., 2015], a database that is currently being subsumed into a broader WorldWealth and Income
Database (W2ID) (Alvaredo, Atkinson, Piketty, Saez and Zucman, 2015). The present master
thesis contributes to this literature by developing new nonparametric methods to estimate the
shape of income and wealth distributions and to generate reliable synthetic micro-files.

The construction of long run top income series usually rests on income tax tabulations released
by fiscal administration. Commonly, in countries where a progressive income tax is established,
tax authorities publish annually tables assembling taxpayers by range of income, giving the
number of taxpayers in each bracket and the total income they earned. The thresholds in these
administrative statistics are those of the income tax and do not coincide with the considered
groups such as the top 10% or the top 1%. To interpolate the figures of interest, some assumption
has to be made on the shape of the distribution between the different tax thresholds. Typically,
the top of the income distribution is said to follow a Pareto law.

Indeed, it is widely accepted that the upper tail of the income distribution is Paretian while
the middle part is lognormal. Hence, the distribution of incomes is usually represented in a
piecemeal fashion rather than as a whole. Distinct functional forms are adopted to fit the different
parts of the distribution. Economists generally take a parametric approach to modeling the
taxpaying population. This approach implicitly assumes that observed incomes in the population
are realizations of a random variable following an unknown probability distribution which belongs
to some parametrized family of probabilistic models. Finding the underlying distribution then

1Accessible at http://topincomes.g-mond.parisschoolofeconomics.eu/.

8

http://topincomes.g-mond.parisschoolofeconomics.eu/


comes down to fit the parameters to the data observed in the tax tabulations. To evaluate how
well the selected statistical model fits the data, various measures of goodness-of-fit summarize
the discrepancies between observations and the values expected under the model at issue. Monte
Carlo simulations allows to appraise numerically the likelihood that the sample do follow the
specified model. However, such tests often reject the Pareto hypothesis (see Clauset et al. [2009]
or Cho et al. [2015] for instance). As soon as the Paretian form of the distribution is taken for
granted, it is used to infer the shape of the distribution and to compute the desired estimates.

On the opposite, we adopt a nonparametric approach in this dissertation. We develop a
method that allows to compute statistical quantities without deploying any statistical model
(such as a lognormal distribution or a Pareto distribution). We do not assume any more the
existence of an underlying distribution under which the incomes of the observed population would
be drawn. We only consider the "true" empirical distribution of a large number of individual
incomes, which we approximate by a more convenient and manageable continuous probability
distribution function. Starting with available data, we determine this empirical distribution
function.

In nonparametric statistics, it is common to assess the shape of the probability distribution
function ruling a sample of independent and identically distributed observations using kernel
density estimations. These methods work whenever we can directly observe a set of draws from
this probability distribution. In the issue in question, we do not observe a sample of individual
incomes but only the data in the tax tabulations. By interpolating appropriately the data in
these tables, we will be able to determine the shape of the income distribution.

We obtain an internally consistent representation of the whole taxpaying population. We
suggest four main empirical applications of this work.

First, we are able to generate more precise estimations of the shares accruing to the most
affluent percentiles of the population than standard methods. However, resulting series remain
very close to the old ones. The hypothesis of a Paretian upper part is still very satisfactory. There
is no doubt that the corrections made are negligible with respect to the inherent discrepancies
of income tax tabulations-based estimations (namely, the collection of tax statistics through an
administrative process which is thus not tailored to economists’ needs, exemptions, tax avoidance
and tax evasion).

Second, our method allows to compute estimations of shares on the lower and the middle parts
of the income distribution for which usual methods were silent. Indeed, the Pareto hypothesis
restricted the scope of studies to the upper tail. Here, once the fraction of the population filing
tax returns is large enough, we are able to measure the share earned by the top 60% for instance.

Third, we can simulate numerically a sample of taxpayers whose incomes follow the same
distribution as the incomes of the true population corresponding to the tax tabulations.

Fourth, we tackle the empirical issue of the comparability of series across countries which
define different tax units (the household or the individual). Even within one country, changes in
the tax legislation may hinder the creation of homogenous series.

We start by reviewing the methods previously used to estimate top income shares. They
were based on a number of statistical models that aim at generalizing the lognormal and the
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Pareto distributions. Such representations of the income distribution have theoretical grounds.
A growing literature tries to explain the occurrence of Pareto upper tails and to analyze the
economic mechanisms at work. We will survey this literature at the end of this second section.

We then turn to generalized Pareto curves. We first outline our nonparametric method from
a theoretical point of view. We subsequently supply evidence of its accuracy and describe its the
potential applications using micro-files provided by French tax authorities for 2006.

In a last part, we apply our new technique using tabulations for France for incomes from
1915 and for inheritance from 1902.

10



Section 2

Existing literature on the Pareto law in
income and wealth distributions

2.1 Previous attempts to estimate and generalize Pareto distri-
butions

It is broadly agreed among economists that the upper tails of income and wealth distributions
are well-described by the so-called Pareto law. This functional form was named after the Italian
economist Vilfredo Pareto who found that this specific form fitted well to the income distributions
which he was examining.

Let us first remind some basic facts about the Pareto distribution. In the rest of the section,
we will first discuss some methods often used to make estimates based on fiscal sources. Then,
we will describe past attempts to generalize this form.

2.1.1 The Pareto distribution

2.1.1.1 Presentation

In the 1890s, Vilfredo Pareto1 looked into income distributions using data from England, Italian
cities, German states, Paris and Peru [Pareto, 1896]. He took advantage of the newly imple-
mented tax systems to collect data from tax tabulations. His pioneering empirical work helped
provide statistical grounds to the politically and intellectually passionate debates on income
distribution.

An engineer by training, Pareto had the idea to plot on a double-logarithmic scale the number
of incomes above a certain threshold against the respective threshold. He claimed that the
resulting graphs were parallel straight lines which translated into his well-known curve:

logN “ A´ a log x (2.1)

where N is the number of households which income is greater than x, A is a parameter and a is
1For an detailed reference on Pareto’s work, see [Persky, 1992].
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the opposite of the slope.
Taking exponential of both sides, this equation is equivalent to:

Npxq “ Cx´a (2.2)

with C “ eA. This property characterizes Pareto distributions2.

2.1.1.2 Definition and basic facts

Formally, a random variable Y is said to follow a Pareto distribution if its survival function is
given by:

F pyq “ PpY ą yq “

$

&

%

´

k
y

¯a
if y ě k,

1 otherwise.
(2.3)

where k ą 0 is the scale parameter and a ą 1 is a parameter determining the shape of the
distribution.

Equivalently, the cumulative distribution function (CDF) of a Paretian random variable is:

F pyq “ 1´

ˆ

k

y

˙a

(2.4)

and its density (PDF) writes:

fpyq “
aka

y1`a
. (2.5)

Figure 2.1: Density of the Pareto distribution

As noticed by Pareto, when the associated survival function is plotted employing logarithmic
2Which are sometimes called power laws.

12



scales on both axes, the graph turns out to be a straight line.

logpF pyqq “ logp1´ F pyqq “ a logpkq ´ a logpyq (2.6)

Pareto stressed that this asymmetric distribution was fundamentally different from a normal
curve. It is skewed (and even one-sided) and heavy-tailed. Its density begins at a minimum
income k and decreases monotonically afterwards.

A key property of the Pareto distribution is often referred to as the Van der Wijk’s law [der
Wijk, 1939]. For any level of income y, the average income of the subgroup that earns at least
y is simply bˆ y where b “ a

a´1 . To follow the notations in [Atkinson et al., 2011], the constant
of proportionality b is called the (inverted) Pareto coefficient. More specifically,

y˚pyq “ ErY |Y ą ys “

ş

ząy zfpzqdz
ş

ząy fpzqdz
“

ş

ząy
dz
za

ş

ząy
dz
z1`a

“
a

a´ 1
y (2.7)

so that the ratio is independent of the income y.
A high Pareto coefficient b is associated with a distribution of income that exhibits a high

level of inequality.
Pareto found out that the slopes of the plots that he had drawn for different periods and

different countries lied in a narrow range, so that the values of the crucial parameter a actually
clustered around 1.5. He inferred from this apparent stability that some natural law was ruling
the distribution of incomes and hoped that he had discovered a universal constant that resulted
from underlying economic mechanisms.

This earlier dogmatic interpretation has been discarded for long, but the fact is that the
Paretian functional form fits well the distribution of top incomes. Consequently, the use of the
Pareto law to describe and approximate the top of the distribution is now widely spread.

2.1.2 Common estimation methods

While early Pareto literature centered on the estimation of the parameter a which was supposed to
characterize on its own the top of the income distribution, posterior tax-based research strove to
describe the distribution accurately by constructing more meaningful income share time series.
The Paretian functional form then proved to have convenient properties useful for technical
manipulations.

2.1.2.1 Tax tabulations data

Standard tabulations made available by tax authorities give the fraction of the population in
each tax bracket and generally to the total amount they earn. These tables are published every
year in France by fiscal administration since the creation of the income tax in 1915. Thresholds
are arbitrary and vary over time and across countries. Typically, the income intervals do not
coincide with the groups of taxpayers we are concerned about. We cannot directly find figures
of interest such as the share of national product accruing to the top 1% of households, their
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average income or the threshold for being in the top 10%. To assess these quantities, we have to
extrapolate from raw data by making some assumption about the shape of the distribution.

Let’s assume that we observe in administrative tabulations a set of ω taxable income brackets

rθ1, θ2q, rθ2, θ3q, . . . , rθω,`8q

with 0 ď θ1 ă θ2 ă . . . ă θω ă `8. For each interval rθi, θi`1q, the number ni of taxpayers
whose income lies between θi and θi`1 is also known. Often, tabulations give yi, the total amount
of taxable income declared by these taxpayers.

From this, we can easily compute µi, the mean income of people in income class rθi, θi`1q,
and bi, the empirical counterpart of Pareto coefficient b which is equal to:

bi “
1

θi

yi ` . . .` yω
ni ` . . .` nω

. (2.8)

We denote N “ n1 ` . . . ` nω the total number of taxpayers, φi “ ni{N the relative frequency
within interval rθi, θi`1q, and pi “ φ1 ` . . .` φi´1 the fractile corresponding to the threshold θi.

2.1.2.2 The interpolation problem

Using only the information published in tax tabulations, we want to find out about the true
density function f (and its associated cumulative distribution function F ) in order to derive
estimates of interest.

Notice that pi is the empirical counterpart of F pθiq, and similarly we observe:

φi “

ż θi`1

θi

fpyqdy, (2.9)

µi “
1

φi

ż θi`1

θi

yfpyqdy, (2.10)

bi “
1

θi

ş`8

θi
yfpyqdy

ş`8

θi
fpyqdy

“
1

p1´ F pθiqqθi

ż `8

θi

yfpyqdy. (2.11)

A first approach is to calculate lower and upper bounds consistent with available data and
within which the true value of the quantity we care about must lie. For instance, the total
amount earned by the top 10 percent is between

TL “
pi`1 ´ 0.1

pi`1 ´ pi
φiµi `

ÿ

jěi`1

φjµj

and, if we define αi P r0, 1s such that µi “ αiθi ` p1´ αiqθi`1,

TU “

$

&

%

pi`1´0.1
pi`1´pi

φiθi`1 `
ř

jěi`1 φjµj if 0.1 ě pi ` αiφi,
´

αi ´
0.1´pi
pi`1´pi

¯

φiθi ` p1´ αiqφiθi`1 `
ř

jěi`1 φjµj otherwise,
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where pi ď 0.90 ă pi`1.
These two bounds are met when all the taxpayers in this income class all earn the same

income (lower bound) or if a fraction αi earns θi and the others earn θi`1 (upper bound). But
this range of values is quite large and boundaries would be reached under unrealistic conditions
about the distribution.

As the minimal and maximal values would be hypothetically obtained with some specific
distributions, we cannot produce more precise estimates without additional assumption about
the shape of the underlying distribution. In reality, the taxpayers within each income interval do
not all gather near one boundary of the bracket so that the true income distribution is presumably
rather smooth.

A more satisfactory way to address the estimation problem is thus to suppose a certain
distribution of incomes satisfying plausible assumptions3 within tax intervals. We describe below
alternative estimation methods depending on whether we know the income means µi, as presented
in the technical appendix of [Cowell, 2009]. Most of these methodologies rely on the assumption
that the top of income distribution obeys a Pareto law.

More specifically, we assume that the density function on interval rθi, θi`1q is fi, a partic-
ular functional form whose parameters are determined using information we have on interval i
(namely, its boundaries θi and θi`1, its relative frequency φi and possibly its mean µi).

Then, we can compute the CDF:

F pyq “ pi `

ż y

θi

fipzqdz (2.12)

and the total income of people earning at most y:

spyq “ si `

ż y

θi

zfipzqdz. (2.13)

2.1.2.3 Estimation when intervals means are unknown

First, let us suppose that the only information we have about each interval rθi, θi`1q is its relative
frequency φi.

Histogram density The simplest form we can think of is a density function which is
uniform within each tax bracket. The density on interval i is given by:

fipyq “
φi

θi`1 ´ θi
, θi ď y ă θi`1. (2.14)

Paretian density Another approach is the one initially developed by Pareto [1896], and
subsequently used by Kuznets [1953] and then by Feenberg and Poterba [1993] with income tax
tabulations of the US.

3A list of assumptions that should be verified by the interpolated distribution is given by Cowell and Mehta
[1982].
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Taking advantage of the good fit of the Paretian form with the income distribution, we assume
that the density within each bracket writes:

fipyq “
aik

ai
i

yai`1
, θi ď y ă θi`1 (2.15)

where ai and ki are the parameters to find.
There are two alternative ways to identify these parameters, depending on where we put k,

the minimal income above which the Paretian law holds.

• A first option is to assume that the Pareto form is defined on rθi,`8q. In particular,
k “ θi. Then, we have from the linearity of the Pareto diagram (2.6):

logp1´ φiq “ ai logpθiq ´ ai logpθi`1q (2.16)

which leads to:
ai “

logp1´ φiq

log
´

θi
θi`1

¯ . (2.17)

• Another possibility is to assume that the Paretian form is valid on the whole distribution
of incomes, and to assess from this hypothesis the value of k. Again, we make use of the
linearity of the Pareto diagram (2.6) to get the two equations:

logp1´ piq “ ai logpkq ´ ai logpθiq (2.18)

and
logp1´ pi`1q “ ai logpkq ´ ai logpθi`1q. (2.19)

Substracting (2.19) to (2.18), we get the estimate of ai:

ai “
logpp1´ piq{p1´ pi`1qq

logpθi`1{θiq
(2.20)

and then the estimation of k:
k “ θip1´ piq

1{ai . (2.21)

This is the method that has been initially used by Pareto [1896], and then for the US by
Kuznets [1953] and Feenberg and Poterba [1993].

The formula 1 ´ F pyq “
´

k
y

¯a
then allows to extrapolate the whole distribution of the top

incomes. For instance, to calculate the threshold and average income of the top 0.5%, first choose
the bracket i the closer to p “ 0.995.

P99.5 “
ki

0.0051{ai
“

ˆ

1´ pi
0.005

˙pbi´1q{bi

θi

P99.5´ 100 “ bi ¨ P99.5 “ bi

ˆ

1´ pi
0.005

˙pbi´1q{bi

θi
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We can deduce the threshold above which one household is in the top-earning 0.5%:

P99.5 “
k

0.0051{a

and the average taxable income that those households earn:

P99.5´ 100 “
a

a´ 1
P99.5 “

a

a´ 1

k

0.0051{a
.

Finally, the share of total taxable income earned by the top 0.5% of taxpayers is:

0.005ˆ P99.5´ 100

y

where y is the average taxable income in the whole population.

2.1.2.4 Estimation when intervals means are known

Polynomial interpolation A first idea is to consider a polynomial interpolation fi of the
density over each interval rθi, θi`1q. The conditions on the boundaries and the means of the
brackets boil down to the systems:

$

’

&

’

%

φi “
şθi`1

θi
fipyqdy

µi “

şθi`1
θi

yfipyqdy
şθi`1
θi

fipyqdy

(2.22)

If the degree of the polynomials fi is higher than 2, the density is likely to exhibit turning
points or even to become negative within the intervals. So in practice, the use of polynomials to
approximate the density functions is limited to polynomials of order 1 or 2.

For instance, the straight line density is given by the formula4:

fipyq “ bi ` ciy, θi ď y ă θi`1 (2.23)

where
bi “

12µi ´ 6pθi`1 ´ θiq

pθi`1 ´ θiq3
φi (2.24)

and
ci “

φi
θi`1 ´ θi

´
1

2
pθi`1 ` θiqbi. (2.25)

Split histogram density Another simple approach is to approximate the density function
with an histogram. Now, to meet the two conditions on the relative frequency and the mean in

4See [Cowell, 2009].
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the interval, we have to split each the bracket in two.

fipyq “

$

&

%

φi
θi`1´θi

θi`1´µi
µi´θi

if θi ď y ă µi,

φi
θi`1´θi

µi´θi
θi`1´µi

if µi ď y ă θi`1.
(2.26)

Piecewise Paretian interpolation Again, we can assume that the distribution is Paretian
within each bracket and define:

fipyq “
aik

ai
i

yai`1
, θi ď y ă θi`1. (2.27)

• The easiest way is to use the bi corresponding to the thresholds θi given in the tabulations
and to compute for each threshold:

ai “
bi

bi ´ 1
(2.28)

and:
ki “ θip1´ piq

1{ai . (2.29)

This is the method developed by Piketty [2001] for France.

• A second option is to solve the following system of equations. If we compute the two
conditions of the system (2.22), we get:

aik
ai
i “

aiφi

θ´aii ´ θ´aii`1

(2.30)

where ai is the root of the following equation5:

µi “
ai

ai ´ 1

θ1´ai
i ´ θ1´ai

i`1

θ´aii ´ θ´aii`1

. (2.31)

2.1.2.5 Discussion of the methods

Histogram and polynomial density are the more elementary methods to interpolate the income
distribution. However, the choice of such functional forms to fit the data has no theoretical
support.

On the other hand, the usual assumption that the distribution of incomes among the rich
follows (at least locally) a Pareto law is a rationale for the Paretian interpolation methods.
Conversely, their accuracy relies crucially on the extent to which the Pareto hypothesis is satis-
fied. This approach has been validated by Feenberg and Poterba [1993] and Piketty [2001] by
comparing results with micro data.

But the Paretian shape of the income distribution is questioned. As far back as 1905, Lorenz
[1905] argued that "logarithm curves are more or less treacherous". Indeed, the use of logarithmic

5Which can be solved analytically.
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scales in the Pareto diagram compresses the data and conceals irregularities. The response of
Johnson [1937] to critics attacking the poor fit of the Pareto distribution is not fully convincing.

Actually, this assumption is never globally verified. Even locally, coefficients bi fluctuate and
the Pareto hypothesis is only approximately satisfied so that the obtained estimations remain
imprecise. While common methods employed to analyze Pareto-like distributions merely give
estimates of parameters, Clauset et al. [2009] suggest a rigorous statistical framework to dis-
cern whether the data do exhibit a Pareto behavior. When they apply their method to wealth
distribution, they find no evidence that it obeys a Pareto law at all.

Furthermore, piecewise Paretian interpolation is quite unsatisfactory as the implied interpo-
lated distribution is not plausible: the corresponding density is not continuous as the intervals
are considered independently.

2.1.3 Usual representations of the income distribution

The most common continuous probability law is the normal (or Gaussian) distribution whose
density can be expressed on R as:

fpxq “
1

σ
?

2π
exp

ˆ

´
px´ µq2

2σ2

˙

, (2.32)

where µ and σ2 are respectively the mean and the variance.
Its predominance is justified on a theoretical basis by the central limit theorem which states

that the mean of a large number of independent and identically distributed random variables
satisfying quite general conditions is approximately normally distributed, regardless of the law
shared by these variables.

Consequently, the normal law is often employed to approximate the distribution of random
variables whose underlying law is unknown and which are expected to result from many inde-
pendent processes.

Figure 2.2: The normal distribution
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Yet, the Gaussian functional form poorly fits income distributions. A first reason is that
a normal distribution takes negative values. Even restricting attention to the positive part of
the curve, it appears that the Gaussian shape does not look like the income distribution. The
normal distribution is symmetrical about its mean (so that the mean, the median and the mode
are indeed equal), and its density is nearly zero as soon as x is more than a few standard
deviations away from the mean. On the contrary, the typical income distribution is positively
skewed and heavy-tailed for top incomes. Concretely, if we set reasonable values for the means
and the standard deviations, such as µ “ 30000 e, σ “ 15000 e, there is the same absolute
difference between the mean and the 10th percentile (p10 “ 10777 e) and between the mean and
the 90th percentile (p90 “ 49223 e). The top thresholds are excessively low (p99 “ 64895 e,
p99.9 “ 76353 e, p99.99 “ 85785 e) and the Pareto coefficient lies between 1.04 and 1.14 on the
top 10 percent. The predicted shares for top-earning individuals are also widely underestimated
(s90 “ 18.8%, s99 “ 2.1%, s99.9 “ 0.03%).

2.1.3.1 Lognormal distribution

A more promising candidate to fit the shape of the income distribution is the lognormal law. By
definition, a random variable Y follows a lognormal law if X “ log Y is normally distributed.
One can check that the density of Y is then given by:

fpyq “
1

yσ
?

2π
exp

ˆ

´
pln y ´ µq2

2σ2

˙

, @y ą 0. (2.33)

The median of the lognormal distribution is eµ, its mean is eµ`σ2{2, its mode is eµ´σ2 and its
variance is peσ2

´ 1qe2µ`σ2 .

Figure 2.3: The lognormal distribution

The lognormal distribution appears to be well-suited to represent the distribution of incomes.
Firstly, it takes only positive values. But an even more attractive feature is that it is positively
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skewed and heavy-tailed6, just as the income distribution. Its mean is greater than its median
which in turn is greater than its mode.

This functional form allows for a higher dispersion than the normal distribution. Indeed, the
ratio of the 90th percentile to the median is now the same as the ratio of the median to the 10th
percentile while the absolute differences of these percentiles were equal for the normal law. But
to obtain a gap not too wide, σ has to be very low, which generates then an upper tail not spread
out enough beyond the 10th percentile. More specifically, with a median µ “ 30000 e, σ has to
be close to 2 to get realistic values for p10 and p90. This induces a Pareto coefficient ranging from
1.20 to 1.45 between p90 and p99.99 and top shares respectively equal to s90 “ 27.8%, s99 “ 5.1%

and s99.99 “ 0.1%. Actually, inequality is much more pronounced in the top 10 percent.

2.1.3.2 Pareto distribution

The Paretian functional form introduced in section 2.1.1 works well to describe the distribution
of income and wealth among the rich. The Pareto hypothesis is usually made to represent the
upper tail of the distribution.

In France, the Pareto coefficient b for top incomes was around 2.2 and 2.3 in the interwar
years, and lies 1.7 and 1.8 since World War II. It has declined from WWII to the 1970s, and rises
within top 10 percent since the 1970s.

2.1.3.3 Piecemeal distributions

As we have just seen, the middle part of the distribution (from about the 10th percentile to
the 80th percentile) is well approximated by a lognormal law. The upper tail, that is, incomes
above the 20th percentile, is better described by a Pareto distribution. To model the income
distribution as a whole, one could take a piecemeal approach and try to "stick" a Paretian upper
tail to a lognormal central part. In this way, the different parts of the income distribution would
be appropriately approximated with different functional forms.

For this purpose, we have to determine some percentile p˚ as the threshold above which the
distribution is Paretian. Say, p˚ “ 0.9 and y˚ is the income such that F py˚q “ p˚ if F is the
CDF of a lognormal distribution. Therefore, y˚ is determined by the parameters µ and σ which
are chosen for the lognormal distribution to fit the central part of empirical data. Then, the
relation 1´ p˚ “ pk{y˚qa gives the value of k as a function of the parameter a.

A natural requirement to obtain a plausible functional form would be that the density is
continuous and smooth at the point y˚. However, such a property cannot be satisfied: the
continuity condition and the smoothness condition at the sticking point do not give the same
value for a as a function of µ and σ. Indeed, the slope of the lognormal density would imply an
upper tail heavier than the continuity condition does.

6Formally, a distribution is said to have a heavy right tail if:

lim
xÑ`8

eλxF pxq “ `8 @λ ą 0, (2.34)

where F is the associated survival function. Examples of such probability laws include the lognormal distribution
and the Pareto law.
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A less stringent assumption is that the density is only required to be continuous. Then, there
are three degrees of liberty, and we have several options for parametrization, depending on the
choice of the three parameters.

2.1.3.4 Empirical evidence

Clementi and Gallegati [2005] analyze income datasets for the United States (1980-2001), United
Kingdom (1991-2001) and Germany (1990-2002). They advocate a mixture of the lognormal
functional form (for the low-middle income group) and the Pareto function (for the high income
group) to represent the income size distribution.

According to Aitchison and Brown [1957], the lognormal form is empirically appropriate for
the distribution of earnings in homogenous occupational groups. They rely on disaggregated data
for the year 1950 in Great Britain. The respective distributions of earnings in nine agricultural
occupations (lorry drivers, stockmen, horsemen...) seem to be lognormally distributed.

Harrison [1979, 1981] also argues after examining British data that the Pareto distribution
is less appropriate than the lognormal form to fit the upper tail of earnings distributions when
data is disaggregated by occupational group. He explains the persistent validity of the Pareto
distribution for the overall distribution by the significant variations of the standard deviations
of logarithms of incomes σ across the different groups which prevent the aggregate from being
lognormal.

2.1.3.5 Other distributions

A range of functional forms have been suggested to fit the income distributions. They reproduce
the shape of the lognormal and Paretian forms, but allow for more flexibility with a higher
number of parameters.

They can be classified into several families. For an overview of these functional forms, see
[Cowell, 2009] and for an inventory of their properties, see [Kleiber and Kotz, 2003].

Three-parameter lognormal distribution The random variable X is said to follow a three-
parameter lognormal distribution if there exists a real number λ such that X “ lnpY ´ λq is
normally distributed. Its PDF writes:

fpyq “
1

py ´ λqσ
?

2π
exp

ˆ

´
rlnpy ´ λq ´ µs2

2σ2

˙

, @y ą λ. (2.35)

According to Metcalf [1969], the lognormal distribution overcorrects for the positive skewness of
the income distribution, so that the observed data exhibits negative skewness after logarithmic
transformation. If the random variable Y is positively skewed and lnY negatively skewed, there
exists a C ą 0 such that lnpY ` Cq has zero skewness. Therefore, Metcalf uses the three-
parameter lognormal distribution to obtain the desired degree of skewness and claims that this
functional form provides a good fit for the lower tail of the income distribution for US data from
1949 to 1965.
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Pareto-type distributions The distribution previously named Pareto distribution is only one
of the many functional forms suggested by Pareto himself. Its CDF could be expressed:

F pyq “ 1´
” y

σ

ı´α
, @y ě σ, (2.36)

with σ and α positive parameters. Arnold [2015] uses the following typology.

Pareto type II distribution The CDF of a Pareto type II distribution is given by:

F pyq “ 1´

„

1`
y ´ µ

σ

´α

, @y ě µ, (2.37)

with σ, α ą 0 and µ P R.

Pareto type III distribution The CDF of a Pareto type III distribution writes:

F pyq “ 1´

«

1`

ˆ

y ´ µ

σ

˙1{γ
ff´1

, @y ě µ, (2.38)

where σ, γ ą 0 and µ P R.

Pareto type IV distribution We can express the CDF of a Pareto type IV distribution
as:

F pyq “ 1´

«

1`

ˆ

y ´ µ

σ

˙1{γ
ff´α

, @y ě µ, (2.39)

with σ, γ, α ą 0 and µ P R.
The Pareto type II distribution corresponds to the special case γ “ 1 and the Pareto type

III to the case α “ 1. With γ “ 1 and µ “ σ, we have the Pareto type I distribution.

Champernowne distribution Champernowne [1953] derives another distribution whose form
is based on reasoning about processes of income generation. Its CDF writes:

F pyq “ 1´
1

θ
arctan

ˆ

sin θ

cos θ ` ry{y0s
α

˙

, @y ě 0. (2.40)

This functional form is Paretian in the upper tail as:

1´ F pyq „yÑ`8 Cy´α (2.41)

with C “ 1
θy

α
0 sin θ.

Thatcher [1968] provides empirical evidence with the distribution of earnings in Great Britain.

Sech square distribution Fisk [1961] analyzes a special case of the Champernowne dis-
tribution which he claims to fit reasonably well the income distributions which are homogenous
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in occupation while remaining tractable. Its CDF is given by the formula:

F pyq “ 1´
1

1` ry{y0s
α
, @y ě 0. (2.42)

Gamma-type distributions

Gamma distribution The well-known Gamma distribution has been used to approximate
the income distribution by Salem and Mount [1974]. Its PDF is given by the formula:

fpyq “
ry{y0s

γ´1e´y{y0

Γpγq
, @y ě 0, (2.43)

with parameters γ ě 0 and y0 ą 0.
The authors show that the Gamma distribution outperforms the lognormal distribution to

fit the personal income data in the United States for the years 1960 to 1969.

Generalized Gamma distribution Esteban [1986] speak in the Generalized Gamma dis-
tribution favor’s from a theoretical perspective. This functional form has PDF:

fpyq “
βry{y0s

βγ´1e´ry{y0s
β

Γpγq
, @y ě 0, (2.44)

with β ą 0, γ ě 0 and y0 ą 0.

Weibull distribution The CDF of the Weibull distribution can be expressed as:

F pyq “ 1´ expp´ry{y0s
βq, @y ě 0, (2.45)

where β and y0 are positive real numbers.

Singh-Maddala distribution Singh and Maddala [1976] generalize the Pareto distribution
and theWeibull distribution in order to approach the entire income distribution with the following
form:

F pyq “ 1´
1

p1` ry{y0s
βqα

, @y ě 0, (2.46)

where α, β and y0 are positive parameters. They claim that this functional form fits remarkably
well the US income data from the 1960s.

Beta-type distributions

Beta distribution Thurow [1970] uses the Beta distribution to fit the size distribution of
incomes. As the support of this distribution is bounded, a maximum value for the incomes has
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to be determined. The PDF is:

fpyq “
ry{y0s

γ´1p1´ ry{y0sq
α

Bpγ, α` 1q
, @0 ď y ď y0, (2.47)

where α ě 0, γ ą 0 and y0 ą 0. The Beta function B is a normalization constant defined as
Bpx, yq “ ΓpxqΓpyq

Γpx`yq for all positive x and y.

Beta type II distribution Slottje [1984] asserts that the Beta type II distribution provides
a good approximation to empirical income data in the US for the years 1952-1980. The PDF is
given by the formula:

fpyq “
ry{y0s

γ´1

Bpγ, α` 1qp1` ry{y0sq
α`γ`1

, @y ě 0, (2.48)

with α ě 0, γ ą 0 and y0 ą 0.

Generalized Beta distributions The generalized Beta distribution of the first and the
second kind are very flexible four-parameters distributions. They include the Beta, the Beta
type II, the Singh-Maddala, the lognormal, the Gamma, the generalized Gamma, the Weibull,
the Sech2 and the exponential distributions as special or limiting cases. The interrelationships
between these forms are given in [McDonald, 1984].

The generalized Beta distribution of the first kind has a bounded support. Its PDF can be
expressed as:

fpyq “
βry{y0s

βγ´1p1´ ry{y0s
βqα

Bpγ, α` 1q
, @0 ď y ď y0, (2.49)

with α ě 0, β ą 0, γ ą 0 and y0 ą 0.
The PDF of the generalized Beta distribution of the second kind has a bounded support

writes:

fpyq “
βry{y0s

βγ´1

Bpγ, α` 1qp1` ry{y0s
βqα`γ`1

, @y ě 0, (2.50)

with α ě 0, β ą 0, γ ą 0 and y0 ą 0.

Empirical comparison McDonald and Ransom [1979] compare the performance of the log-
normal, the Gamma, the Beta, and the Singh-Maddala distributions with various estimation
methods. Using family income data for 1960 and 1969 through 1975, they conclude that the
Singh-Maddala distribution provides better fits than the others. Also, the Gamma distribution
outdoes the lognormal distribution regardless of the estimation technique used.

McDonald [1984] discusses the alternative descriptive models for the income distribution.
As mentioned above, he considers the Beta, Beta type II, Singh-Maddala, lognormal, Gamma,
Weibull, Sech2, and exponential distributions as special or limiting cases of the generalized Beta
distribution of the first and the second kind. The four-parameter generalized Beta function
of the second kind appeared to fit the US family income data relatively better than the other
distributions considered. But the three-parameter Singh-Maddala distribution did better than
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all the others (except the generalized Beta distribution of the second kind), and its simple closed
form makes it easy to manipulate.
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2.2 Theoretical models yielding Pareto distributions

Pareto had the feeling that the regularities he had discovered in income distributions stemmed
from underlying mechanisms. The fact that all income distributions are continuous, unimodal,
highly skewed and heavy-tailed hints that some economic structure is behind their particular
form. Pareto emphasized luck, social institutions and human nature as possible sources of in-
equality. He dismissed chance and social institutions as major determinants of the shape of the
curve. The former because he had shown that if individual incomes followed from the accumula-
tion of chance as represented by a simple binomial process, the right form could not be generated.
The latter because the income distributions appeared to be similar across very different societies.
He concluded that the distribution of incomes was either related to an underlying distribution
of abilities or to the will of the elites to appropriate a certain share of the national resources.

The apparent empirical stability of the Pareto law gave rise to an abundant literature of
generative models which attempt to explain the observed patterns in income and wealth distri-
butions. They try to clarify why top incomes follow a Pareto distribution, and to specify which
economic forces affect the inequality level embodied by the Pareto coefficient.

2.2.1 Earnings distribution

We first look at models dealing with wage distribution. Notably, these models do not include any
accumulation process and are therefore simpler than models of wealth distribution. Economists
suggested processes of individual income development as well as models depicting the hierarchical
structure of society to describe the economic mechanisms involved.

Existing models attempt to make explicit the deciding factors at work. Are there some
intrinsic characteristics that determine individual incomes? Is chance, or rather the accumulation
of idiosyncratic shocks, sufficient to explain the spreading of the distribution? As put forward
by Lydall [1959], the income distribution may be more than the mere aggregation of individual
wages and may reflect a hierarchical structure prevailing within enterprises.

Models producing Pareto tails are mostly based on a few elementary mechanisms surveyed by
Gabaix [2009, 2014]7. We examine below these mechanisms, detailing more carefully the shape of
the income distribution predicted by each of them. Indeed, the resulting Pareto coefficient is not
in general constant throughout the distribution, as it would be with a true Pareto distribution.
As we shall see, the distribution is most of the time only expected to be asymptotically Paretian,
with an upper tail close to power law (formally PpY ą yq 9 y´a), in a sense to be defined.

As underlined by Gabaix [2009], power-law behavior (that is, the fact that the upper tail
of the distribution is Paretian) is a stable property. Inheritance mechanisms ensure that, if we
combine two Paretian variables, the one with the "fattest" tail will dominate. This stability
property is true for the sum, the product, the maximum of random variables. Also, adding
or multiplying by random variables which are not Paretian (normal, lognormal, or exponential
variables for instance) preserves the Pareto exponent.

7Gabaix deals with the example of city sizes, but the same mechanisms work for incomes or wealth.

27



2.2.1.1 Models based on an underlying distribution of talent

Any simple static mechanism to generate labor income inequality requires two components:

1. some heterogeneity in the population, i.e. a certain attribute has to be unequally dis-
tributed;

2. a mechanism of wage formation specifying how the relevant attribute influences wage.

Exponential growth A first insight to understand how a Pareto distribution may emerge is
analyzed by Jones [2015]: exponential growth that occurs for an exponentially distributed amount
of time generates a Pareto distribution. Here, we assume first that people are unevenly endowed
in talent or education or experience. We further hypothesize that the corresponding variable
X is exponentially distributed: PpX ą xq “ e´δx. Secondly, wage will be assumed to grow
exponentially with X: wpxq “ eµx. Under these hypotheses, one can easily show that earnings
Y “ wpXq obey a Pareto distribution of exponent a “ δ{µ:

PpY ą yq “ y´δ{µ. (2.51)

This model dates back to Cantelli [1921].

Matching and superstars effects The previous model does not provide any justification for
the alleged distribution of talent. It does not either clarify why wages should grow exponentially
with talent.

Rosen [1981] suggests a more elaborate model to account for the skewness characterizing the
top of the distribution. He argues that small differences in talent translate into large differences
in revenue because the function associating talent to revenue is convex: "small differences in
talent become magnified in larger earnings differences, with great magnification if the earnings-
talent gradient increases sharply near the top of the scale". Imperfect substitution among sellers
and consumption technologies allowing for scale economies in production jointly explain this
winner-take-all phenomenon and the marked concentration of incomes at the top.

This superstar effect is studied by Gabaix and Landier [2008] who provide a calibrated model
for the market for CEOs. Their model is of specific interest for us as it is fully calculable. Their
model makes explicit the matching of CEOs and firms. Authors use extreme value theory to jus-
tify intellectually assumptions about the distribution of attributes. Extreme value theory shows
that the spacing between talents takes on a quite universal form: for any "regular" distribution,
rank in the upper tail is of the form

T 1pxq “ ´Bxβ´1 (2.52)

with B a constant, up to a "slowly varying function"8.
8See [Gabaix, 2009] or [Gabaix and Landier, 2008] for details.
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Gabaix and Landier [2008] find that the distribution of wages is Paretian in the upper tail.
The earnings distribution is not an exact Pareto distribution any more.

Roy’s model of multiplicative talent According to Roy [1950], personal productivity is the
product of a myriad of attributes which are i.i.d. random variables.

Wage depends linearly on talent, so that the earnings are lognormally distributed.

O-Ring theory In Kremer [1993]’s O-Ring theory, the production function induces comple-
mentarity between workers’ skills. The marginal product of a worker increases with the quality
of other workers. In equilibrium, workers with the same skills work together. This implies that
the distribution of wages is more skewed than the distribution of abilities, and is a Paretian.

2.2.1.2 Chance and Markov processes

Stochastic theories of the earnings distribution originate in Champernowne [1953]. Income does
not depend on abilities or talent, but evolves randomly over time. Income is embodied by
a Markov process. This account for the fact that chance is the only factor that affects the
evolution of wage, and that the past history of its evolution does not matter.

In these models, a Paretian distribution arise eventually for a given pattern of social mobility
regardless of the income distribution originally prevailing.

Proportional random growth processes The following mechanism is a dynamic model of
the evolution of income (or alternatively wealth) over time in which the steady state distribution
has a Pareto tail. Individual incomes are depicted as stochastic processes which fluctuate as time
goes by. They grow proportionally according to a random variable. Their overall distribution
tends to some equilibrium whose upper tail is Paretian.

Unlike the exponential growth model, this model does not assume the existence of any in-
dividual characteristic determining wage. The individual variations are purely random. But
considered as a whole, the distribution of incomes in the entire population appears to have a
Pareto tail. This statistical regularity comes from the overall structure of social mobility. As
we shall see, it is the distribution of the growth of incomes with respect to the growth of the
mean that matters for the shape of the steady state income distribution. The more dispersed
this distribution is, the higher inequality.

The idea was first developed with discrete probability distributions by the statistician Yule
[1925] to explain the distribution of biological species and genera. The economist Simon [1955]
underlined the broad range of potential applications in sociology, biology and economics. The
family of random growth models for income distributions was initiated by Champernowne [1953].

We first provide the main intuition behind this class of models as it is described by Gabaix
[2009]. Then we give the result proved rigorously by Kesten [1973].

Intuition The population is represented by a continuum of individuals of mass 1. Each
individual i earns an income Y i

t at time t. Incomes are normalized so that the average in the
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population is always equal to 1. The rationale for detrending incomes is that we want to ensure
the existence of a limiting distribution.

Individual incomes raise between time t and t` 1 by a gross growth rate γit`1:

Y i
t`1 “ γit`1Y

i
t . (2.53)

As incomes are normalized, γit`1 must be interpreted as the growth rate compared with the
average: γit`1 is less than 1 if the income of individual i grows slower than the mean income and
is greater than 1 if it grows faster.

The central assumption is that growth rates γit`1 are identically and independently distributed
under a density gpγq at least in the upper tail.

We denote F tpyq “ PpY i
t ą yq the counter-cumulative distribution function of incomes at

time t. Its law of motion of F t is given by:

@y ě 0, F t`1pyq “ PpY i
t`1 ą yq

“ Ppγit`1Y
i
t ą yq

“ P
ˆ

Y i
t ą

y

γit`1

˙

“

ż 8

0
F t

ˆ

y

γ

˙

gpγqdγ.

Therefore the steady state distribution must satisfy if it exists:

@y ě 0, F pyq “

ż 8

0
F

ˆ

y

γ

˙

gpγqdγ. (2.54)

The Paretian functional form F pyq “
´

k
y

¯a
(with k a constant) is a solution if a is a root of:

1 “

ż 8

0
γagpγqdγ (2.55)

This condition is equivalent to the simple equation (2.56) called Champernowne’s equation9 by
Gabaix [2009]:

E rγas “ 1. (2.56)

This relation relates the value of a to the dispersion of the values of γ. Nirei [2009] proves that if
E rγs ă 1 and under a few other non-restrictive conditions on the distributions of the shocks, the
exponent a is decreasing in the variance of the gross rate γ. This means that inequality is higher
in the top of the income distribution when there are large random variations of the growth rate.

Gibrat [1931] pointed out that the distribution of incomes cannot converge to a steady state if
(2.53) holds throughout the distribution. Indeed, the variance of the income distribution would
write:

Var
“

lnSit
‰

“ Var
“

lnSi0
‰

` Var rln γs t (2.57)

9First published in [Champernowne, 1953].
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and would grow to infinity.
Consequently, as suggested by Gabaix [2009], we need to deviate from pure random growth

processes and to add some frictions that prevent incomes from becoming too small. For instance,
a positive constant may be included in (2.53) or a reflecting barrier may enforce a lower bound
for incomes. These frictions affect only low incomes, so that the Pareto exponent is unchanged.

Kesten processes Kesten [1973] is credited with the first rigorous study of random growth
processes of the form Yt “ AtYt´1`Bt where pAt, Btq are i.i.d. random variables. We reproduce
below his main result predicting the asymptotic behavior of the limiting distribution.

Theorem 2.2.1 (Kesten, 1973)
Let for some a ą 0,

E r|A|as “ 1 (2.58)

and E r|A|a maxplnpAq, 0qs ă `8, 0 ă E r|B|as ă `8. Also, suppose that B{p1 ´
Aq is not degenerate (i.e. can take more than one value), and the conditional
distribution of ln |A| given A ‰ 0 is non lattice (i.e. has a support that is not
included in λZ for some λ), then there are constants k` and k´, at least one of
them positive, such that

xaPpY ą xq ÝÑ k`, xaPpY ă ´xq ÝÑ k´ (2.59)

as x Ñ `8, where Y is the solution of Y “d AY ` B. Futhermore, the solution
of the recurrence equation Yt`1 “ At`1Yt ` Bt`1 converges in probability to Y as
tÑ `8.

Continuous-time processes The proofs with discrete-time processes are rather technical.
The benchmark provided by the theory of stochastic calculus and the theory of stochastic differ-
ential equations make computations much easier for continuous-time processes. The density of
the steady state distribution is found as the solution of an ordinary differential equation.

If individual incomes obey the stochastic differential equation

dYt “ µpYtqdt` σpYtqdzt (2.60)

where zt is a Brownian motion, then from Kolmogorov equation the density of the limiting
distribution is a solution of

0 “ Bxrµpxqfpxqs ` Bxx

„

σ2pxq

2
fpxq



. (2.61)

For instance, in the case of a random growth process, if µpXq “ gX and σpXq “ vX, the solution
is Paretian in the upper tail.

Reed’s model Reed [2001] shows that if individual incomes follow a geometric Brownian
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motion, and if they are observed after an exponentially distributed time T (the age of individuals),
than the overall distribution obeys a double Pareto distribution, which has a power-law behavior
both in the lower and in the upper tails.

In this model, we notice that if observed individuals had all the same age, the distribution
would be lognormal (since individual trajectories follow a geometric Brownian motion). But
the stacking of lognormal distributions associated with different standard deviations causes an
overall Paretian behavior. The age heterogeneity conveys a fatter upper tail.

2.2.1.3 Lydall’s model of social hierarchy

Lydall [1959] explains the overall distribution of incomes by the pyramid pattern of the social
hierarchy. Each supervisor controls a fixed number of persons. The wage of a supervisor is
assumed to depend on the aggregate income of the persons that he immediately supervises.
These assumptions lead to a Pareto distribution of wages.

2.2.2 Accumulation models for wealth distribution

Explaining the shape of the wealth distribution is essentially explaining the heterogeneity in
wealth accumulation across individuals. To understand this heterogeneity, we have first to figure
out the individuals’ motives to save, that is, to grasp why rational agents choose to allocate a
part of their resources to savings rather than to direct consumption.

Piketty and Zucman [2015] give a detailed account of the related literature. We mainly follow
their presentation in this section.

2.2.2.1 Motives for wealth amassing

The early literature paid little attention to the rationale of savings. Keynes [1936] referred
to a "fundamental psychological law" which characterized the average saving behavior in the
population: "men are disposed, as a rule and on the average, to increase their consumption as
their income increases but not by as much as the increase in the income". In other words, the
marginal propensity to save is greater than zero but less than unity.

To escape bare considerations on psychological inclinations, one has to go beyond this purely
static framework. Indeed, dynamic models are needed to make out why agents do not only worry
about direct consumption. Two main rationales have been underscored in the literature. First,
lifecycle motives: individuals save while they are young, and dissave after retirement to maintain
their consumption level. Second, dynastic altruism: individuals care about their descendants
and want to leave them a bequest when they die.

Accordingly, the wealth held by individuals will primarily depend on their age and on their
expected length of retirement. Within the same cohort, wealth will depend on opportunities (the
lifetime ressources of agents), and on preferences (dynastic altruism for bequests, risk aversion
which determines precautionary savings, taste for a social status granted by wealth, etc).
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Lifecycle motive Modigliani [1986] claims that the life-cycle hypothesis provides an apt de-
scription of wealth accumulation patterns. The key assumption is that agents smooth their
consumption over their lifetime. Wealth accumulation is thus driven by lifecycle motives.

In the "stripped-down" version of this model, income is constant until retirement, and is zero
thereafter. The interest rate is zero. Individuals prefer a constant consumption over life, and
leave no bequest.

At the individual level, accumulated wealth follows a hump-shaped path. The length of
retirement is the main parameter controlling the form of the so-called Modigliani triangle. For-
mally, if the agent earns an income Y during adulthood, if retirement occurs at age N and if L
is the age of death, the wealth holdings have the following profile:

W pT q “

#

L´N
L TY if 0 ď T ď N,

N
L pL´ T qY if N ď T ď L.

(2.62)

Consumption is then equal to:

CpT q “
N

L
Y . (2.63)

It is then constant throughout life.
To assess the distribution of wealth at the aggregate level, some demographical structure has

to be incorporated in the model. The overlapping-generation model, while explicitly recognizing
the finite life of individuals, allows to think about the wealth distribution in a pure age war
context. Individuals live for two periods. They save when they are young, and they consume all
their savings when they are old. This model can encompass population growth, economic growth
and positive interest rate. Wealth inequality reflects both the age distribution and the income
distribution.

This range of models generate reasonable values for wealth-income ratios (between 5 and 10).
However, wealth inequality merely mirrors wage inequality. Data paint a completely different
picture: wealth concentration is far more pronounced than income concentration. The problem
is that individuals are assumed to leave no inheritance to their descendants when they die.
Consequently, cumulative effects across generations due to inheritance transmission are concealed
in this framework. Inheritance does matter in the wealth accumulation process.

Dynastic altruism Another motive to save a part of one’s resources lies in dynastic altruism.
Individuals care about their offspring and want to leave them a bequest. We present here two
alternative specifications that can account for this altruistic concern.

Bequest in the utility A first option is to fashion the instantaneous utility function in
order to take into account the will to leave a bequest. The wealth-increase-in-the-utility model
relates the case where the agent is only concerned about leaving a higher wealth to his successors
than he received from his parents. The corresponding utility function writes:

Upc,∆q “ c1´s∆s, (2.64)
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so that at each period the agent’s program is:

maxUpct,∆wtq, subject to ct `∆wt ď yt, (2.65)

where ct, yt, and wt denote respectively consumption, income, and wealth at period t, and
∆wt “ wt`1 ´ wt is the wealth increase between t and t` 1.

This Cobb-Douglas specification leads to ∆wt “ syt.
Besides, the bequest-in-the-utility model depicts a situation where the individual is driven

by the desire to leave the largest possible bequest at the time of death. The utility function is
then:

Upc, wq “ c1´sws (2.66)

and the optimization problem

maxUpct, wt`1q, subject to wt`1 ď wt ` yt ´ ct, (2.67)

leads to wt`1 “ spwt ` ytq.

Dynastic model In the same vein, the dynastic model provides an infinite-horizon frame-
work where each individual maximizes the dynastic utility function

VT “

ż `8

t“T
e´θtUpctqdt. (2.68)

where θ is the (fixed) rate of time preference and Upcq “ p1´ γqc1´γ is the utility function with
a constant intertemporal elasticity of substitution 1{γ.

The long-run rate of return r is determined by tastes and by the growth rate and is greater
than g. Its expression is given by the so-called modified Golden Rule of capital accumulation,

r “ θ ` γg.

These wealth accumulation frameworks account for a pure class war situation. One drawback
of such models is that they allow for no social mobility. Wealth inequality is self-sustaining. Hence
these models explain why wealth inequalities perpetuate, but they do not say anything about
why they appear and how they evolve.

2.2.2.2 Random shocks and cumulative effects

Lifecycle and dynastic models describe the reasons why people accumulate wealth. However,
these models do not provide any insight into the shape of the wealth distribution and do not
encompass social mobility. In this setting, wealth inequality merely mirrors income inequality
and age distribution.

These models constitute a framework upon which more elaborate models of wealth distribu-
tion are based. Multiplicative random shocks models of wealth combine analysis of the individ-
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ual wealth accumulation process, describing how assets accumulate over time, and heterogeneity
birth-and-death process, stochastic savings etc. In the long-run, we observe both convergence
of macroeconomic variables to steady-state values and of the wealth distribution to a limiting
distribution. Such models are ergodic inasmuch the steady state does not depend on the initial
conditions.

The individual parameters determining the amount of wealth that will be accumulated by
different individuals are distributed randomly across the population. Agents also face random
shocks that affect their income and their assets. Wealth inequality springs from cumulative
effects: multiplicative random shocks that accumulate over generations, together with preferences
and income inequality, explain the high inequality level characterizing the wealth distribution.

Idiosyncratic shocks that affect the individuals can be demographic (number of children, age
at death), or can hit the rates of return of assets, the bequest tastes or labor productivities.

Wold and Whittle [1957] present a mechanism of divided inheritance which leads to a Pare-
tian upper tail of the wealth distribution. Stiglitz [1969] studies the implication for both the
distribution of income and the distribution of wealth of alternative assumptions on savings behav-
ior, demography, inheritance policies, labor heterogeneity and taxation patterns in the context
of a neoclassical growth model. He identifies equalizing forces and forces that make the dis-
tribution more unevenly distributed. Cowell [1998] provides a simple model of inheritance and
relates demographical features of the population, such as the distribution of family sizes, mar-
riage patterns, taxation or savings habits to the distribution of wealth and to its Paretian upper
tail.

Benhabib and Zhu [2008] suggests a mechanism that generates a double Pareto distribution
in the benchmark of an overlapping generation model. The effects of inheritance, stochastic
returns on capital, uncertain lifespan and fiscal policies on wealth inequality are investigated by
the authors. Benhabib et al. [2011] show that capital income risks, rather than labor income
risks, drive the properties of the Paretian right tail of the wealth distribution

Nirei [2009] proves that if households undergo random investment shocks in some neoclassical
growth model, the income and wealth distributions converge to a Pareto distribution. He relates
the Pareto exponent to the shock variance, to the economy growth rate, and to redistribution
policies.

More recently, the central role of r ´ g (where r is the net-of-tax rate of return) has been
emphasized in wealth inequality. Piketty and Zucman [2015] give a detailed account of the
related literature. For instance, Rodriguez [2014] derives a model where wealth obeys a Pareto
type II distribution. Jones [2015] describes simple models of wealth distribution and warns that
comparative statics can change depending on whether the model is considered in partial or in
general equilibrium.

A model with bequest tastes shocks Piketty and Zucman [2015] provide a discrete-time
model of a closed economy that exemplifies multiplicative random shocks models of wealth distri-
bution. Here, the cumulative effects arise from the random shocks that affect the bequest tastes
sti in a bequest-in-the-utility framework.
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The stationary population is represented by a continuum of agents Nt “ r0, 1s. Effective
labor input grows at an exogenous productivity rate g,

Lt “ Ntht “ h0p1` gq
t. (2.69)

The production function writes
Y d
t “ F pKt, Ltq. (2.70)

Each agent i receives the same labor income yLi,t “ yLt . The rate of return ri,t “ rt is common to
all.

Each individual i chooses ci,t and wi,t`1 to maximize a Cobb-Douglas utility function of the
form Upci,t, wi,t`1q “ c

1´si,t
i,t w

si,t
i,t`1 with bequest taste parameter si,t under the budget constraint

ci,t ` wi,t`1 ď yLt ` p1` rtqwi,t. (2.71)

Random shocks si,t are i.i.d. random processes with mean s “ E rsi,ts ă 1. This specification
leads to

wi,t`1 “ si,try
L
t ` p1` rtqwi,ts. (2.72)

At the aggregate level, yt “ yLt ` rtwt and

wt`1 “ sryLt ` p1` rtqwts “ sryt ` wts (2.73)

In order to study the steady-state distribution of wealth, let us now consider the normalized
individual wealth zi,t “ wi,t{wt. As we have wt`1 “ p1 ` gqwt in the long run, the transition
equation for wealth at the individual-level can be written:

zi,t`1 “
si,t
s
rp1´ ωq ` ωzi,ts (2.74)

where we have set
ω “ s

1` r

1` g
ă 1. (2.75)

The theory of Kesten processes ensures that the distribution Ψtpzq of relative wealth will
converge toward a unique steady-state distribution Ψpzq with a Pareto shape and a Pareto
coefficient that depends on the variance of taste shocks si,t and on the ω coefficient. If ωi,t “ ω

si,t
s ,

the Pareto coefficient a is such that the Champernowne’s equation is satisfied:

E
“

ωai,t
‰

“ 1. (2.76)

Then, ω “ E rωi,ts ă 1.
In the special case when si,t “ 0 with probability 1´ p and si,t “ s{p ą 0 with probability p

(or equivalently ωti “ 0 with probability 1´ p and ωi,t “ ω{p), we have:

p

ˆ

ω

p

˙a

“ 1. (2.77)
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The Pareto coefficients are then given by the formulae:

a “
logp1{pq

logpω{pq
ą 1 (2.78)

and
b “

a

a´ 1
“

logp1{pq

logp1{ωq
ą 1. (2.79)

An increase in ω triggers a fall in a and a rise in b. The higher ω, the more marked the
concentration of wealth. At the first order, ω is an increasing function of r ´ g. Thus, as
underlined by Piketty and Zucman [2015], when ω rises, "the multiplicative wealth inequality
effect becomes larger as compared to the equalizing labor income effect".

A model with random shocks affecting the rates of return Nirei [2009] develops a
wealth accumulation model in a neoclassical growth framework where shocks affect the rates of
returns of agents. In other words, there is an uninsurable and undiversifiable investment risk.

The population is formed of a continuum of infinitely-living individuals i P r0, 1s. They can
be interpreted as dynasties.

Each agent is endowed with one unit of labor and an initial capital ki,0. Nirei [2009] specifies a
"backyard" production technology which takes the form of a Cobb-Douglas production function:

yi,t “ kαi,tpai,tli,tq
1´α (2.80)

where li,t is the labor employed by i and ki,t is the capital owned by i. The labor-augmenting
productivity ai,t is an i.i.d. random variable across households and across periods with a common
trend γ ą 1:

ai,t “ γt εi,t (2.81)

where the εi,t are temporary productivity shocks, with E rεi,ts “ 1.
Crucially, an individual does not have means to insure against the productivity shocks εi,t

except for his own savings.
Each household supplies one unit of labor inelastically. At the individual level, the capital

accumulation follows:
ki,t`1 “ p1´ δqki,t ` spπi,t ` wtq (2.82)

where s is a constant savings rate and πi,t ` wt is the income of household i. πi,t denotes the
profit from the production:

πi,t “ max
li,t,yi,t

yi,t ´ wtli,t. (2.83)

The Cobb-Douglas specification of the production function leads to πi,t “ αyi,t and wtli,t “

p1´ αqyi,t.
At the aggregate level, we have:

ż 1

0
li,tdi “ 1, (2.84)
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aggregate output writes:

Yt “

ż 1

0
yi,tdi (2.85)

and capital is:

Kt “

ż 1

0
ki,tdi. (2.86)

Therefore, wage is given by wt “ p1´ αqYt and the equation of motion for the aggregate capital
in the Solow model is:

Kt`1 “ p1´ δqKt ` sYt. (2.87)

To study the steady-state distribution, we are interested in detrended aggregate capital Xt “

Kt
γt . Its (deterministic) law of motion writes:

γXt`1 “ p1´ δqXt ` sηX
α
t (2.88)

where:
η “ E

”

ε
p1´αq{α
i,t

ıα
(2.89)

At the steady state, detrended aggregate capital is equal to:

X̄ “

ˆ

sη

γ ´ 1` δ

˙1{p1´αq

. (2.90)

The dynamics of the detrended individual capital is characterized by the equation of motion:

xi,t`1 “ gi,txi,t ` z. (2.91)

That is, detrended individual capital is a Kesten process, with the return of detrended capital
gi,t given by:

gi,t “
1´ δ

γ
`
αpγ ´ 1` δq

γ

ε
p1´αq{α
i,t

E
”

ε
p1´αq{α
i,t

ı (2.92)

and savings from detrended labor income z which can be expressed as:

z “
sηp1´ αq

γ
X̄α “

sηp1´ αq

γ

ˆ

sη

γ ´ 1` δ

˙α{p1´αq

. (2.93)

Again, well-known results about the convergence of Kesten processes guarantee that individ-
uals’ detrended capital xi,t has a stationary distribution whose tail follows a Pareto distribution:

Ppxi,t ą xq 9 x´a. (2.94)

The Pareto exponent a is determined by Champernowne’s equation:

E
“

gai,t
‰

“ 1. (2.95)
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Consider the special case where the returns shocks log εi,t follow a normal distribution with
mean ´σ2{2 and variance σ2. Then Nirei [2009] proves that there exists σ̄ such that, for all σ ą σ̄,
the Pareto exponent a is uniquely determined by equation (2.95). This coefficient satisfies a ą 1

and the stationary distribution has a finite mean. Moreover, a is decreasing in σ. Intuitively, the
higher the variance of multiplicative random shocks, the more pronounced wealth inequality.
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Section 3

Generalized Pareto curves: theory and
evidence

3.1 Theory

The standard methodology to compute estimates about the income distribution consists in as-
suming a Pareto shape, at least at the top. But if a Pareto distribution may be fitted to two
points observed in the data, it does not exactly coincide with the other points. Even for top
incomes, the Pareto coefficients bi vary slightly and discrepancies affect the precision of the
results.

In this part, we present a method that allows to relax the Pareto hypothesis. We take a
nonparametric approach. Instead of trying to make a preconceived functional form fit the data
by adjusting a set of parameters, we start from the observed Pareto curve. To obtain curves that
are comparable among countries and homogenous over time, we consider the Pareto coefficients
as a function of percentiles of the population.

The idea is to approximate the Pareto curve bppq using the values b1, ..., bω that we find in the
administrative tabulations. Then, we are able to extrapolate the shape of the whole distribution
of taxable income.

In this way, we can build sharper estimators that are not restricted to the top of the distri-
bution. Besides, we can generate simulations of the population of taxpayers.

3.1.1 The income distribution

Let F be the cumulative distribution function (CDF) of the income distribution (which is no
longer assumed to be Paretian), and f “ F 1 the associated probability density (PDF). Let us
remind that a cumulative distribution function is a non-decreasing and right-continuous function
such that:

lim
yÑ´8

F pyq “ 0, lim
yÑ`8

F pyq “ 1.

As we are considering an income distribution, we assume that F p0q “ 0.
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Its inverse Q is called the quantile function defined by:

Qppq “ infty P R : p ď F pyqu. (3.1)

Q is a non-decreasing and left-continuous function.
In the following, we will assume that the quantile function Q is continuous, which means that

there is no gap between values in the domain of the CDF.
The (inverted) Pareto coefficient can be expressed for any income y:

b̃pyq “
1

p1´ F pyqqy

ż `8

y
zfpzqdz. (3.2)

With p “ F pyq, we can express b in percentiles:

bppq “
1

p1´ pqQppq

ż 1

p
Qprqdr

for all p P r0, 1s. bppq is finite if and only if Qppq is positive.
Q is an increasing function, thus we can define pmin ě 0:

pmin “ inftr P r0, 1s : Qprq ą 0u.

As Q is continuous, Qppminq “ 0. For all p P r0, pmins, Qppq “ 0.
Intuitively, pmin is the fraction of the population with zero income (or zero wealth).

3.1.2 Pareto curve and quantile function
Definition 3.1.1 (Pareto curve)

A Pareto curve is a continuous function b : r0, 1s Ñ r0,`8s, such that:

(i) tp P r0, 1s : bppq “ `8u is either empty or a closed interval including 0 that
will be denoted r0, pmins if we define:

pmin “ inftp P r0, 1s : bppq ă `8u;

(ii) b is differentiable on ppmin, 1s;

(iii) for all p P r0, 1s, bppq ě 1;

(iv) for all p P ppmin, 1s, 1´ bppq ` p1´ pqb1ppq ď 0.

In particular, for each cumulative distribution function F we can define on r0, 1s the associated
Pareto curve by:

bppq “

$

&

%

8 if Qppq “ 0,

1
p1´pqQppq

ş1
p Qprqdr otherwise.

(3.3)
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We easily check that it satisfies conditions (i), (ii), (iii) and (iv).
The proposition below states that the reverse is true: for each Pareto curve, there is a

associated cumulative distribution function which is unique up to scalar multiplication.

Proposition 3.1.1

For each Pareto curve b : r0, 1s Ñ r0,`8s, there exists a cumulative distribution
function F with domain in R` such that:

bppq “

$

&

%

8 if Qppq “ 0,

1
p1´pqQppq

ş1
p Qprqdr otherwise,

(3.4)

where Q “ F´1 is the corresponding quantile function.
Such a distribution is unique up to scalar multiplication.

Proof:

Unicity Let b be a Pareto curve and F be a CDF such that (3.4) holds.

We are going to express the quantile function Q “ F´1 with b. For any percentile p, y “ Qppq is
the corresponding income. pmin is defined as above.

For all p ą pmin:

p1´ pqQppqbppq “

ż 1

p

Qprqdr

Differentiating, we get for pmin ă p ď 1 :

p1´ pqbppqQ1ppq ` rp1´ pqb1ppq ´ bppqsQppq “ ´Qppq

and then:
Q1ppq

Qppq
“ ´

b1ppq

bppq
`

1

1´ p
´

1

p1´ pqbppq
.

We set p˚ ą pmin. For all p ą pmin, we get by integrating:

ln

ˆ

Qppq

Qpp˚q

˙

“ ´ ln

ˆ

bppq

bpp˚q

˙

´ ln

ˆ

1´ p

1´ p˚

˙

´

ż p

p˚

1

p1´ qqbpqq
dq

Finally,

Qppq “

$

&

%

0 if 0 ď p ď pmin,

y˚ p1´p˚
qbpp˚

q

p1´pqbppq exp
´

´
şp

p˚
1

p1´qqbpqqdq
¯

if p ą pmin

(3.5)

where y˚ “ Qpp˚q.

Therefore, Q is uniquely defined up to scalar multiplication, i.e. if we normalize wage mean to 1,
Q is unique.

Existence Let b be a Pareto curve. Let pmin “ inftp P r0, 1s : bppq ă `8u. We define the function Q
by:

Qppq “

$

&

%

0 if p ď pmin,

p1´p˚
qbpp˚

q

p1´pqbppq exp
´

´
şp

p˚
1

p1´qqbpqqdq
¯

otherwise,
(3.6)
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for some p˚ P r0, 1q such that bpp˚q ă `8. For p P ppmin, 1s,

`

p1´ pqbppqQppq
˘1

“

ˆ

p1´ p˚qbpp˚q exp

ˆ

´

ż p

p˚

1

p1´ qqbpqq
dq

˙˙1

“ ´
p1´ p˚qbpp˚q

p1´ pqbppq
exp

ˆ

´

ż p

p˚

1

p1´ qqbpqq
dq

˙

“ ´Qppq.

As p1´ pqbppqQppq is equal to zero when p “ 1, we find:

p1´ pqbppqQppq “

ż 1

p

Qprqdr,

so that (3.4) is satisfied.

˝

Remarks

1. Continuity of Q in pmin
We can check that if p ą pmin :

Qppq “ y˚
p1´ p˚qbpp˚q

p1´ pqbppq
exp

ˆ

´

ż p

p˚

1

p1´ qqbpqq
dq

˙

ÝÑ
pÑpmin

0

since bppq Ñ `8 when pÑ pmin.

2. Special case of a Pareto distribution
Let’s assume that the Pareto coefficient is constant:

bppq ” b.

The quantile function writes:

Qppq “ y˚ exp

ˆ

´

ż p

p˚

1´ b

bp1´ qq
dq

˙

“ y˚ exp

ˆ

1´ b

b
ln

ˆ

1´ p

1´ p˚

˙˙

“ y˚
ˆ

1´ p

1´ p˚

˙
1´b
b

With the transform y “ Qppq, we get:

y “ y˚
ˆ

1´ F pyq

1´ F py˚q

˙
1´b
b

,

1´ F pyq

1´ F py˚q
“

ˆ

y˚

y

˙
b
b´1

.
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As F py˚q Ñ F pyminq “ 0 when y goes to ymin, we find as expected:

F pyq “ 1´

ˆ

ymin
y

˙
b
b´1

.

3. Necessity of condition (iv) in the definition of a Pareto curve
For any function continuous b : r0, 1s Ñ r0,`8s verifying (i) and (ii), we can define the
function Q : r0, 1q Ñ R`:

Qppq “

$

&

%

0 if p ď pmin,

p1´p˚qbpp˚q
p1´pqbppq exp

´

´
şp
p˚

1
p1´qqbpqqdq

¯

otherwise.
(3.7)

For Q to be a quantile function, it has to be non-decreasing.

The quantity p1´ pqbppqQppq exp
´

şp
p˚

1
p1´qqbpqqdq

¯

is constant over ppmin, 1q. So p ÞÑ p1´

pqbppq exp
´

şp
p˚

1
p1´qqbpqqdq

¯

has to decrease. But we have:

p1´ pqbppq exp

ˆ
ż p

p˚

1

p1´ qqbpqq
dq

˙

“ exp

ˆ
ż p

p˚

1´ bpqq ` p1´ qqb1pqq

p1´ qqbpqq
dq

˙

so that the condition becomes:

@p P ppmin, 1q, 1´ bppq ` p1´ pqb1ppq ď 0, (3.8)

which gives (iv).

4. We can check that condition (iii) is in fact a consequence of (iv).

3.1.3 Lorenz curve

For all p P r0, 1s, the share of total income accruing to the bottom p percentile of taxpayers is
by definition:

Lppq “

şQppq
0 yfpyqdy
ş`8

0 yfpyqdy
“

şp
0 Qprqdr
ş1
0 Qprqdr

“ 1´
p1´ pqQppqbppq

y
(3.9)

where y is the average income of the population.

Definition 3.1.2

A Lorenz curve is a continuous function L : r0, 1s Ñ r0, 1s such that:

(i) Lp0q “ 0 and Lp1q “ 1;

(ii) L is increasing and convex.

For any distribution with CDF F and quantile function Q, the function L defined by (3.9) is a
Lorenz curve.
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Consider an income distribution with associated Pareto curve b and Lorenz curve L. We can
derive the following equality from 3.5:

@p P r0, 1s, bppq “
1´ Lppq

p1´ pqL1ppq
. (3.10)

More generally, any Lorenz curve L uniquely defines a Pareto curve b by formula (3.10).
As a result of the main proposition above, we have the following property.

Proposition 3.1.2 (Lorenz curve)

Let b : r0, 1s Ñ r0,`8s be a Pareto curve, and let Q be a CDF associated to b. Then
there exists a unique Lorenz curve L that gives the share of total income earned by
the bottom p percentile of taxpayers.

This Lorenz curve is given by:

Lppq “

$

&

%

0 if p ď pmin,

1´
y˚p1´p˚qbpp˚q exp

´

´
şp

p˚
1

p1´qqbpqq
dq

¯

y if p ą pmin.
(3.11)

where p˚ P ppmin, 1s, y˚ “ Qpp˚q and y “
ş1
0 Qprqdr.

The Lorenz curve L is uniquely defined by b, and in particular it does not depend
on the chosen representation of Q.

We now assume that a Lorenz curve is given. Then we can find an associated distribution
that is unique up to scalar multiplication.

Proposition 3.1.3

Let L : r0, 1s Ñ r0, 1s be a Lorenz curve. Then, there exists a CDF F with domain
in R` such that:

Lppq “

şp
0 Qprqdr
ş1
0 Qprqdr

(3.12)

where Q “ F´1 is the corresponding quantile function.
Such a distribution is unique up to scalar multiplication.

Remark The convexity of the Lorenz curve is equivalent to the fact that the CDF is increasing,
and to condition (iv) for the Pareto curve.
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3.2 Evidence using micro-files for France 2006

We now turn to the implementation the method based on the theoretical approach developed in
previous section using the microdata for France 2006.

For this year, tax authorities provided internal computer files1 that allow to reconstitute
the distribution of incomes. Theses files, issued each year from 1988 by French administration,
consist of anonymized weighted observations of tax returns. They are exhaustive for the top of
the distribution.

Through this sample, we are able to see what an income Pareto curve looks like in practice.
We can experiment different interpolation methods to fit its shape and set up the our new
approximation technique. We can also test its robustness by comparing true values and predicted
values and by comparing the true shape of the whole distribution with micro-simulations.

Figure 3.1: Frequency distribution of incomes, France 2006
Frequency distribution of the revenu fiscal de référence, in euros. Reading: 2.43% of the population earned between

20,000 and 21,000 euros in 2006. Source: Micro-files provided by tax authorities (821,815 observations).

3.2.1 The Pareto curve

3.2.1.1 Shape

We generate the empirical Pareto curve with the data from the 2006 French micro-files (see figure
3.2a). At each point p corresponding to an income y, we compute the mean of the revenue of all
individuals earning at least y, and we get the empirical value of the Pareto curve at p, namely
bppq, by dividing this mean by y.

1Available online at http://www.revolution-fiscale.fr/annexes-simulateur/Fichiers/.
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(a) Generalized Pareto curve
Spacing: 0.5%.

(b) Zoom on the top 10 percent
Spacing: 0.05%.

Figure 3.2: Pareto curve, France 2006
Source: Micro-files provided by tax authorities.
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(a) Zoom on the top 1 percent
Spacing: 0.005%.

(b) Zoom on the top 0.1 percent
Spacing: 0.0005%.

Figure 3.3: Pareto curve, France 2006 - Zoom
Source: Micro-files provided by tax authorities.
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The graph has a vertical asymptote near the bottom 10 percents (the part before corresponds
to people who have declared no income). Then, it is steadily decreasing until the top 10 percent
of taxpayers. There, it is roughly stable up to percentile 95 and finally rises sharply around the
top 1 percent.

We also notice that bppq abruptly falls to 1 within the last fractiles of the curve.

3.2.1.2 Approximation of the Pareto curve

In order to apply the method described in section 3.1, we first have to approximate numerically
the empirical Pareto curve from data in tax tabulations.

We have tried to approximate the Pareto curve by a suited functional form, but the resulting
approximating curves appeared to be unstable. A small modification of a data point could lead
to large changes in the approximating function. Another idea is to interpolate the Pareto curve.
The simplest way to do so is to linearly interpolate the points of the tax scale. However, to
be more realistic and to better fit to the actual form, we would like to get a smooth curve
in the end. Polynomial interpolation techniques could be more satisfactory. Nevertheless, the
curves resulting from such polynomial interpolations do not necessarily preserve the shape of
the data and often oscillate or overshoot points on intervals where we would expect the Pareto
curve to be monotonic (Runge’s phenomenon is a well-known example of such a behavior). To
address these shortcomings, methods of monotone cubic interpolation have been developed in
numerical analysis following Fritsch and Carlson [1980]’s seminal paper. Thereafter, we will use
a Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) to interpolate our tax data. Our
choice is justified extensively in appendix B, and a description of the PCHIP method is provided.

The two plots below correspond to the interpolation of the Pareto curve with the thresholds
of the 2006 and 2012 tax tabulation respectively. Indeed, there are many thresholds for highest
incomes in the tabulation of the year 2012, which allows to observe the behavior of our interpolant
near rapid variations of the tabulated data.
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(a) Thresholds of the 2006 tax scale

(b) Thresholds of the 2012 tax tabulation

Figure 3.4: Interpolation of the Pareto curve, France 2006
Method: Piecewise Cubic Hermite Interpolating Polynomial. Spacing: 0.5%. Source: Micro-files provided by tax

authorities.
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3.2.2 Asymptotic decline of the Pareto curve for finite populations

As noticed earlier, the curve declines abruptly when p is close to 1.
The question is whether this final decrease comes from the underlying distribution of incomes

or from the finiteness of the population. In fact, it turns out that it is mechanically driven by
the finiteness of the sample.

To see this, let F be a CDF (say, the CDF associated with a Pareto curve b). The population
of taxpayers may be seen as a large number N (roughly 35 millions) of draws Y1, ..., YN from
this distribution. Assume that the Yi are ordered. Then, the empirical Pareto curve b̃ that we
observe for this population is given at points i{N , 1 ď i ď N by the formula:

b̃

ˆ

i

N

˙

“
1

pN ´ i` 1qYi

N
ÿ

j“i

Yj . (3.13)

If we set M “ YN the larger income in the sample and β “ limpÑ1 bppq which is assumed to be
strictly greater than 1, we see that:

b̃

ˆ

i

N

˙

ď
M

Yi
. (3.14)

Thus, as soon as Yi is larger than M
β , b̃ mechanically decreases to 1.

Figure 3.5: Zoom on the top 0.1 percent of the Pareto curve, France 2006
Source: Micro-files provided by tax authorities. Spacing: 0.0005%.

We simulate a population with the income distribution corresponding to the Pareto curve
bppq obtained by interpolating a mesh of the 2006 micro-file.

It turns out that the observed decrease of the empirical Pareto curve within the last percentiles
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Figure 3.6: Final drop - Comparison with simulation
Source: Micro-files provided by tax authorities and simulated distribution. Spacing: 0.0001%.

of the distribution is not fully explained by a mechanical motive. Indeed, the Pareto curve of
microdata starts to go down long before the Pareto curve of simulated data. As income considered
here is the sum of labor income and capital income, it would be worth exploring if this empirical
fact is related to the wage distribution or to the wealth distribution.

3.2.3 Estimations using tabulations of the income tax

We use the tabulation of 2006 in France to interpolate the Pareto curve bppq and to predict the
Lorenz curve Lppq.

We notice that the tabulation that would correspond to the micro-files is slightly different
from the official table released by the tax administration. Those discrepancies would disturb the
testing of the estimation method. So we will use the tabulation depiced below where the figures
are computed from the micro-files to interpolate the Pareto curve.
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Revenu fiscal de référence Nombre de foyers Revenu fiscal de référence
par tranche (en euros) fiscaux des foyers fiscaux

0 à 9 400 9 576 833 42 788 853 184
9 401 à 11 250 2 392 121 24 751 590 663
11 251 à 13 150 2 543 364 31 206 544 304
13 151 à 15 000 2 693 578 37 863 149 160
15,001 à 16 900 2 337 336 37 223 221 346
16 901 à 18 750 1 920 632 34 180 761 353
18 751 à 23 750 3 576 320 75 528 414 688
23 751 à 28 750 2 776 438 72 547 037 751
28 751 à 38 750 3 458 939 114 819 782 315
38 751 à 48 750 1 778 550 76 836 621 599
48 751 à 97 500 2 086 577 133 240 253 524
Plus de 97 500 493 163 100 478 584 827

Total 35 633 851 781 464 814 714

Table 3.1: Income tax tabulation, France 2006
Source: Income tax tabulation issued by the tax administration.

Revenu fiscal de référence Nombre de foyers Revenu fiscal de référence
par tranche fiscaux des foyers fiscaux
(en euros) (en millions d’euros)
0 à 9 400 7 592 031 34 490

9 401 à 11 250 2 305 258 23 880
11 251 à 13 150 2 769 638 33 850
13 151 à 15 000 2 701 325 37 980
15 001 à 16 900 2 357 246 37 500
16 901 à 18 750 1 976 702 35 200
18 751 à 23 750 4 008 824 84 500
23 751 à 28 750 2 788 768 72 800
28 751 à 38 750 3 538 988 117 500
38 751 à 48 750 1 846 420 79 700
48 751 à 97 500 2 179 706 139 100
Plus de 97 500 481 207 97 200

Total 34 546 115 793 700

Table 3.2: Tabulation corresponding to microdata - Tax scale: France 2006
The thresholds are those of the tax scale in effect in 2006. Source: Micro-files provided by tax authorities.
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Revenu fiscal de référence Nombre de foyers Revenu fiscal de référence
par tranche fiscaux des foyers fiscaux
(en euros) (en millions d’euros)
0 à 10 000 8 286 660 41 240

10,001 à 12 000 2 662 826 29 380
12,001 à 15 000 4 418 879 59 560
15,001 à 20 000 5 510 439 95 490
20,001 à 30 000 6 203 368 151 600
30,001 à 50 000 4 961 616 187 900
50,001 à 100 000 2 047 140 133 900

Plus de 100 000 dont :
100 001 à 200 000 357 736 46 770
200 001 à 300 000 52 536 12 610
300 001 à 400 000 18 236 6 254
400 001 à 500 000 8 776 3 909
500 001 à 600 000 4 600 2 515
600 001 à 700 000 2 772 1 798
700 001 à 800 000 1 960 1 458
800 001 à 900 000 1 384 1 174
900 001 à 1 000 000 912 864
1 000 001 à 2 000 000 4,012 5 493
2 000 001 à 3 000 000 936 2 220
3 000 001 à 4 000 000 452 1 547
4 000 001 à 5 000 000 248 1 110
5 000 001 à 6 000 000 120 650
6 000 001 à 7 000 000 84 546
7 000 001 à 8 000 000 60 456
8 000 001 à 9 000 000 52 447
Plus de 9 000 000 310 4 769

Total 34 546 115 793 700

Table 3.3: Tabulation corresponding to microdata - Tax scale: France 2012
The thresholds are those of the tax scale in effect in 2012. Source: Micro-files provided by tax authorities.
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3.2.3.1 Method

The first step is to interpolate the empirical Pareto curve using the PCHIP method.
Then, using formula (3.5) with each of the thresholds pp1, θ1q, ..., ppω, θωq found in the tax

tabulation as a starting point gives us ω quantile functions Q1, ..., Qω:

Qippq “

$

&

%

0 if 0 ď p ď pmin,

θi
p1´piqbppiq
p1´pqbppq exp

´

´
şp
pi

1
p1´qqbpqqdq

¯

if p ą pmin.
(3.15)

If we had interpolated exactly bppq and found the true Pareto curve, we should obtain ω iden-
tical functions. However, small discrepancies appear as the consequences of the approximative
estimation of the Pareto curve. We note that Qippjq is not exactly equal to θj when j ‰ i, even
if the two values are very close.

We could select arbitrarily one starting point pi and draw all our estimations from the asso-
ciated quantile function Qi. The problem is that if some other observation pj coincides with a
point of interest such as p “ 99.5%, we waste valuable information provided by the administrative
tabulations.

As for each point of the distribution, the two best estimations are obtained when starting
from the consecutive thresholds that are bracketing it, we approximate the underlying quantile
function Q with a weighted average of these two points. Formally, if p lies between pi and pi`1,
we set:

Qppq “
pi`1 ´ p

pi`1 ´ pi
Qippq `

p´ pi
pi`1 ´ pi

Qi`1ppq. (3.16)

To sum up, for each threshold θi we use the approximation of the Pareto curve bppq to estimate
Qippq which passes exactly through the point ppi, θiq. The Qi are the same up to a scalar
multiplication and they all have bppq as a Pareto curve. But Q, which is a combination of the
Qi does not have exactly the same Pareto curve.

3.2.3.2 Estimation of declared taxable income

We display three tables giving thresholds, average incomes and shares accruing to different deciles
and percentiles of the population. The column "Microdata" indicates their "true" value, namely
their value in the micro-file distribution. The columns "2006 tax scale" and "2012 tax scale"
provide the estimations obtained by applying our method with the thresholds of the tax scales
in effect in 2006 and 2012 respectively.

Approximations appear to be especially accurate. The only discrepancies emerge for the
very top of the distribution (99.9% and 99.99%) when the tax scale of 2006 is used: thresholds
and average income are underestimated. This is due to the fact that the extrapolation of the
extrapolated Pareto curve is itself underestimated for top percentiles in this case.

Graphs 3.7 represent the Lorenz curves approximated using our method with the 2006 and
the 2012 tax scales. In both cases, the approximations perfectly fit the microdata Lorenz curve.

We notice that the approximations of thresholds are typically less precise than approximations
of average income or shares.
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(a) Thresholds of the 2006 tax tabulation

(b) Thresholds of the 2012 tax tabulation

Figure 3.7: Approximation of the Lorenz curve, France 2006
Spacing: 0.5%. Source: Micro-files provided by tax authorities.
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Percentile Microdata 2006 tax scale 2012 tax scale
30% 11,589 11,582 11,584
40% 13,895 13,920 13,903
50% 16,511 16,512 16,515
60% 19,834 19,848 19,831
70% 24,498 24,487 24,628
80% 31,280 31,324 31,173
90% 43,584 43,544 43,214
95% 58,110 57,166 58,117
99% 111,784 114,531 112,421
99.5% 152,161 162,611 150,883
99.9% 346,354 378,884 346,465
99.99% 1,535,357 1,296,334 1,501,065

Table 3.4: Thresholds corresponding to different deciles and percentiles of the population
The table compares the values corresponding to microdata, and the values predicted by applying our method with the

2006 and 2012 tax scales. Source: Micro-files provided by tax authorities.

Percentile Microdata 2006 tax scale 2012 tax scale
30% 30,186 30,186 30,186
40% 33,090 33,090 33,090
50% 36,676 36,676 36,676
60% 41,322 41,323 41,322
70% 47,756 47,757 47,770
80% 57,804 57,810 57,777
90% 78,962 78,963 78,968
95% 108,141 107,681 107,952
99% 240,287 239,853 240,017
99.5% 352,046 345,437 351,644
99.9% 922,673 813,969 922,603
99.99% 3,993,587 2,791,930 3,994,573

Table 3.5: Average income above different deciles and percentiles of the population
The table compares the values corresponding to microdata, and the values predicted by applying our method with the

2006 and 2012 tax scales. Source: Micro-files provided by tax authorities.

Percentile Microdata 2006 tax scale 2012 tax scale
30% 8.03 8.03 8.03
40% 13.58 13.58 13.58
50% 20.18 20.18 20.18
60% 28.05 28.05 28.05
70% 37.64 37.64 37.62
80% 49.68 49.67 49.70
90% 65.63 65.63 65.63
95% 76.46 76.56 76.51
99% 89.54 89.56 89.55
99.5% 92.34 92.48 92.35
99.9% 95.98 96.46 95.98
99.99% 98.26 98.78 98.26

Table 3.6: Values taken by the Lorenz curve at different deciles and percentiles of the population
The table compares the values corresponding to microdata, and the values predicted by applying our method with the

2006 and 2012 tax scales. Source: Micro-files provided by tax authorities.
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3.2.3.3 Comparison with the old method

Figures 3.8 depict the ratios of estimates found with our method and the piecewise Pareto method
developed by Piketty [2001] over true microdata values for various deciles and percentiles of the
distribution. As the mesh of the 2006 and 2012 tax scales is narrow, the two methods provide
good results: predicted values are close to true values. The relative good performance of the
old method stems from the fact that the tax scale mesh is narrow. However, the estimations
obtained with the new method are always better than the others. The difference is more striking
in the case of thresholds. Indeed, thresholds estimations are generally more sensitive to errors
in approximating bppq than average income estimations.

Threshold corresponding to percentile p is given by the quantile function:

Qppq “ θi
p1´ piqbi
p1´ pqbppq

exp

ˆ

´

ż p

pi

1

p1´ qqbpqq
dq

˙

(3.17)

for a threshold i of the tax scale. This is the estimate obtained with our nonparametric method,
where bppq is the interpolation of tabulation points.

Piecewise Pareto method (PP) assumes that the Pareto coefficient is locally constant. Ana-
lytically, the estimator of the threshold writes:

QPPppq “ θi
p1´ piq

p1´ pq
exp

ˆ

´

ż p

pi

1

p1´ qqbi
dq

˙

(3.18)

“ θi

ˆ

1´ pi
1´ p

˙pbi´1q{bi

. (3.19)

The ratio of these two estimators can be expressed as:

QPPppq

Qppq
“
bppq

bi
exp

ˆ
ż p

pi

ˆ

1

bpqq
´

1

bi

˙

dq

1´ q

˙

. (3.20)

Similarly, the estimator for the new method of average income above percentile p is:

Appq “ bppqQppq (3.21)

“ biθi
p1´ piq

p1´ pq
exp

ˆ

´

ż p

pi

1

p1´ qqbpqq
dq

˙

, (3.22)

and the estimator of the Piecewise Pareto method is:

APPppq “ biQ
PPppq (3.23)

“ biθi
p1´ piq

p1´ pq
exp

ˆ

´

ż p

pi

1

p1´ qqbi
dq

˙

(3.24)

“ biθi

ˆ

1´ pi
1´ p

˙pbi´1q{bi

. (3.25)
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Their ratio is:
APPppq

Appq
“ exp

ˆ
ż p

pi

ˆ

1

bpqq
´

1

bi

˙

dq

1´ q

˙

. (3.26)

Consequently, the estimation errors in the case of the Piecewise Pareto method come from two
factors:

1. the ratio bppq
bi

;

2. the exponential term exp
´

şp
pi

´

1
bppq ´

1
bi

¯

dq
1´q

¯

.

If we denote δ “ bi´bppq
bppq the relative error in approximating b, we have:

bppq

bi
“

1

1` δ
» 1´ δ, (3.27)

and

exp

ˆ
ż p

pi

ˆ

1

bppq
´

1

bi

˙

dq

1´ q

˙

»

ˆ

1´ p

1´ pi

˙δ{bi

» 1`
pi ´ p

bip1´ piq
δ (3.28)

at the first order.
Therefore, when p » pi, the first term dominates.
In the case of average income estimators, the errors only spring from the second factor.
That is why the observed discrepancies are generally larger for threshold estimates than for

average income estimates.
For very top incomes, that is when p » 1, the multiplicative factor pi´p

bip1´piq
can still be very

high, due to the term 1
1´pi

. Then, the second factor dominates. Gaps can be very large for top
incomes both for threshold and average income estimations. Therefore, we must take great care
to extrapolate accurately the Pareto curve for top incomes.
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(a) Thresholds

(b) Average income

Figure 3.8: Ratios of estimated values of true values for different deciles and percentiles of the
population

Source: Micro-files provided by tax authorities.
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Section 4

Application to French income and
inheritance tax tabulations 1901-2012

4.1 Application to income tabulations for France 1915-2012

In this section, we first recall the evolution of the income tax legislation in France, as described by
Piketty [2001]. We will focus on the measures that affect our methodology to estimate shares and
the precision of our results: exemptions, changes in the number of tax brackets, modifications
of the general allowance, measures to take into account the family situation... Second, we will
detail the corrections that we have performed to offset these various deductions. Ultimately, we
will compare our estimations to the estimations found in [Piketty, 2001].

4.1.1 The income tax in France

4.1.1.1 The system of the "quatre vieilles" (1792-1914)

The income tax was introduced in France by the law of 15 July 1914. It broke with the taxation
system dating back to the French Revolution. This tax scheme, which applied from 1792 to
1914, was composed of four direct taxes known as the contributions directes or "quatre vieilles".
Crucially, they were never depending directly on the revenues of the taxpayer. This index-based
taxation system relied on indications of the contributory capacity and not on the income itself
which was never reported to the tax administration. The contribution des portes et fenêtres
was a property tax based on the number of doors and windows in a house. The contribution
foncière on all developed and not developed properties (houses, buildings, lands, forests...) and
the contribution personnelle-mobilière on the principal residence were based on the rental value
of the estate. The contribution des patentes was payed by all the merchants, craftsmen and
manufacturers and was calculated on a scale established for each profession as a function of the
size of their business (and not on profits). Unlike modern fiscal systems, there was no tax rate
applicable to a fixed base. Instead, the government set each year the amount to be levied which
was somehow apportioned between taxpayers.

Resulting both from the imperfect correspondance between individual incomes and the in-
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dication used to compute the amount of the tax to be paid and from the random variations
of effective tax rates from region to region, we can not use the data released at that time by
tax authorities to infer any information about the distribution of incomes. Furthermore, effec-
tive tax rates remained very low (about 1 or 2%), so that these taxes did not affect the wealth
accumulation process (all the more so that there was virtually no inflation during this period).

This system was enforced until the law of 31 July 1917 setting up the schedular tax system
(impôt cédulaires), when the portion of revenues due to the government was repealed. The share
due to the department and municipalities was preserved. The ruling of 7 January 1959 modified
these taxes official names.

4.1.1.2 The IRVM (law of 29 June 1872)

A first institutional break with the legacy system occurred with the implementation of the impôt
sur le revenu des valeurs mobilières (IRVM) by the law of 29 June 1872. This tax on income
from securities had an extensive (and fixed) tax base as it affected all revenues from securities
with a fixed rate (initially equal to 3%, and then to 4%). It was withheld at source.

4.1.1.3 The progressive inheritance tax (law of 25 February 1901)

Until 1901, the inheritance tax in France was fully proportional. It was created in 1799. The
rate depended on the degree of relationship to the deceased. While instituting the progressive
inheritance tax, the law of 25 February 1901 implemented the first nationwide progressive tax in
France. From then onwards, the tax authorities started publishing statistical tables correspond-
ing to the tax brackets. This allows to study the evolution of large inheritances throughout the
xxth century. Here again, the tax rates remained very low.

4.1.1.4 The income tax (law of 15 July 1914)

The law adopted on 15 July 1914 to institute the income tax was based on the draft initially
submitted in 1907 by the French Minister of Finance from the radical party Joseph Caillaux.
The Chamber of Deputies passed the bill on 9 March 1909 but it was thereafter obstructed by the
Senate. The law was at last approved by the Senate in 1914, while international tensions and the
pressing needs for national defense imposed an additional financial burden on the country. The
income tax (impôt général sur le revenu or IGR) became effective on 1 January 1916, affecting
the revenues of 1915.

Taxpayers had to declare their revenues to the fiscal administration. More specifically, each
"family head" had to report his income and the income of all his dependants. This notion of
taxpayer is close to the definition of taxable household (foyer fiscal) which is still used today in
France.

The IGR was designed as a progressive tax targeting a small minority of affluent households.
Its scale was defined in terms of marginal tax rates.

Just as for the progressive inheritance tax, statistical tables were released by the fiscal ad-
ministration. However, in the early years, these tables gave only information on a very tiny
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number of top-earning households. When the law was first applied, the revenues of only 260 000
households (1.7% of the population at the time) were taxable.

To take into account the family situation of the taxpayers, a dual system was set up. Flat-rate
deductions from the taxable income and proportional tax cuts were specified, both depending
on the family size. Flat-rate deductions amounted to 2 000 francs for married couples, 1 000
francs per dependent child up to the 5th, and then 1 500 francs for each additional child. These
deductions resulted de facto in a raise in the taxation threshold. After taking into account these
abatements, the amount due calculated with the tax scale was reduced by 5% if the taxpayer
had one dependant, 10% if he had two, and then 10% more for each additional dependant until
the 6th.

Another measure of the law of 15 July 1914 provided that taxpayers could deduce from their
taxable income subject to the IGR the total amount of all direct taxes paid on revenues of the
previous year. These direct taxes included the IGR itself, the quatre vieilles until 1917 and then
the schedular taxes. At first, these exemptions were negligible. But as soon as the income tax
reached higher levels, these deductions became substantial and this measure induced artificial
fluctuations in the amount due by each taxpayer. Although the Popular Front which ruled France
from 1936 to 1938 intended to remove this measure, it remained until the Liberation.

Besides, the system of the quatre vieilles was maintain until 1917. It was only the law of 31
July 1917 that substituted it with the system of schedular taxes that applied from revenues of
1917. The contribution foncière was replaced with a schedular tax on land incomes. The IRVM
served as a schedular tax on securities. The law created four other schedular taxes: a wage
tax (impôt sur les traitements, salaires, pensions et rentes viagères or impôt sur les salaires) on
all revenues of wage earners, a tax on all manufacturing and commercial earnings (impôt sur les
bénéfices industriels et commerciaux or BIC), a tax on agricultural profits (impôt sur les bénéfices
agricoles or BA) and a tax on non-commercial profits (impôt sur les bénéfices non commerciaux
or BNC) that applied to mixed earnings of self-employed workers. Contrary to the IGR, the tax
unit was the individual. While the IGR was intended as a progressive tax targeting a minority
of wealthy taxpayers, the schedular system was designed to tax a large number of taxpayers at
almost proportional rates. All revenues were to be taxed by this exhaustive system. A notable
exception was the interests on public debt, which were spared by the schedular taxes (but were
taxed by the IGR).

4.1.1.5 The French income tax between 1915 and 1944

Let us now overview the chronology of the income tax from 1915 to 1944. During this first
half of the xxth century, the income tax experienced dramatic changes, both institutional and
quantitative.
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Number of Share of
thresholds taxable households

1915 9 1.7
1916 12 3.1
1917 7 3.9
1918 7 4.6
1919 10 3.6
1920 10 6.5
1921 10 7.3
1922 10 6.6
1923 10 7.7
1924 10 9.4
1925 10 12.1
1926 10 16.0
1927 10 17.9
1928 9 12.1
1929 9 11.7
1930 9 13.0
1931 9 12.4
1932 9 11.5
1933 9 11.4
1934 9 10.4
1935 9 9.7
1936 11 9.7
1937 11 13.5
1938 11 16.5
1939 11 13.0
1940 11 11.6
1941 13 17.8
1942 25 25.0
1943 24 13.4
1944 24 18.4

Table 4.1: Share of taxable households and number of tax brackets by year, France 1915-1944
Source: [Piketty, 2001].
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Revenues of 1915-1916 After its first application for revenues of 1915, a new scale with
additional thresholds was instituted for incomes of 1916 (law of 30 December 1916). The general
allowance was lowered to 3 000 francs and marginal rates up to 10% were applied to incomes
falling into the new brackets.

Revenues of 1917-1918 Then, the law of 29 June 1918 established a new scale with fewer
thresholds. This time the scale was defined in terms of average rates (and not of marginal rates),
which actually raised effective tax rates. The maximal rate reached 20%. This new system
applied to incomes earned in 1917 and 1918.

Revenues of 1919-1935 A major quantitative break happened with the law of 25 June 1920.
A new scale, formulated in terms of marginal rates, allowed for rates up to 50%. This reform
was voted by the right-wing majority of the Bloc national to respond to the difficult financial
situation following WWI. As the number of affected taxpayers was extremely low, this measure
was primarily symbolic. The rates of schedular taxes was also increased, but remained moderate.
As part of a pro-birth policy, a system to penalize all single or married for more than two years
taxpayers without children was introduced. The surcharge was respectively equal to 25% or 10%
of the amount due. This disposition, which was toughened in 1934 and then tempered in 1936,
applied for revenues of years 1919 to 1938. It turned into a family compensation tax (Taxe de
compensation familiale or TCF) during WWII.

The period from 1920 to 1936 (corresponding to the taxation of revenues from 1919 to 1935)
was characterized by considerable and continual fluctuations in tax rates applicable to highest
incomes. But the frame remained the law of 25 June 1920. Indeed, this law had defined separately
the overall structure of tax brackets and the level of rates that applied. The amount due was
calculated as follows: 0/25th of the fraction of income between 0 and 6 000 francs was kept,
1/25th between 6 000 and 20 000 francs, 2/25th between 20 000 and 40 000 francs... until
25/25th (that is, all) the fraction of income above 550 000 francs. Then the global rate (initially
50%) was applied to the total. Throughout this period, the only changes were the variations of
the global rate, and the reassessments of the general allowance (which was equal to 6 000 for the
taxation of incomes of years 1919-1921, 7 000 for incomes of years 1922-1927, 10 000 for incomes
of years 1928-1935). The unique tax rate was maintained at 50% from the taxation of 1919 to
the taxation of 1922. After various exceptional increases, the upper marginal rate exceeded 90%
for the taxation of incomes of 1924. The President of the Council Raymond Poincaré brought
down the global rate of the IGR to 30% for incomes of 1926 (decrease that was offset by other
tax hikes).

André Tardieu, President of Council in 1929-1930, decided to raise the general allowance
and to institute new deductions for dependants (finance laws of 31 December 1928 and of 29
December 1929). He also slightly reassessed the global rate of the IGR. This "prosperity policy"
ended when the global economic crisis hit France in 1930. The government of Édouard Daladier
set up an exceptional increase of 10% (law of 28 February 1933) that applied for revenues of 1932
and 1933.
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After coming into office, Gaston Doumergue abrogated the exceptional surcharge of 10% and
decreased the rate of the IGR from 33.33% to 24% (law of 6 July 1934 and decree of 20 July 1934,
effective for the revenues of 1933). These measures applied from the taxation of revenues of 1934.
In return, the government took measures to extend the mass of taxable incomes. An abatement
of 10% for occupational expenses was instituted to control excessive deductions. This abatement
still applies. The law also repealed the tax cuts for dependants while it raised significantly the
level of flat-rate deductions for dependants and reassessed substantially the existing surcharges
for taxpayers without children.

In 1935, Pierre Laval decided of exceptional increments for top-earning taxpayers by the
decree-laws of 16 July and 26 July.

Revenues of 1936-1941 The Popular Front, which ruled France from 1936 to 1938, undertook
a major reform of the income tax with the finance law of 31 December 1936. It applied from
revenues of 1936. A new tax scale was established, formulated in average rates. A maximal
effective tax rate of 30% was created to limit the effects on top-earning taxpayers. The deductions
for dependants, which until 1936 were flat-rate and did not depend on the income of the taxpaying
households, were reduced for the more affluent families. Surcharges for taxpayers without children
were softened.

This legislation was not undermined by the Vichy regime and applied from 1936 to 1941.
The only changes were the establishment of successive exceptional surcharges.

Revenues of 1942-1944 The progressiveness of the tax scale was even strengthened by the
law of 24 October 1942. The new scale of the IGR applied for the taxation of revenues from 1942
to 1944. It was defined in marginal rates, which induced a slight decrease of the tax burden, but
the upper marginal rate reached 70%. As in the law of 25 June 1920, the overall structure of tax
brackets and the level of rates that applied were defined separately. The law of 30 January 1944
rose the general allowance, initially equal to 10 000 francs, up to 20 000 francs for the revenues
of 1943. As part of a pro-birth policy, the reduction of deductions for dependants decided by
the Popular Front was repealed (law of 13 January 1941). The family situation was also taken
into account with the family compensation tax (Taxe de compensation familiale or TCF) which
applied for revenues from 1939 to 1944. Indeed, Daladier government had removed the IGR
surcharges for taxpayers without children, and replaced them by an equivalent tax, the TCF
(decree-law of 29 July 1939).

4.1.1.6 The income tax since 1945

Since 1945, the evolution of the income tax in France has been much smoother. The decisions
taken at the Liberation essentially determined the frame of the progressive income tax up to the
present day.
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Number of Share of
thresholds taxable households

1945 10 10.2
1946 10 25.1
1947 9 8.9
1948 10 16.0
1949 9 20.1
1950 8 17.5
1951 8 14.8
1952 8 19.5
1953 8 17.8
1954 8 18.0
1955 8 21.3
1956 8 24.7
1957 11 24.6
1958 11 27.4
1959 12 27.4
1960 11 29.3
1961 13 32.5
1962 13 35.5
1963 13 39.5
1964 13 42.2
1965 12 42.8
1966 13 44.4
1967 13 47.2
1968 13 51.2
1969 13 50.7
1970 9 50.0
1971 10 51.6
1972 10 53.1
1973 10 55.2
1974 10 57.6
1975 10 60.3
1976 10 63.3
1977 10 61.7
1978 10 63.5
1979 5 64.7
1980 5 65.2
1981 12 63.4
1982 13 63.7
1983 13 62.8
1984 12 61.9
1985 12 60.7
1986 12 52.1
1987 12 50.8
1988 12 50.3
1989 12 50.7
1990 12 51,0
1991 12 51.2
1992 12 50.8
1993 12 50.4
1994 12 49.9
1995 12 50.6
1996 12 48.8
1997 12 49.7
1998 12 52.7

Table 4.2: Share of taxable households and number of tax brackets by year, France 1945-1998
Source: [Piketty, 2001].
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Finance law of 31 December 1945 The finance law of 31 December 1945 set the ingredients
of the modern income tax. The structure of the tax scale and the family quotient survived
throughout the second half of the xxth century. It was also decided to remove the possibility of
deducting from taxable income the tax paid the previous year.

First, the structure of the tax scale stabilized after 1945. It is defined in marginal rates, and
the number of tax brackets (5 for revenues between 1945 and 1948, 8 between 1949 and 1972,
12 between 1974 and 7 between 1993 and 1998) as well as the corresponding levels of taxation
has not changed much. The upper marginal rate steadied around 55-65%. The only fluctuations
were due to a few provisional exceptional increases of the tax rates.

Family quotient The family quotient system was set up in 1945 to replace the system
of flat-rate deductions for dependants that had applied for revenues of years 1915-1944. Each
household is assigned a number according to its family situation. The tax scale is applied to the
income of the household divided by the number of tax shares, and finally the amount to be paid
is multiplied by the number of shares.

Singles had one tax share, married couples two, and each additional child gave an additional
half-share. This system reduces the average tax rate which actually applies owing to the pro-
gressivity of the income tax. Raymond Barre granted an extra half-share to large families for the
fifth dependent child for the taxation of the revenues of the year 1979 (law of 18 January 1980),
and another extra half-share for the third dependent child as from the taxation of 1980 revenues.
The government led by Jacques Chirac granted an extra half-share for each child from the third
(law of 20 December 1986). But, as a legacy of the TCF, married couples without dependent
child after three years of marriage had only one share and a half (and not two). This disposition
applied to incomes of the years 1945-1949 and was repealed by the law of 24 May 1951. Another
point is that single taxpayers were given one share and a half (and not one) if at least one of
their children had reached 16. This family quotient system was opened to civil partners when
the PACS was adopted in October 1999.

The family quotient system is still applied in France. In 1981, the socialist government led
by Pierre Mauroy reformed the family quotient system (law of 30 December 1981). As from
the revenues of the year 1981, a mechanism ensured that deductions provided by the family
quotient were capped. Lionel Jospin decided to lower drastically the level of the capping (law of
30 December 1998, which affected the revenues of 1998).

Deductions of the amount paid the previous year The law of 31 December 1945
also decided that taxpayers would be able to deduce only half of the amount they had paid
the previous year from their taxable income. According to the law of 23 December 1946, this
possibility was totally repealed for the incomes of 1946. But for the incomes of 1947, one quarter
of the amount paid in 1946 could be deduced. The reform of 1948 (ruling of 9 December 1948)
removed the possibility of deducing any fraction of the amount paid for the "progressive surtax"
(formerly IGR). The possibility to deduce schedular taxes from the taxable income ended in
1970, but the amounts at stake were small.
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The reforms of 1948 and 1959 The ruling of 9 December 1948, which affected incomes
from the year 1948, substituted the unique impôt sur le revenu des personnes physiques (IRPP)
for the former IGR and schedular taxes. Actually, this new tax was divided in a proportional
tax (taxe proportionnelle) that replaced the schedular taxes, and a progressive surtax (surtaxe
progressive) that replaced the IGR.

The law of 28 December 1959, which applied to earnings from the year 1959, annulled the
proportional tax. But it created instead a complementary tax and a 5% surtax that affected the
same revenues. These new taxes only disappeared from the taxation of the year 1972.

The issue at stake with the successive reforms of the schedular taxes was the unequal treat-
ment of wage-earners and self-employed earners.

The taxation of capital incomes A growing proportion of capital incomes has been removed
from the income tax base. These waivers concern mostly top-earning households, and corrections
have to be made to take them into account. Initially, all revenues from securities were included
in the income tax base. The only exceptions were the capital gains, which have always been
shielded from the income tax.

The law of 13 March 1924 introduced some exemptions for interests on Treasury bills and
National Defence bills. From the 1920s and the 1930s, the list of exemptions lengthened, so that
in the late 1950s, a large majority of short-term public bonds, as well as a sizeable portion of
long-term government borrowings, were fully exempted from the income tax. Since the law of
29 November 1965, all the bonds and debt securities, and more generally all securities yielding
fixed revenues, whoever the issuer, are exempted from the income tax if the holder agrees to
pay a proportional tax (prélèvement libératoire, in general amounting to 15 or 25%) withheld at
source. The received incomes do not appear on tax returns.

Since the exemption of the livret A in 1952, the number of savings accounts and plans that
have been fully exempted from the income tax boomed.

At the end of the 1990s, the only securities still subject to the progressive income tax were
the dividends received by shareholders. However, these revenues make up the bulk of the capital
incomes received by wealthy households. Since the law of 12 July 1965, shareholders benefit
by the avoir fiscal paid by the State, that corresponds to the profit tax settled by the firm
before apportioning dividends. They also profit since the 1990s from a lump-sum allowance on
all revenues from dividends.

Land incomes also have benefited from abatements and derogations. Since the law of 23
December 1964, imputed rents are exempted from the income tax.

4.1.2 Corrections

We describe now the corrections that we have performed to estimate the shares of income accruing
to different deciles and percentiles. The correcting rates that we apply have been calculated by
Piketty [2001]. We follow his methodology.
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4.1.2.1 Truncated distributions

Only the taxable households fall into the scope of the tabulations issued by the tax adminis-
tration. Households who benefit from dependency deductions may be nontaxable due to their
family situation. These truncations underrate the number of taxpayers in each tax bracket. They
also distort the distribution as reported in the tax tabulations. Indeed, The income thresholds
above which households are taxable depend on the family characteristics of each household.

The methodology adopted to correct for this bias depends on the information available in
tax tabulations about the distribution of family structures in the tax brackets. Three distinct
periods have been distinguished in [Piketty, 2001]: 1915-1918, 1919-1944, and 1945-1998.

Revenues of 1945-1998 Since the taxation of revenues of the year 1945, tax tabulations
contain detailed information about the distribution of family structures among tax brackets. For
every bracket and every number of tax shares, the number and the revenues of the corresponding
taxable households are disclosed.

Taxpayers with at least 6 tax shares (that is, households with at least 8 dependent children)
account for a minute portion of the overall taxpaying population. They are neglected in the
corrections.

Then, let rθi, θi`1s be the lower bracket such that all households with less than 6 tax shares
and whose income lies between θi and θi`1 are taxable. There is no need to correct this bracket.
For the previous bracket rθi´1, θis, the total number of (taxable and nontaxable) households
with 5.5 tax shares can be estimated under the hypothesis that the ratio of the total number of
households with 5.5 tax shares over the total number of households with 5 tax shares is the same
as in the bracket rθi, θi`1s. We carry on step by step, by correcting successively for households
with 5 tax shares, 4.5 tax shares, etc, and moving from rθi´1, θis to rθi´2, θi´1s, rθi´3, θi´2s, etc.

We proceed in this way to construct the estimations since the taxation of revenues of 1945
from distribution tabulations corrected.

Revenues of 1919-1944 For this period, tax tabulations give the number and the total amount
of dependency deductions granted in each tax bracket. A table providing the number of taxpayers
with 1, 2, ..., 13 dependent children in each bracket for the taxation of incomes of the year 1937
has also been issued by tax authorities. Tax tabulations assure that the distribution of family
structures within tax brackets evolved slowly between WWI and WWII. Therefore, corrections
for taxations of incomes of the years 1919-1944 are made with the same method as for the
post-war period using the 1937 distribution table.

Revenues of 1915-1918 Our estimations for the years 1915-1918 are restricted to the fractiles
above 99%. Thus, there is no need to correct for truncations due to dependency deductions.
However, another problem appears for the early years of the income tax. The tax tabulations
have been released before the tax was levied for all taxable households. Consequently, some
taxable households do not appear in the tax tabulations of the years 1915-1918. Piketty [2001]
compares the total number of taxpayers and the total amount they paid that are given in tax
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tabulations with definitive figures issued afterwards. He obtains correction rates for the number
of taxable households: 1.57 for the year 1915, 1.29 for 1916, 1.35 for 1917 and 1.28 for 1918.
Yet, if all thresholds and shares are corrected with these figures, they are underestimated for
the year 1915 and overestimated for the years 1917 and 1918. In fact, top-earning taxpayers are
overrepresented among latecomers in 1915, and underrepresented in 1917 and 1918. We use the
corrections described in [Piketty, 2001] to amend these distortions.

4.1.2.2 Shift from taxable income to fiscal income

The estimates we have obtained so far are estimates of taxable income. To construct homogenous
series, we have to assess fiscal income, i.e. income before any abatement or deduction.

First, the deductibility of the taxes paid the previous year has to be taken into account.
During the period from 1916 to 1947, IGR was deducible from taxable income. Schedular taxes
have been deducible from 1918 to 1970.

Moreover, income estimations have to be corrected for category reductions and abatements.

Deductibility of IGR of the previous year (revenues 1916-1947) Piketty [2001] assesses
the rates of the tax cuts based on the deductibility of the IGR paid the previous year under the
assumption that taxpayers lied in the same fractile the previous year. He deduces the corrective
rates that have to be applied to estimates of taxable income to take into account this specific
rule.

For instance, the corrective rate for the fraction of taxpayers above percentile 99.9% in 1930
(32,1%) is calculated as follows. The average tax rate that affected the fraction of the population
above percentile 99.9% in 1929 (29.2%) is multiplied by the ratio between the average taxable
income of the fraction of population above 99.9% in 1929 and the average taxable income of the
share of taxpayers above percentile 99.9% in 1930:

29.2%ˆ
1, 472, 839

1, 336, 715
“ 32.1%. (4.1)

Of course, corrective rates in Piketty [2001] are computed with his estimations of taxable income.
The corrective rates that we would obtain with our new estimates of taxable income are almost
equal to the old ones, as our estimates of taxable income are very close to old estimates. So we
use the corrective rates given in [Piketty, 2001].
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90%-95% 95%-99% 99%-99.5% 99.5%-99.9% 99.9%-99.99% 99.99%-100%
1916 0.2 0.7 1.3 1.4
1917 1.1 2.3 4.8 8.4
1918 1.9 3.6 12.1 19.2
1919 0.0 0.0 1.6 3.2 8.1 13.7
1920 0.0 0.4 1.3 3.6 14.4 34.0
1921 0.1 0.7 2.3 6.3 18.6 50.5
1922 0.1 0.7 2.0 4.7 14.3 35.2
1923 0.1 0.7 2.1 5.0 14.8 34.5
1924 0.2 1.0 3.1 7.9 22.4 53.9
1925 0.3 1.2 4.2 10.7 25.8 51.9
1926 0.4 1.3 3.7 8.6 19.3 37.2
1927 0.3 0.8 2.7 6.3 13.3 24.8
1928 0.3 0.8 2.4 5.6 12.9 25.0
1929 0.2 0.9 3.1 6.9 16.3 30.9
1930 0.2 0.8 2.7 6.9 15.3 32.1
1931 0.3 1.0 3.1 7.2 17.2 33.7
1932 0.2 0.8 2.6 6.1 14.6 32.3
1933 0.2 0.8 2.6 5.8 14.1 29.3
1934 0.2 0.9 2.7 5.7 13.8 31.7
1935 0.1 0.5 1.7 3.8 11.2 21.6
1936 0.1 0.5 1.6 3.6 11.3 25.8
1937 0.1 0.6 2.0 4.7 16.8 33.6
1938 0.3 0.8 2.8 7.0 22.3 49.0
1939 0.5 1.2 3.7 9.0 23.0 42.9
1940 0.4 1.1 3.1 8.4 28.4 69.5
1941 0.2 0.6 1.9 4.4 15.9 35.7
1942 0.5 1.2 3.6 9.9 27.5 59.8
1943 0.7 1.9 5.9 13.9 33.5 56.2
1944 0.5 1.8 6.6 14.6 34.7 68.6
1945 0.3 0.8 2.3 4.3 8.2 11.7
1946 0.0 0.0 0.0 0.0 0.0 0.0
1947 0.8 1.3 2.0 3.0 5.6 11.3

Table 4.3: Deductibility of the IGR: corrective rates for incomes of the years 1916-1947
Source: [Piketty, 2001].
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Deductibility of the schedular taxes of the previous year (revenues 1918-1970) In the
case of schedular taxes, average rates affecting the different fractiles of the taxpaying population
are difficult to estimate. Indeed, composition tabulations only appear after 1948. Furthermore,
only indirect information about the level of individual category revenues is find in these tabula-
tions.

However, the average rates of schedular taxes are quite low, so that corrections are much less
significant than in the case of the deductibility of the IGR.

Piketty [2001] obtains rough estimates of the corrective rates to be applied by hypothesizing
average rates of schedular taxes affecting the different parts of the population. The resulting
rates are consistent with totals reported in composition tabulations.

We give below these rates combined with the rates correcting for the deductibility of the
IGR.
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90%-95% 95%-99% 99%-99.5% 99.5%-99.9% 99.9%-99.99% 99.99%-100%
1916 0.2 0.7 1.3 1.4
1917 2.7 4.8 8.2 13.2
1918 3.7 6.3 16.0 24.5
1919 0.0 0.0 5.1 8.4 14.1 21.5
1920 0.8 2.8 5.3 9.4 22.6 42.6
1921 1.0 3.6 7.3 13.7 28.3 62.6
1922 1.0 3.4 6.6 11.1 22.4 44.3
1923 1.0 3.4 6.4 10.9 22.6 43.1
1924 1.0 3.8 7.7 14.4 31.4 64.9
1925 1.2 3.7 8.8 17.3 34.3 61.0
1926 1.3 4.0 8.0 14.6 26.8 44.8
1927 1.2 3.7 7.8 13.3 22.0 34.2
1928 1.2 3.7 7.1 12.2 21.5 34.5
1929 1.1 3.7 8.1 13.8 25.7 41.4
1930 1.1 3.7 7.6 14.1 24.5 43.1
1931 1.3 4.2 8.6 15.1 27.8 45.7
1932 1.3 3.9 7.9 13.6 24.5 44.0
1933 1.2 3.8 7.7 13.0 23.5 39.3
1934 1.3 4.1 8.0 13.1 23.2 42.7
1935 1.2 3.6 6.8 11.0 20.4 31.0
1936 1.1 3.3 6.3 10.2 19.6 35.0
1937 1.0 3.3 6.4 10.7 24.6 42.0
1938 1.2 3.6 7.3 13.5 31.1 59.6
1939 1.6 4.4 9.2 16.4 31.6 52.0
1940 1.5 4.2 8.3 16.1 38.9 83.4
1941 1.0 3.0 5.6 9.5 22.8 43.5
1942 1.3 3.7 7.7 16.0 36.1 70.6
1943 1.6 4.4 10.4 20.4 42.5 66.2
1944 1.4 4.4 11.3 21.5 44.1 80.7
1945 0.8 2.4 5.0 8.2 12.8 16.0
1946 0.6 1.8 2.7 3.6 4.1 4.1
1947 1.6 3.5 5.9 8.6 13.0 20.6
1948 0.5 1.9 3.1 4.2 5.3 5.7
1949 0.8 2.4 4.0 5.5 6.8 7.2
1950 0.9 2.6 4.3 6.1 7.9 8.6
1951 0.8 2.3 3.9 5.6 7.3 8.4
1952 0.9 2.5 4.2 5.8 7.7 9.0
1953 1.0 3.1 5.1 7.1 9.1 9.8
1954 1.0 2.9 4.8 6.7 8.7 9.5
1955 0.9 2.7 4.5 6.4 8.2 9.1
1956 0.9 2.8 4.5 6.4 8.3 9.2
1957 0.9 2.6 4.5 6.3 8.1 9.0
1958 0.9 2.7 4.5 6.4 8.2 9.5
1959 1.0 2.8 4.7 6.5 8.5 9.3
1960 0.8 2.5 4.1 5.7 7.2 8.0
1961 0.8 2.2 3.7 5.3 6.8 7.5
1962 0.7 2.0 3.4 4.9 6.3 7.3
1963 0.6 1.8 3.0 4.3 5.6 6.2
1964 0.5 1.6 2.6 3.7 4.8 5.4
1965 0.5 1.4 2.3 3.3 4.2 4.6
1966 0.4 1.2 2.0 2.8 3.6 3.8
1967 0.3 0.9 1.5 2.1 2.7 2.9
1968 0.2 0.7 1.2 1.7 2.2 2.4
1969 0.2 0.5 0.8 1.1 1.4 1.5
1970 0.1 0.2 0.4 0.5 0.7 0.8

Table 4.4: Deductibility of the IGR and schedular taxes: global corrective rates for incomes of
the years 1916-1970

Source: [Piketty, 2001].
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Figure 4.1: Pareto curve of the income distribution, France 1981

Category deductions and abatements Last, various category deductions and abatements
have to be taken into account to obtain fiscal income. The main evolutions throughout the
xxth century concern wage income. The 10% compensation for business expenses has been
instituted in 1934. The abatement rate was 0% for wage revenues of the years from 1915 to 1952,
10% in 1953, 15% between 1954 and 1958, 19% in 1959, and 20% after 1960.

Piketty [2001] computes the following corrective rates, based on legislative developments and
on ratios of fiscal income over taxable income observed since the 1970s.

0%-100% 90%-95% 95%-99% 99%-99.5% 99.5%-99.9% 99.9%-99.99% 99.99%-100%
1915-1952 18 18 16 16 16 14 11

1953 25 25 22 19 16 14 11
1954-1958 33 33 30 25 22 16 11

1959 41 41 37 32 27 18 11
1960-1998 43 43 39 33 28 19 11

Table 4.5: Category abatements: corrective rates for incomes of the years 1915-1998
Source: [Piketty, 2001].

4.1.3 Estimations

4.1.3.1 Sources

The French Finance Ministry periodically issued statistic tabulations describing the distribution
of taxpayers and incomes among the income tax brackets. Tax tabulations are found in the
Bulletin de Statistique et de Législation Comparée (taxation of incomes of the years 1915-1937),
in the Renseignements Statistiques Relatifs aux Impôts Directs (incomes of the years 1923-1929)
in the Bulletin de Statistique du ministère des Finances (incomes of the years 1938-1945), in
the Statistiques et Études Financières (incomes of the years 1946-1981), and in the États 1921
(incomes from 1982).
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Tax tabulations are now published on statistics section of the official website http://www.

impots.gouv.fr/.

4.1.3.2 Results

Figure 4.2 gives the ratios of our estimations of the distribution of taxable income over estimations
obtained with the piecewise polynomial method found in [Piketty, 2001]. They are very close,
especially estimations of average incomes above different percentiles of the distribution. Indeed,
the multiplication by the Pareto coefficient of the threshold estimation offsets approximation
errors due to local variations of b. Predicted values of the average income are less sensitive to
errors in b than predicted values of thresholds.

The downward trend followed by our estimates for percentiles 99.9% and 99.99% since the
1970s is explained by the fact that Piketty [2001] applied corrective rates to his values in order
to get results closer to samples provided by the tax administration. This proves that our values
extrapolated for the top of the distribution are in fact too low, and encourage us to deepen new
extrapolation methods such as the use of splines with tension (see appendix B).

Another irregularity occurs for the year 1988. Actually, the data in the income tax tabulation
of this specific year include the proportional rates capital gains (plus-values à taux proportion-
nels), which were not included elsewere. Therefore Piketty did not use tax data for his estimations
of incomes of the year 1988.

We do not provided similar ratios for fiscal income: we have applied exactly the same cor-
rective rate as Piketty [2001], so the ratios would be identical.

We also compare in figure 4.3 the evolution of shares of total income accruing to the the top
10%, top 1%, top 0.1% of taxpayers for the old and new time series.

Note that we did not construct new estimates for the years 1915-1918: indeed, the corrections
that had to be applied after Paretian approximation were too rough to expect improving the
precision with a change of method.
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(a) Thresholds

(b) Average income above

Figure 4.2: Comparison of new estimations of taxable income with estimations of Piketty [2001]
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(a) Top 10%

(b) Top 1%

(c) Top 0.01%

Figure 4.3: Evolution of the top shares of income accruing to different percentiles of the
population

78



4.2 Application to inheritance tax tabulations 1902-1994

We exploit inheritance tax tabulations with our new method. By doing so, we are able to
estimate accurately the distribution of inheritance left by different deciles and percentiles of the
population. Associated with demographical considerations, these estimations give a hint about
the distribution of wealth within the population.

We first overview the legislation of the inheritance tax since its establishment in France in
1901, using the historical review given in [Piketty, 2001]. We then provide estimations of the
distribution of inheritance using raw tabulations provided by tax administration.

4.2.1 The inheritance tax in France

The inheritance tax has been the first countrywide progressive tax introduced in France. It was
established by the law of 25 February 1901.

The primary characteristic of the French inheritance tax is that tax rates that apply are
based on the actual estate value which is paid to the heirs (the part successorale), and not on
the total legacy left by the deceased.

In addition, there have always existed several tax scales, depending on the degree of kinship
between the deceased and the legatee: transfers to lineal descendants, to spouses, to relatives in
the collateral line or to unrelated persons are not taxed at the same rates. Here, we will estimate
the level of the different fractiles of the total legacy left, irrespective of heirs.

A second feature of the law of 25 February 1901 is that bequests and donations were initially
treated unequally. Legacies were taxed according to progressive scales, while donations were
taxed according to proportional rates (that also varied depending of the degree of kinship). The
law of 14 March 1942 rectified this flaw. Since then, donations are subject to the same progressive
tax scales as inheritance. Prior donations are "recalled" and added to the inheritance bequeathed
at the moment of death to calculate the tax owed. However, some tax benefits are still granted
to donations. The donor can pay himself the tax due for the donation, which is not "recalled"
at time of the heritage. The value of a donation, is not in general discounted at the time of the
heritage, which is profitable if inflation is high. Finally, some categories of donations benefited
from preferential tax regimes.

This preferential treatment of donations can bias estimations of wealth from inheritance
tabulations if the most affluent use more than others the opportunity to donate a part of their
fortune to avoid heavier taxation.
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Positive legacies Thresholds
1902 65.0% 8
1903 69.5% 12
1904 68.1% 12
1905 66.3% 12
1907 65.6% 12
1909 63.9% 12
1910 65.5% 12
1911 61.6% 12
1912 65.6% 12
1913 65.4% 12
1925 65.9% 12
1926 69.3% 12
1927 67.8% 12
1929 63.0% 12
1930 65.4% 12

1931-32 64.1% 12
1932 65.9% 12
1933 61.9% 12
1935 63.7% 12
1936 63.9% 12
1937 64.9% 12
1938 65.8% 12
1939 59.6% 12
1940 45.0% 12
1941 58.3% 12
1942 60.4% 12
1943 60.8% 14
1944 53.6% 13
1945 58.0% 13
1946 61.7% 8
1947 67.4% 8
1948 63.4% 8
1949 57.1% 8
1950 58.0% 8
1951 55.6% 8
1952 60.3% 9
1953 50.7% 8
1954 60.2% 9
1955 59.6% 9
1956 58.2% 9
1957 60.5% 9
1958 67.4% 8
1959 67.1% 8
1960 59.1% 8
1962 59.7% 8
1964 66.1% 8
1984 56.2% 7
1994 63.8% 8

Table 4.6: Share of positive legacies and number of thresholds in the inheritance tax tabulations
by year

Source: [Piketty, 2001].
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Figure 4.4: Pareto curve of the inheritance distribution, France 1943

4.2.2 Estimations

4.2.2.1 Sources

Since the institution of the inheritance tax in France in 1901, tax authorities have periodically
processed inheritance declarations. They issued several series of statistic tabulations giving the
number and the distribution of bequests within the different tax brackets. They also release
composition tabulations indicating the different types of goods inherited.

We have exploited distribution tabulations. The statistics are missing for a significant number
of years. They have been successively published in the Bulletin de Statistique et de Législation
Comparée (ministère des Finances, successions of the years 1902-1905, 1907, 1909-1913, 1925-
1927, 1929-1933, 1935-1938), in the Bulletin de Statistique du ministère des Finances (ministère
des Finances, successions of the years 1939-1946), in the Statistiques et Études Financières (min-
istère des Finances, successions of the years 1947-1960, 1962, 1964), in "L’imposition du capital",
8ème Rapport au Président de la République (Conseil des Impôts, successions of the year 1984),
and in "L’imposition du patrimoine", 16ème Rapport au Président de la République (Conseil des
Impôts, successions of the year 1994).

4.2.2.2 Results

We have applied our estimation method to raw data found in the tabulations.
The main difference with Pareto curves of the income distribution is that a large part of the

population leaves little or no inheritance to its descendants. As a smaller sample of the population
is observed each year (there have been roughly 500 000 adults deaths a year throughout the
xxth century), the Pareto coefficient starts to decrease for lower percentiles than in the case of
incomes.

We have constructed the shares series using the average inheritance series assessed with the
number of adults deaths (provided in [Piketty, 2001]).

The ratios of new estimates over old estimates, both for thresholds and average income of
top inheritance groups, a plotted in figure 4.5. The series of average income above different
percentiles of the inheritance distribution appear to be very close for old and new estimates. For
the years 1984 and 1994, the raw estimates are actually very close, but Piketty [2001] applies
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correcting rates.
Figure 4.6 compares the evolutions of top inheritance shares throughout the xxth century

between old and new estimates.
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(a) Thresholds corresponding to different percentiles of the distribution

(b) Average income above different percentiles of the distribution

Figure 4.5: Comparison of new estimations of the inheritance distribution with estimations of
Piketty [2001]
Source: Interpolation from raw inheritance tax tabulation.
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(a) Top 10%

(b) Top 1%

(c) Top 0.01%

Figure 4.6: Evolution of the top shares of inheritance accruing to different percentiles of
the population
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Section 5

Conclusion

We worked out a new nonparametric method to assess the income and wealth distributions from
tax tabulations data. While the literature until now had concentrated on parametric estimations,
we have been able to relax any prior assumption about the functional form of the distribution.
To do so, we have first defined the generalized Pareto curve that we can approximate numerically
using tabulations data. This generalized Pareto curve characterizes the overall distribution.

We have suggested several applications. Our method provides precise estimations of shares
of income and wealth accruing to different deciles and percentiles of the distribution. Their
accuracy has been demonstrated with microdata provided by tax authorities in France for the
year 2006. Contrary to usual parametric methods, our technique is not restricted to the Pareto-
like top of the distribution, and allows to construct estimates for whole taxpaying population.
It also permits the generation of synthetic micro-files representing the entire population with
incomes distributed just as the actual population. A last application is the homogenization of
series obtained for individual-based tax systems and for household-based tax systems.

This research into tax-based estimation methods can be extended into two directions.
First, the analytic methods used to estimate the empirical generalized Pareto curves could

be refined. This would permit both to take full advantage of the information provided in tax
tabulations and to incorporate empirical findings to complete gaps in the tax-based data, in
particular for the bottom and the very top of the distribution. Indeed, tax tabulations do not
tell us anything about the shape of the Pareto curve for highest incomes or wealth above the
last threshold, or about low incomes and inheritance that are exempted. Hence, we have to
extrapolate the Pareto curve outside the range of the tax scale. For higher percentiles of the
distribution, a rise of the Pareto coefficient near 1 appears to be well-investigated. This empirical
fact has to be taken into account when there are not enough thresholds in the tax scale for the
top of the distribution to be assessed. Besides, depending on the level of the general allowance, a
large part of the population may be exempted from paying the income or inheritance tax. To fill
in this gap, the shape of the Pareto curve below the lower tax threshold has to be extrapolated
using both additional data (for example the average and the median incomes) and observations
for years when reliable micro-files have been made available by tax authorities. Interpolation
technique to approximate the Pareto curve between tax thresholds may also be improved. The
curve bppq appears to be tighter for the middle part of the distribution than for the top. The
varying curvature may be integrated if we employ more general interpolants such as tension
splines.

Second, the two-dimensional nature of the income distribution has to be investigated. Indeed,
income decompose into two components, labor income, which relates to the wage distribution, and
capital income, which relates to the wealth distribution. The appropriate mathematical tools to
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deal with this two-dimensional distribution are the copulas1. These functions join multivariate
distribution functions to their one-dimensional margins. Aaberge et al. [2015] prescribe their
use to analyze finely the dramatic transition from a class system, in which top incomes were
predominantly made of capital income, to system were top wage earners and capital owners
appear to co-habitate the top of the income distribution. The question is to determine whether
the two groups are merging, or if the rentiers are being elbowed out of the top income groups. As
stated by the authors, four ingredients affect the distribution of personal incomes: the respective
shares of labor and capital income in the national product, the marginal distribution of wages,
the marginal distribution of capital incomes, and the correlation between earned and capital
incomes. Copulas allow to disentangle these effects. They isolate the last element so that
its evolution can be studied separately. The exploitation of composition tax tabulations may
provide information about the composition of earnings of top income groups. But they tell us
little about how the two dimensions of the income distributions relate at the individual level.
Further examination of these tabulations would help to realize to which extent we can ascertain
the copula corresponding to the empirical income distribution using only tax data. Estimating
copulas can also help finding the appropriate corrections to pass from taxable income to fiscal
income. Last, copulas can be used to generate two-dimensional micro-files that correspond to
the true distributions of labor and capital incomes.

1See [Nelsen, 2006] for a reference.
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Appendix A

Pareto curves of usual parametric
distributions

We display in this appendix the generalized Pareto curves of the main parametric distributions
that have been used in the literature to mirror the income and wealth distributions for various
choices of parameters.

In each case, the Pareto curve bppq, 0 ď p ď 1, has been computed numerically from the
formula:

bppq “
1

p1´ pqQppq

ż 1

p
Qprqdr (A.1)

where Q “ F´1 is the quantile function associated to the distribution.
We can discern the Paretian distributions, for which:

lim
pÑ1

bppq ą 1. (A.2)

All types of Pareto distributions, the Champernowne distribution, the Sech2 distribution and
the Singh Maddala distribution satisfy this criterion.

Unlike them, the lognormal and the three-parameter lognormal distributions, the Gamma
and the generalized Gamma distributions and the Weibull distribution are characterized by the
behavior near 1 of their Pareto curves:

lim
pÑ1

bppq “ 1. (A.3)

We notice that the Pareto curve of the Pareto type III and IV, Champernowne, Sech2 and
Singh-Maddala distributions do resemble the empirical Pareto curve observed in microdata pro-
vided by the French tax administration for the year 2006.
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(a) Pareto type I distribution

(b) Pareto type II distribution

Figure A.1: Pareto curves of Pareto type I and type II distributions
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(a) Pareto type III distribution

(b) Pareto type IV distribution

Figure A.2: Pareto curves of type III and type IV Pareto distributions
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(a) Lognormal distribution

(b) Three-parameter lognormal distribution

Figure A.3: Pareto curves of lognormal distributions
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(a) Champernowne distribution

(b) Sech2 distribution

Figure A.4: Pareto curves of Champernowne and Sech2 distributions
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(a) Gamma distribution

(b) Generalized Gamma distribution

Figure A.5: Pareto curves of Gamma distributions
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(a) Weibull distribution

(b) Singh-Maddala distribution

Figure A.6: Pareto curves of Weibull and Singh-Maddala distributions
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Appendix B

Estimating the generalized Pareto curve

It is often required to estimate the value of a function for intermediate values of the independent
variable given a discrete set of data points where this function is known. Curve fitting refers to
numerical analysis methods designed to construct new points within the range of a number of
known values of the independent variable. It involves either smoothing, where a smooth function
is built which approximately fits the data, or interpolation, which necessitates an exact fit to the
data.

We explain in this appendix how to approximate numerically the empirical Pareto curve
given the data found in tax tabulations. Specifically, we know the value of the empirical Pareto
curve bppq at a number of thresholds of the tax scale which correspond to percentiles p1, . . . , pω
and where bppq is equal to b1, . . . , bω respectively. In practice, the application of the method
described in section 3.1 crucially rests on the quality of the approximation.

B.1 A first try: approximation by a suited functional form

A first strategy is to seek a manageable functional form to approximate the Pareto curve. A
natural candidate is:

bppq “ a`
b

p´ pmin
` c ¨ p`

d

1` ε´ p
, 0 ď p ď 1 (B.1)

where a, b, c, d, pmin and ε are the parameters to estimate.
The term b

p´pmin
tries to capture the asymptote at pmin » 6% while the term d

1`ε´p is
designed to fit the final increase around the top 1 percent. The linear term c ¨ p matches the
global downward trend of the curve.

We provide the resulting approximation. They are obtained with non-linear regression of
b1, ..., bω on the chosen functional form. The microdata used were provided by tax authorities.
They correspond to the French taxpaying population in the year 2006. The first figure stems
from the thresholds in the fiscal scale of the year 2006, the second from the thresholds in the
scale of the year 2012 that were more numerous at the top of the distribution.

In both cases, the approximating curves fit quite well the central part of the Pareto curve.
Below the first threshold, neither of them manages to capture the shape around the vertical
asymptote. The approximation in that part appears to randomly depend on the rest of the
curve. In the top percentiles, the two approximations underestimate the rise of the empirical
Pareto curve. That failing was expected with the 2006 tax data: how could we guess, given
only the thresholds in the 2006 tax tabulation, that the empirical Pareto coefficient increases so
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(a) Thresholds of the 2006 tax scale.

(b) Thresholds of the 2012 tax scale.

Figure B.1: Approximation of the generalized Pareto curve, France 2006
Functional form: bppq “ a` b

p´pmin
` c ¨ p` d

1`ε´p
, 0 ď p ď 1. Spacing: 0.5%.
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sharply in the very top? But with the 2012 scale, we have information on the variations of the
curve until the last fractiles. The downward bias at the top of the curve is due to fact that the
last points correspond to the final decrease of bppq, which flaws the regression.

Here is the approximation obtained if we exclude top thresholds for which the Pareto curve
goes down from the tabulation. The top of the curve is now quite well approximated.

Figure B.2: Approximation of the generalized Pareto curve, France 2006
Thresholds of the 2012 tax scale, top thresholds excluded.

Functional form: bppq “ a` b
p´pmin

` c ¨ p` d
1`ε´p

, 0 ď p ď 1. Spacing: 0.5%.

Note that these approximations are not interpolations: the curves do not pass exactly through
the thresholds points.

B.2 Shape-preserving interpolation

The smoothing approach remained somehow unsatisfactory. The resulting approximations di-
verged from the empirical curve in places. As the functional form was not flexible enough, the
curves in the bottom part of the distribution varied randomly depending on the thresholds else-
where. Small changes in a given threshold could lead to large changes in the approximating
curve. This method also necessitated at least 6 thresholds in the tax scale, so that the regression
could be run. Moreover, the bi found in tax tabulations are exact up to misreporting of incomes.
Ideally, we would like our approximative function to pass through these points.

The interpolation approach gives much robust and stable results.
Formally, the interpolation problem is as follows. An unknown real-valued function f is

defined on an interval ra, bs. Data is stored in tabular form pxi, fiq for i “ 1, . . . , N , where
fi “ fpxiq and the points xi, which are called the interpolation nodes, form an ordered sequence
a “ x1 ă x2 ă . . . ă xN “ b. Typically, we are looking for a function PN selected from a
predetermined class of functions that passes through the data points so that for each i, PN pxiq “
fi.

At first glance, it may seem easy to find such a function, as one could simply draw by hand
a curve passing through a given set of data points. But finding a closed-form formula turns out
to be more complex, especially if one wishes to obtain a visually pleasing curve (that is, if it is
required for the interpolating function to keep to the overall shape of the data).
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We review below the main interpolation methods. This will justify our choice of using shape-
preserving cubic splines to interpolate generalized Pareto curves from the income tax tabulations.
These techniques are thoroughly described by Kvasov [2000].

B.2.1 Review of basic interpolation methods

B.2.1.1 Polynomial interpolation

The traditional method to obtain a smooth interpolant is the construction of a polynomial PN
of order N ` 1 which goes through the nodes. The Lagrange formula gives the explicit solution:

PN pXq “
N
ÿ

j“0

fjLjpXq (B.2)

where the Lagrange coefficient polynomial Lj are, for j “ 0, . . . , N ,

LjpXq “
pX ´ x1q . . . pX ´ xj´1qpX ´ xj`1q . . . pX ´ xN q

pxj ´ x1q . . . pxj ´ xj´1qpxj ´ xj`1q . . . pxj ´ xN q
(B.3)

and satisfy

Ljpxiq “

$

&

%

1 if i “ j,

0 otherwise.
(B.4)

However, for arbitrary nodes such that a ď x1 ă . . . ă xN ď b, the Lagrange polynomial
interpolant does not in general converge uniformly to the unknown function f on the interval
ra, bs as the number of nodesN grows to infinity. A famous example is given by Runge [1901]. The
Lagrange polynomial interpolants do not converge uniformly to the function defined on r´1, 1s
by fpxq “ 1{p1 ` 25x2q if the nodes are equally spaced. In particular, polynomial interpolants
appear to be bad approximation functions as oscillations can occur between nodes with high
degree polynomials.

B.2.1.2 Splines

As global interpolation by a unique polynomial does not guarantee convergence, interpolation
methods which are used in practice involve piecewise polynomials. Spline interpolation avoids
Runge’s phenomenon, as different polynomials are defined within each interval.

Linear interpolation The simplest method is linear interpolation. If the coordinates of two
consecutive known points are pxi, fiq and pxi`1, fi`1q, the linear interpolant P is the straight line
between these two points. For x in the interval rxi, xi`1s, P pxq is given by:

P pxq “ fi
xi`1 ´ x

hi
` fi`1

x´ xi
hi

, (B.5)

with hi “ xi`1 ´ xi.
Linear interpolation on the set of points px1, f1q, ¨ ¨ ¨ , pxN , fN q is obviously defined by the

concatenation of linear interpolants between each pair of consecutive data points. The resulting
curve is continuous, but not differentiable in general.
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Figure B.3: Linear interpolation of the generalized Pareto curve
Spacing: 0.5%.

Figure B.4: Cubic spline interpolation of the generalized Pareto curve
Spacing: 0.5%.

Cubic splines Even if linear interpolation provides quite satisfactory results, we see in figure
B.3 that the interpolant should be more curved to follow accurately the Pareto curve. The
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approximation is improved by replacing piecewise linear interpolants by cubic splines. On each
interval, the function b is approximated by a polynomial of order 3. Additional conditions are
given at the nodes to force both continuity and differentiability. The Stata routine csipolate
based on the method introduced by Herriot and Reinsch [1973] provides a cubic spline interpolant.

Formally, the restriction of the interpolant PN on each interval rxi´1, xis, i “ 2, . . . , N is a
polynomial of order 3 Si so that:

S1px1q “ f1, SN pxN q “ fN , Sipxiq “ Si`1pxiq, @1 ď i ď N ´ 1 (B.6)

and
S1ipxiq “ S1i`1pxiq, @1 ď i ď N ´ 1. (B.7)

The second statement guarantees the differentiability of the interpolant FN . This method is
based on Hermite polynomials, i.e. polynomials that are determined by their values and the
values of their derivatives at both ends of the intervals.

The curve obtained by interpolating the 2006 Pareto curve from the thresholds used for the
2012 tax scale is displayed below. Unfortunately, the interpolant exhibits a spurious behavior
and does not respect the shape of the data above percentile 80.

Shape-preserving methods As we have seen, piecewise polynomial interpolants do not nec-
essarily preserve the shape of the given data. To approximate accurately the Pareto curve, we
would like the interpolant to be monotonic on intervals where the data is monotonic and to be
convex where the data is convex.

Those geometric considerations translate into constraints that have to be satisfied by the
derivatives of the Hermite polynomials splines at the data points1. Fritsch and Carlson [1980]
give an algorithm to constrain the interpolating polynomials to meet the conditions that imply
the desired properties (see also [Dougherty et al., 1989]). The interpolation method that we
used to interpolate the Pareto curves is based on their work. The so-called Piecewise Cubic
Hermite Interpolating Polynomial (PCHIP) provides visually pleasing interpolants, and has the
advantage of being already implemented in Stata, with pchipolate, and in Matlab, with pchip.

The interpolant for the French Pareto curve (microdata 2006) with thresholds of the 2012
tax scale is displayed below.

1Two other approaches have been suggested in the literature. The first one consists in adding new mesh
points so as to increase the number of polynomial splines [McAllister et al., 1977]. One can also construct
shape-preserving interpolants by increasing the degree of the polynomials [Hyman and Larrouturou, 1982].
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Figure B.5: PCHIP interpolation of the Pareto curve
Spacing: 0.5%.
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(a) Top 10%
Spacing: 0.05%.

(b) Top 1%
Spacing: 0.005%.

(c) Top 0.1%
Spacing: 0.0005%.

Figure B.6: PCHIP interpolation of the Pareto curve - Zoom on top percentiles
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B.2.2 Piecewise cubic Hermite polynomial interpolation

The routines pchipolate in Stata and pchip in Matlab are both based on the algorithm de-
veloped by Fritsch and Carlson [1980]. These authors claim that their algorithm produces a
"visually pleasing" C1 monotone piecewise cubic interpolant.

We first examine the properties of the interpolants drawn under this procedure, and then
detail the steps of the algorithm.

B.2.2.1 Properties

Each spline of the PCHIP interpolant is a cubic Hermite polynomial. It is a polynomial of order
3 defined by its values and the values of its derivative at both ends of the interval.

Formally, to keep previous notations, the interpolant P satisfies:

P pxiq “ fi, i “ 1, . . . , N. (B.8)

The spline Si on each subinterval rxi, xi`1s can be represented as follows:

SipXq “ fiH1pXq ` fi`1H2pXq ` diH3pXq ` di`1H4pXq (B.9)

where dj “ S1ipxjq, j “ 1, 2, and the HkpXq are the standard cubic Hermite basis functions for
the interval rxi, xi`1s:

H1pXq “ φ

ˆ

xi`1 ´X

hi

˙

, (B.10)

H2pXq “ φ

ˆ

X ´ xi
hi

˙

, (B.11)

H3pXq “ ´hiψ

ˆ

xi`1 ´X

hi

˙

, (B.12)

and
H4pXq “ hiψ

ˆ

X ´ xi
hi

˙

(B.13)

with hi “ xi`1 ´ xi, φpXq “ 3X2 ´ 2X3, and ψpXq “ X3 ´X2.
The procedure constructs a visually pleasing interpolant in the sense that if fi ď fi`1 (re-

spectively fi ě fi`1), the spline Si is monotone increasing on rxi, xi`1s (respectively monotone
decreasing). There are no extraneous overshootings, bumps or wiggles.

The problem of finding such an interpolant boils down for cubic Hermite splines to the con-
struction of derivative values d1, . . . , dN such that each spline is monotone. In the paper [Fritsch
and Carlson, 1980], necessary and sufficient conditions are derived that constrain interpolating
splines to be monotone.

The PCHIP algorithm produces the values di using information on the neighboring points
only. Consequently, this procedure is local: a single change in the data will affect the interpolant
only in neighboring intervals. This property ensures stability of the interpolants.

B.2.2.2 Description of the PCHIP algorithm

Necessary and sufficient conditions for monotonicity Fritsch and Carlson [1980] give
the following characterization for monotonicity of the spline Si on the interval rxi, xi`1s.
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First, they notice that an obvious necessary condition for monotonicity is:

sgnpdiq “ sgnpdi`1q “ sgnp∆iq. (B.14)

Proposition B.2.1

Let ∆i “
fi`1´fi

hi
, αi “ di

∆i
and βi “

di`1

∆i
.

• If αi ` βi ´ 2 ď 0, then Si is monotone on rxi, xi`1s if and only if (B.14) is
satisfied.

• If αi ` βi ´ 2 ą 0 and (B.14) is satisfied, then Si is monotone on rxi, xi`1s if
and only if one of the following conditions is satisfied:

(i) 2αi ` βi ´ 3 ď 0; or

(ii) αi ` 2βi ´ 3 ď 0; or

(iii) αi ´ 1
3
p2αi`βi´3q2

αi`βi´2 ě 0.

Let M be the region of all points pαi, βiq that produce a monotone interpolant.

Algorithm Fritsch and Carlson [1980] advise the following two-step procedure.

1. Initialization of the derivatives di, i “ 1, . . . , N so that sgnpdiq “ sgnpdi`1q “ sgnp∆iq. If
∆i “ 0, set di “ di`1 “ 0. Otherwise, authors suggest to use the three-point difference
formula:

di “
di`1 ´ di

2pxi`1 ´ xiq
`

di ´ di´1

2pxi ´ xi´1q
. (B.15)

(B.16)

2. For each interval rxi, xi`1s in which the pαi, βiq R M, modify di and di`1 to d˚i and d˚i`1

defined by:
α˚i “ τiαi, β˚i “ τiβi (B.17)

where τi “ 3pα2
i ` β

2
i q
´1{2.

B.3 Extrapolation

B.3.1 Lower incomes

In this section, we try to approximate the Pareto curve below the lowest threshold in the tax
scale. The resulting extrapolation is no more than a crude approximation: it is kind of a challenge
to assess the Pareto curve of the nontaxable population from tax data.

The bottom part of the Pareto curve cannot be directly assessed using splines. Indeed, the
curve bppq diverges toward infinity for lower incomes. We present below an attempt to extrapolate
this fraction of the Pareto curve.

First step: Estimating Lppq, p ď p1 The idea is to approximate the Lorenz curve L instead
of the Pareto curve. Indeed, we know that Lpp0q “ 0, and we can estimate the value of Lpp1q
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using tax tabulation and the average income y:

L1 “ Lpp1q “ 1´
p1´ p1qb1θ1

y
, (B.18)

where b1 “ bpp1q is given.
In fact, we can also estimate L1pp1q: one can check that the expression (3.10) is equivalent

to:
L11 “ L1pp1q “

1´ L1

p1´ p1qb1
. (B.19)

We will interpolate L on the interval rp0, p1s with a Hermite cubic spline. We want this spline
to satisfy:

$

’

’

’

’

&

’

’

’

’

%

Lpp0q “ 0

L1pp0q “ 0

Lpp1q “ L1

L1pp1q “ L11

(B.20)

The cubic polynomial satisfying this set of conditions can be expressed in the standard cubic
Hermite basis defined before as:

LpXq “ L1H2pXq ` L
1
1H4pXq, (B.21)

where
H2pXq “ φ

ˆ

X ´ p0

h0

˙

, (B.22)

H4pXq “ h0ψ

ˆ

X ´ p0

h0

˙

, (B.23)

with h0 “ p1 ´ p0, φpXq “ 3X2 ´ 2X3, and ψpXq “ X3 ´X2.
We now have to determine p0. We know that the Lorenz curve is increasing convex. Dougherty

et al. [1989] give the following requirement to ensure convexity of the spline:

´ 2pL11 ´ s0q ď L10 ´ s0 ď ´
1

2
pL11 ´ s0q, (B.24)

with s0 “
L1´L0
p1´p0

.
This condition becomes:

p1 ´
5

2

L1

L11
ď p0 ď p1 ´

3

2

L1

L11
. (B.25)

We can thus choose p0 in this range of values and obtain an increasing convex spline on the
interval rp0, p1s.

104



Figure B.7: Extrapolation of the lower part of the Pareto curve, France 2006
Spacing: 0.5%. Source: Micro-files provided by tax authorities.

Second step: Estimation of bppq for p ď p1 Recall that we can express b using L with the
formula derived in section 3.1:

@p P r0, 1s, bppq “
1´ Lppq

p1´ pqL1ppq
. (B.26)

This formula gives an estimation of the Pareto curve. The condition L1pp0q “ 0 guarantees that
bppq grows to infinity as p approaches p0.

A shortcoming of this method is that it does not in theory ensures that the shape of the
resulting Pareto curve is satisfactory.

Another possibility is to add a point at p “ 50%: indeed, the share of income accruing to
the bottom half of the population, as well as the ratio of median income over mean income, have
remained quite stable throughout the xxth century.

B.3.2 Top of the distribution

Another part of the distribution where PCHIP interpolation sometimes fails to provide good
approximation of the Pareto curve lies in the last percentiles. Finding an accurate extrapolation
above the higher threshold in the tax scale is all the more important as small errors in the approx-
imation of bppq for p near 1 lead to large discrepancies in predicted estimates. Tax tabulations
give little guidance about the shape of the Pareto curve about this point, and specifically do not
indicate the maximum value reached by the Pareto curve.

Future work will consist in incorporating empirical knowledge about the form and the values
of the Pareto curve for top incomes in the extrapolation technique used. For instance, one could
put an additional fictive point (say, at p “ 99.99%) into the data interpolated to force the curve
to rise sufficiently high.

Another avenue to explore is the interpolation by tension splines. Tensions splines, initiated
by Späth [1969], are a generalization of cubic splines that give the possibility to choose on each
subinterval defined by interpolated data a tension factor, that determines how much the spline
between two points is tight.
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Appendix C

Simulation of synthetic micro-files

In section 3, we have described a method which permits to assess the quantile function from
the tax tabulations data. Here, we show how to make use of these results to generate reliable
synthetic micro-files representing the whole taxpaying population.

C.1 Simulation of a population using tax tabulations

Taking as an input tabulated income data, we want to simulate a synthetic micro-file of a given
number N of incomes that are distributed just as the incomes of the population of taxpayers.
The code described below has been written to run on the software Matlab.

C.1.1 The inversion method

The generation of non-uniform continuous random variables is based on the following statement,
given in [Devroye, 1986].

Proposition C.1.1 (The inversion principle)

Let F be a continuous distribution function on R with inverse Q “ F´1, called the
quantile function, defined by

Qpuq “ infty P R : F pyq “ u, 0 ă u ă 1u. (C.1)

If U is a uniform r0, 1s random variable, then QpUq has cumulative distribution func-
tion F . Also, if Y has distribution function F , then F pY q is uniformly distributed
on r0, 1s.

Proof:

• For all y P R,

PpQpUq ď yq “ Ppinftz P R : F pzq “ Uu ď yq

“ PpU ď F pyqq

“ F pyq.

Therefore, QpUq has CDF F .
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• For all u P p0, 1q,

PpF pY q ď uq “ PpY ď Qpuqq

“ F pF´1puqq

“ u

because F is continuous.

˝

Numerical analysis softwares such as Matlab have built-in pseudorandom number generators
that provide random numbers uniformly distributed on the interval r0, 1s. Thus, provided that
the quantile function is explicitly known, we are able to generate random variables that follow a
given distribution.

C.1.2 Matlab code

Our code to generate micro-files of incomes distributed as the taxpaying population breaks down
into three programs:

• the subroutine pc.m that interpolates the Pareto curve using tax tabulation data;

• the routine quantile.m that approximates the quantile function using the Pareto curve
estimated with pc.m;

• the main part of the code gen_pop.m that uses the approximation of the quantile function
provided by quantile.m to generate the population.

To generate a file of say 35 millions of incomes, the program will run for about 1 hour.

C.1.2.1 Program gen_pop.m

gen_pop.m is the main program. It imports tax tabulation data from an Excel spreadsheet,
calls the Matlab function quantile.m to approximate the quantile function, and generates the
synthetic micro-file by applying the inversion principle C.1.1.

Description of the code

Input An Excel spreadsheet workbook named taxdata.xls has to be placed in a subfolder,
entitled "data", of the folder containing the Matlab program. The tabulated income data needs
to have the following form.

In the worksheet named "Tabulation", a 3-column table has to give:

• the thresholds in a first column "thr";

• the corresponding percentiles in a second column "perc";

• and the corresponding coefficient b in a third column "b".

In another worksheet "Average income", the average income of the population has to be
written.
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thr perc b
9400 0,268757 3,01579
11250 0,335887 2,68161
13150 0,407262 2,45805
15000 0,482853 2,33289
16900 0,548446 2,2345
18750 0,602345 2,15837
23750 0,702708 1,97903
28750 0,780623 1,8927
38750 0,877692 1,83887
48750 0,927604 1,85842
97500 0,98616 2,08967

Table C.1: Input of the Matlab program - Worksheet "Tabulation"

yav

21930,41

Table C.2: Input of the Matlab program - Worksheet "Average income"

Output The synthetic micro-file is a file named sim_pop.txt that is created in the folder
where the Matlab program is. Each line corresponds to a taxpayer. To import it in Stata, click
File, Import, Text data (delimited, *.csv, ...), and select the Text file.

Steps of the program

1. First, the path to access tabulated data is indicated to the program. The user has also to
specify Npop, the size of the simulated population.

2. Then, the program loads the tabulated data from the file taxdata.xls. The shortcut
loadpath gives the emplacement of this spreadsheet. The thresholds are stored in the
table tab.thr, the percentiles in tab.p and the Pareto coefficients in tab.b. T is the
total number of thresholds in the tax scale considered. y_av is the mean income in the
population.

3. A vector u of Npop numbers uniformly distributed on the interval r0, 1s is generated. We
sort the incomes stored in u in an increasing order.

4. The main program calls the routine quantile.m to recover the quantile function. The
function quantile.m interpolates the quantile function corresponding to tax data at the
points of vector u. It returns the vector sim_pop of Npop random numbers which are
distributed as the incomes of the population of taxpayers.

5. The last step is the writing of the output file sim_pop.txt.

Code Here is the code of the program gen_pop.m.

%% Simulation of a population of taxpayers using income tax data
%
% Npop=34546115 => about 1 hour
%
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% Steps of the program:
% * 1. Preliminaries
% * 2. Loads data
% * 3. Generates a vector of random numbers uniformly distributed on [0,1]
% * 4. Simulates the population
% * 5. Exports the population
%
%% 1. Preliminaries
close all; clear all;
currentfolder=pwd;
% Path to load data
loadpath=[currentfolder,'/data'];

% Number of taxpayers to be generated
Npop = 34546115;

%% 2. Loads data
disp('Loads data');

cd(loadpath);
[tabulation] = xlsread('taxdata_pchip','Tabulation'); %thresholds
tab.thr = tabulation(:,1); %thresholds
tab.p = tabulation(:,2); %percentiles
tab.b = tabulation(:,3); %inverted Pareto coefficients

T = length(tab.thr); %number of thresholds in the tax tabulation

[y_av] = xlsread('taxdata_pchip','Average income')'; %average income

clear tabulation;
cd(currentfolder);

%% 3. Generates a vector of random numbers uniformly distributed on [0,1]
disp('Generates a vector of random numbers uniformly distributed on [0,1]');

u = rand(Npop,1); %vector of Npop random numbers uniformly drawn on [0,1]
u = sort(u); %sorts the coefficients of u

%% 4. Simulates the population
disp('Simulates the population');

[sim_pop,p0] = quantile(tab.thr,tab.p,tab.b,y_av,u);

%% 5. Exports the simulated population
disp('Exports the simulated population');

dlmwrite('sim_pop.txt',sim_pop,'precision',9);

C.1.2.2 Subroutine quantile.m

The function quantile.m approximates the quantile function of a distribution corresponding to
tax tabulation data received as an input. To do so, it calls the subroutine pc.m that provides an
estimation of the Pareto curve.

Description of the code

Inputs The following inputs have to be specified to the Matlab function quantile.m.
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• A vector thr of incomes corresponding to the thresholds in the tax tabulation.

• A vector pp of percentiles (in r0, 1s) corresponding to the thresholds in the tax tabulation.

• A vector bb of (inverted) Pareto coefficients corresponding to the thresholds in the tax
tabulation.

• The average income of the taxpaying population y_av.

• A table N of nodes in r0, 1s.

Outputs

• A vector Q of approximative values taken by the quantile function Q at the points of N,
that is, Q=Q(N).

• The approximation p0 of the share of the population with no income.

Steps of the program

1. Definition of the Matlab function quantile. T is the number of thresholds in the tax
tabulation. Xn is the number of points in the input vector N. aand b are the two extremities
of the interval defined by the points of N.

Ym is the number of points for the were the integral appearing in the expression 3.5 of Q
will be calculated. It determines the precision of the results. mesh is a mesh of Ym points
of the interval ra, bs. mid is the vector of midpoints of the subintervals bracketed by the
points of mesh.

2. quantile.m calls the function pc.m to obtain the approximation of the Pareto curve at the
points of vector mid. These values are stored in vector B.

3. Numerical integration.

The vector integrand contains the values at the points of mid of the application p ÞÑ
1

p1´pqbppq that is integrated in the expression 3.5 of Q.

The next step is to numerically integrate the function defined by integrand using the
rectangle method. h is the vector containing the intervals between the consecutive nodes of
mesh. The vector int which contains the approximated values of the integral at midpoints
is computed as the cumulative sum:

intk “

k
ÿ

i“1

hi ¨ integrandpmidiq. (C.2)

4. The vector temp0 gives, up to scalar multiplication, the values of the Q at the midpoints of
the intervals (i.e. at points of vector mid). These values are interpolated using the Matlab
function interp1 at the points of vector N.
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q0 is the vector of values taken by temp at the percentiles of the tax scale (which are stored
in pp). They are obtained by interpolating with the Matlab routine interp1.

The columns of matrix Q_mat correspond to numerical approximations of the quantile
function Q respectively starting from each threshold of the tabulation. That is, for the
column i, the interpolated value of Q at pi is exactly the ith threshold of the tax scale
thr_i.

5. The last step is the approximation of the quantile function Q based on the formula 3.5.
The values calculated will be stored in the table Q.

We compute the vectors Q, which gives the approximated values of Q at the points of mid, as
the weighted sum of the two approximations of Q passing through the thresholds bounding
the bracket where each point lies. If the point is below the lower threshold (respectively
above the higher threshold), we use the quantile function starting from the first threshold
(respectively the last threshold).

Code Here is the code of the program quantile.m.

%% Estimation of the quantile function Q(p) using income tax data
%
% Inputs:
% * thr: table of incomes corresponding to the thresholds in the tax
% tabulation
% * pp: table of percentiles (in [0,1]) corresponding to the thresholds in the tax
% tabulation
% * bb: table of (inverted) Pareto coefficients corresponding to the
% thresholds in the tax tabulation
% * y_av: average income of the taxpaying population
% * N: table of nodes p (in [0,1])
%
% Outputs:
% * Q: table of approximative values taken by the quantile function Q at
% the points of table P, that is, Q=Q(N)
% * p0: approximation of the share of the population with no income
%
% Steps of the program:
% 1. Preliminaries
% 2. Calls function pc.m to estimate the Pareto curve
% 3. Numerically integrates the integral that appears in the formula of Q
% 4. Computes a temporary estimation of Q up to a constant
% 5. Adjusts the estimations of Q and clips it to the tax thresholds
%
%% 1. Preliminaries
% Defines function inputs and outputs.

function [Q,p0] = quantile(thr,pp,bb,y_av,N)

T = length(thr);
Xn = length(N);
a = min(N);
b = max(N);

Ym = floor((b-a)*200000000);
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mesh = linspace(a,b,Ym)';
mid = (mesh(1:Ym-1,1)+mesh(2:Ym,1))/2;

%% 2. Estimates the Pareto curve
[B,p0] = pc(thr,pp,bb,y_av,mid);

%% 3. Numerical integration
h = mesh(2:Ym)-mesh(1:Ym-1);

integrand = 1./((1-mid).*B);
int = cumsum(h.*integrand);

%% 4. Computes a temporary estimation of Q up to a constant
temp0 = (1./(B.*(1.-mid))).*exp(-int);

temp = interp1(mid,temp0,N,'spline','extrap');
clear temp0

q0(1,:) = interp1(N,temp,pp(:,1),'spline','extrap')';

Q_mat = temp*(thr'./q0);
% Matrix which columns corresponds to numerical approximations of the
% quantile function Q respectively starting from each threshold of the
% tabulation

%% 5. Adjusts the estimations of Q and clips it to the tax thresholds
Q = zeros(Xn,1);
% Vector which will contain the numerical approximation of the final
% quantile function Q

%within each bracket, the final value Qfin is a weighted average of the
%quantile functions starting from the two thresholds bounding the bracket
br=0; %bracket
for i=1:Xn

if (br<T)&&(N(i,1)>pp(br+1,1))
br = br+1;

end
if N(i,1) <= p0

Q(i,1) = 0;
elseif br==0

Q(i,1) = Q_mat(i,1);
%if below the first threshold, use the quantile function starting
%from the first threshold

elseif br==T
Q(i,1) = Q_mat(i,T);
%if after the last threshold, use the quantile function starting
%from the last threshold

else
w1 = (pp(br+1,1)-N(i,1))/(pp(br+1,1)-pp(br,1));
w2 = (N(i,1)-pp(br,1))/(pp(br+1,1)-pp(br,1));
Q(i,1) = w1*Q_mat(i,br)+w2*Q_mat(i,br+1);
%else, use a weighted average of the two surrounding thresholds

end
end

clear Q_mat

disp('Quantile function estimated')
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C.1.2.3 Subroutine pc.m

The Matlab function pc.m approximates the Pareto curve of a distribution corresponding to tax
tabulation data received as an input.

Description of the code

Inputs The following inputs have to be specified to the Matlab function pc.m.

• A vector thr of incomes corresponding to the thresholds in the tax tabulation.

• A vector pp of percentiles (in r0, 1s) corresponding to the thresholds in the tax tabulation.

• A vector bb of (inverted) Pareto coefficients corresponding to the thresholds in the tax
tabulation.

• The average income of the taxpaying population y_av.

• A table P of points in r0, 1s of nodes.

Outputs

• A vector B of approximative values taken by the Pareto curve b at the points of P, that is,
B=b(P).

• The approximation p0 of the share of the population with no income.

Steps of the program

1. Definition of the Matlab function pc.

2. Interpolation of the Pareto curve from vectors inputs pp (percentiles) and bb (Pareto coef-
ficients) using the PCHIP method. The spline approximating bppq is stored in interp_b.
The values that takes b at the points of vector P are stored in vector B_interp. The Matlab
function ppval returns the value of the piecewise polynomial at desired entries.

3. The program then evaluate the fraction p0 of the population with zero income and the
Pareto curve below the lower threshold in the tax scale p1. It applies the extrapolation
method detailed in appendix B. That is, it extrapolates the Lorenz curve with a cubic
Hermite polynomial L_pol using the information on the shares obtained with the tabulation
and the average income. p0 is defined as p1 ´ 2L1

L11
. The parameter 2 can be adjusted to

obtain a visually pleasing extrapolation of b. It has to lie in the interval r32 ,
5
2 s.

The approximations of values taken by b below p1 are stored in vector b_extrap.

After extrapolating the Lorenz curve and the Pareto curve with this temporary value of
p0, p0 is set equal to 0 if its first estimation was negative.
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4. The program merges the two tables B_interp and B_extrap to obtain the entire approxi-
mation of b stored in vector B.

5. Last, the program plots the interpolated Pareto curve.

Code Here is the code of the program pc.m.

%% Estimation of the generalized Pareto curve b(p) using income tax data
%
% Method: PCHIP interpolation
% This routine extrapolates the lower part of the distribution.
%
% Inputs:
% * thr: table of incomes corresponding to the thresholds in the tax
% tabulation
% * pp: table of percentiles (in [0,1]) corresponding to the thresholds in the tax
% tabulation
% * bb: table of (inverted) Pareto coefficients corresponding to the
% thresholds in the tax tabulation
% * y_av: average income of the taxpaying population
% * P: table of points p (in [0,1]) where b(p) has to be calculated
%
% Outputs:
% * B: table of approximative values taken by b at points of the input
% table P, that is, B=b(P)
% * p0: estimation of the share of the population with no income
%
% Steps of the program:
% 1. Preliminaries
% 2. Interpolation of the Pareto curve above the lower threshold using
% PCHIP method
% 3. Extrapolation of the Pareto curve below the lower threshold
% 4. Merges the tables B_interp and B_extrap
% 5. Plots the Pareto curve
%
%% 1. Preliminaries
% Defines function inputs and outputs.

function [B,p0] = pc(thr,pp,bb,y_av,P)

%% 2. Interpolation

interp_b = pchip(pp,bb);

B_interp = ppval(interp_b,P);

%% 3. Extrapolation of b(p) for lower incomes

p1 = pp(1,1);
t1 = thr(1,1);
b1 = bb(1,1);

l1 = 1-((1-p1)*b1*t1)/y_av;
l1_pr = (1-l1)/((1-p1)*b1);

p0=p1-2*(l1/l1_pr);
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syms x
x1 = (x-p0)/(p1-p0);
x2 = (x-p0)/(p1-p0);

syms y
phi = 3*y^2-2*y^3;
psi = y^3-y^2;

syms z
L_pol = l1*compose(phi,x1,y,x,z)+l1_pr*(p1-p0)*compose(psi,x2,y,x,z);
L = sym2poly(L_pol);

L_pr = polyder(L);

B_extrap = (1-polyval(L,P))./((1-P).*(polyval(L_pr,P)));

if p0<0
p0=0;

end

%% 4. Merges the tables B_interp and B_extrap
B = B_interp;
i=1;

while P(i,1)<=p0
B(i,1) = 1;
i=i+1;

end

while P(i,1)<=p1
B(i,1) = B_extrap(i,1);
i=i+1;

end

disp('Pareto curve estimated')

%% 5. Plots the Pareto curve

xx = linspace(0,1,1000);
yy = interp1(P,B,xx,'linear');

plot(xx,yy)
hold on
scatter(pp,bb)
title('Interpolated Pareto curve');

C.2 Comparison of the results with microdata

The graphs below compare frequency distributions, Pareto curves and Lorenz curves for micro-
data and simulated population. The population generated with our program is very similar to
microdata. The mean income of the simulated population is 22620 euros, while the mean income
in microdata is 22974 euros.

As we can see in graph C.1a, the distribution is well-approximated, except for the lower
incomes. That makes sense, as we do not have information about this part of the population in
tax data.
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(a) Frequencies

(b) Pareto curve

Figure C.1: Comparison of simulated population and microdata
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Figure C.2: Comparison of simulated population and microdata - Lorenz curve
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Appendix D

From households to individuals:
correcting for the variations in tax units

D.1 Homogenization of series across countries: the problem of
the changes in tax units

As underlined by Atkinson and Piketty [2007, Chapter 2, "Measuring Top Incomes: Method-
ological Issues", pp. 18-42] and by Atkinson et al. [2011], one measurement issue that hinders
comparability across countries is the variability in the definition of the tax unit. If in some
countries such as Australia, Canada, and New Zealand or United Kingdom in recent years, the
tax unit is the individual, in many others the definition is based on the household. If, in order to
compare carefully the distributions across countries, we want to move from a family-based tax
system to an individual-based one, we have to know the joint distribution of income for couples.

D.1.1 The problem

Even if we arbitrarily decide to split incomes of households half-and-half and to assign half
of the total income earned by the couple each spouse, estimation methods used until now in
the literature could not provide approximations of resulting distribution of individual earnings.
Indeed, some individuals would move to lower tax brackets after this sharing out of household
income. These changes are unmanageable with piecewise estimation methods.

D.1.2 Method to correct for changes in tax units

A solution would be to run two simulations of the population one after the other: the first one
with tax data corresponding to singles, the second one with tax data corresponding to couples.
Indeed, we can generally find such informations, as in family-based tax systems households
generally benefit from deductions depending on the size of the family.

Here, we estimate the quantile function on two vectors of points evenly spaced on the interval
r0, 1s which respective sizes are exactly the number of singles and the number of persons in couple
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in the population. Then, merging those two vectors, we obtain a new vector corresponding to
the income distribution of the population of individuals.

Then, we can use Stata to obtain approximations of thresholds and average income of different
groups of the population.

D.2 Matlab code

D.2.1 Description of the code

The program tax_unit.m imports tax tabulation data from two Excel spreadsheets, calls twice
the Matlab function quantile.m to approximate the quantile function for singles and for indi-
viduals, and returns a vector describing the population of individuals. The program should take
approximately 1 hour.

Inputs Two Excel spreadsheet workbook named singles.xls and couples.xls have to
be placed in a subfolder, entitled "data", of the folder containing the Matlab program. The
tabulated income data has to be presented as the data in taxdata.xls, the input of the program
generating micro-files gen_pop.m.

In the worksheet named "Tabulation", a 3-column table has to give respectively for singles
and couples:

• the thresholds in a first column "thr";

• the corresponding percentiles in a second column "perc";

• and the corresponding coefficient b in a third column "b".

In another worksheet "Average income", the average income of the singles and the couples
has to be written.

Finally, in a worksheet "Number", the respective numbers of singles and couples in the
population have to be specified.

Output A file named indiv.txt that is created in the folder where the Matlab program
is. Each line corresponds to an individual taxpayer. To import it in Stata, click File, Import,
Text data (delimited, *.csv, ...), and select the Excel file. Then, compute the thresholds,
average income etc.

Steps of the program

1. First, the path to access tabulated data is indicated to the program.

2. Then, the program loads the tabulated data from the files singles.xls and couples.xls.
The shortcut loadpath gives the emplacement of this spreadsheet. The thresholds of singles
and couples are respectively stored in the tables tab1.thr and tab2.thr, the percentiles
in tab1.p and tab2.p and the Pareto coefficients in tab1.b and tab2.b. T is the total

119



number of thresholds in the tax scale considered. y_av1 and y_av2 are estimations of the
mean income of singles and couples. N1 and N2 are the number of singles and the number
of couples in the population.

3. The program calls the routine quantile.m to compute the values of the quantile function
at the points of vectors mid1 and mid2, which are the midpoints of the subintervals defined
by the points of nodes1 and nodes2 (considering the midpoints avoids the problem of Q
going to infinity in 1). mid1 and mid2 contains respectively N1 and N2 points. Values taken
by the quantile function are stored in Q1 and Q2.

4. The program merges the two vectors Q1 and Q2 after sharing out in 2 the incomes accruing
to couples. The vector Q is sorted in an increasing order.

5. Exportation of vector Q in text file indiv.txt.

D.2.2 Code

%% Estimation of shares of income accruing to different deciles and percentiles of the population after changing the tax unit from households to individuals
%
%
%% 1. Preliminaries
close all; clear all;
currentfolder=pwd;
% Path to load data
loadpath=[currentfolder,'/data'];

%% 2. Loads data
disp('Loads data');

cd(loadpath);
[tabulation_singles] = xlsread('singles','Tabulation'); %thresholds, singles
tab1.thr = tabulation_singles(:,1); %thresholds
tab1.p = tabulation_singles(:,2); %number of taxpayers
tab1.b = tabulation_singles(:,3); %inverted Pareto coefficients

T = length(tab1.thr); %number of thresholds in the tax tabulation
[y_av1] = xlsread('singles','Average income'); %average income
[N1] = xlsread('singles','Number'); %total number of singles

[tabulation_families] = xlsread('couples','Tabulation'); %thresholds, singles
tab2.thr = tabulation_families(:,1); %thresholds
tab2.p = tabulation_families(:,2); %number of taxpayers
tab2.b = tabulation_families(:,3); %inverted Pareto coefficients

T = length(tab2.thr); %number of thresholds in the tax tabulation
[y_av2] = xlsread('couples','Average income'); %average income
[N2] = xlsread('couples','Number'); %total number of couples

clear tabulation_singles tabulation_families;
cd(currentfolder);

%% 3.1. Estimates the quantile function - Singles
disp('Estimates the quantile function - Singles');

nodes1 = linspace(0,1,N1+1)';
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mid1 = (nodes1(1:N1,1)+nodes1(2:N1+1,1))/2;

[Q1,p01] = quantile(tab1.thr,tab1.p,tab1.b,y_av1,mid1);

%% 3.2. Estimates the quantile function - Couples
disp('Estimates the quantile function - Couples');

nodes2 = linspace(0,1,2*N2+1)';
mid2 = (nodes2(1:2*N2,1)+nodes2(2:2*N2+1,1))/2;

[Q2,p02] = quantile(tab2.thr,tab2.p,tab2.b,y_av2,mid2);

%% 4. Merges the two parts of the population
disp('Merges the two parts of the population');

Q = [Q1
Q2./2];

Q = sort(Q);

%% 5. Exports the population
disp('Exports the population');

dlmwrite('indiv.txt',Q,'precision',9);

D.2.3 Evidence with microdata of France 2006

In the microdata provided by tax authorities, we split the households with two adults in 2
assigning the same income to the two spouses. We provided data about singles and couples
to the program, using the thresholds of France 2012. The tables below compare the estimated
thresholds and average incomes to the true values. They are always very close.

We also notice that both the thresholds and the average incomes are lower than for the
distribution of income among households.
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Estimation Microdata Ratio
30% 9,915 9,925 0.9989
40% 11,816 11,825 0.9992
50% 13,671 13,658 1.0010
60% 15,655 15,691 0.9977
70% 18,194 18,268 0.9959
80% 21,860 21,957 0.9956
90% 29,064 29,117 0.9982
95% 37,681 38,046 0.9904
99% 71,581 72,577 0.9863
99.5% 98,859 99,112 0.9974
99.9% 230,255 228,425 1.0080
99.99% 1,015,445 1,018,528 0.9970

Table D.1: Comparison with microdata - Thresholds

Estimation Microdata Ratio
30% 21,659 21,726 0,9969
40% 23,458 23,532 0,9968
50% 25,602 25,690 0,9966
60% 28,341 28,452 0,9961
70% 32,168 32,297 0,9960
80% 38,309 38,458 0,9961
90% 51,668 51,895 0,9956
95% 70,616 70,931 0,9956
99% 158,763 159,261 0,9969
99.5% 234,980 235,188 0,9991
99.9% 624,610 626,546 0,9969
99.99% 2,705,504 2,716,070 0,9961

Table D.2: Comparison with microdata - Average income

122



Appendix E

New series

We provide below tables with new estimations of the income and inheritance distributions. They
have been constructed from tax tabulations using our new approximation method.

E.1 Income distribution

E.1.1 Taxable income

90% 95% 99% 99.5% 99.9% 99.99%
1919 4725 7016 22317 37248 111634 406346
1920 6659 9707 27663 43902 128202 441303
1921 7039 10287 27545 43024 119232 413922
1922 7559 11061 30491 47716 132999 449703
1923 8377 12680 35096 55168 157573 524048
1924 9423 14443 39765 61730 164373 491426
1925 10979 16603 43330 66412 172562 534253
1926 12728 18812 48951 77300 206441 656315
1927 13702 20196 48932 75694 204244 685857
1928 15118 21555 51845 80767 219254 729030
1929 16393 23224 54106 82299 216187 706349
1930 17273 24270 54516 81588 206935 663447
1931 16496 23336 50338 73468 181103 568131
1932 15923 22664 48337 69459 165540 510451
1933 15939 22780 47985 68170 158393 493193
1934 15249 21727 45324 64503 150006 466215
1935 14811 21128 44516 63735 146930 462789
1936 15980 21982 47049 67226 156727 492406
1937 18511 25404 53764 77434 180921 555177
1938 20328 28103 58439 83484 190996 556768
1939 18768 26259 54280 78586 192900 613748
1940 17505 24549 51821 73352 167324 504595
1941 22038 31251 68718 100219 226319 648004
1942 26981 38156 83906 119383 251161 628451
1943 32101 44634 94768 130535 258935 619099
1944 38464 53010 103339 136427 254534 566796

Table E.1: Estimations of taxable income 1919-1944 - Thresholds
Source: Results of estimations using raw inheritance tax tabulations.
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90% 95% 99% 99.5% 99.9% 99.99%
1945 77213 103169 189520 249333 470171 1193151
1946 124837 169964 341294 466414 987959 2804456
1947 180536 238716 442376 592004 1213396 3268827
1948 284610 374540 715799 978856 2066249 5603946
1949 342241 462466 899032 1230869 2668574 7701735
1950 399680 537713 1034770 1425914 3056073 8731980
1951 527136 695853 1324583 1813310 3779836 10573516
1952 608685 811487 1594332 2176338 4493251 12321283
1953 584206 781409 1563001 2149317 4439584 12305183
1954 592357 793486 1620938 2240432 4605779 12672873
1955 649159 879901 1801953 2480993 5059781 13810194
1956 708797 962745 1986190 2734622 5530090 14835185
1957 805738 1085970 2239265 3058441 6145172 16734017
1958 909195 1218201 2488749 3351698 6601455 17851310
1959 939194 1291110 2670632 3634393 7200974 19261450
1960 10192 14011 29577 40634 81919 220454
1961 11204 15586 32947 45420 89986 241869
1962 12459 17260 35930 49127 97631 256591
1963 13945 19327 39779 54092 105876 275621
1964 15293 21191 43924 60088 117225 301770
1965 16487 22942 47463 64734 124895 324953
1966 17538 24259 49825 67819 131679 346262
1967 18812 26057 53759 73357 143543 386147
1968 20303 27826 56082 75680 147850 401644
1969 22243 30320 60976 82642 160810 432342
1970 24516 33411 67544 91665 179435 467711
1971 26996 36655 74831 102136 202775 531820
1972 29436 39890 81997 112461 225097 603452
1973 33454 45367 94310 129748 260144 733133
1974 38981 52375 107292 147424 290116 773550
1975 45231 60394 123678 168671 328952 884051
1976 51628 68852 141327 191557 377359 1017130
1977 56774 75642 149079 200406 392845 1076140
1978 63927 84546 169227 227232 448643 1208709
1979 70967 93697 189185 255439 512155 1399908
1980 80455 106230 210075 283129 565346 1533630
1981 91956 121978 236503 316621 631554 1726091
1982 103003 135075 257607 341745 665884 1758205
1983 116884 152198 284758 375144 712379 1799882
1984 124676 162350 302757 397479 757403 1940849
1985 131711 172245 323696 427486 818702 2098697
1986 137041 179827 342166 455128 886463 2328979
1987 139593 183999 353789 475316 955561 2644979
1988 144759 191684 384020 517837 1013801 2651413
1989 150623 199670 390020 529613 1098915 3198988
1990 157359 209841 407092 552101 1144908 3333739
1991 162358 216457 413200 556159 1131865 3204048
1992 166112 220485 414625 554516 1111707 3078645
1993 167989 222502 413306 551019 1100699 3038431
1994 169851 224765 415617 555078 1117300 3125306
1995 172901 228639 423079 564354 1129246 3125872
1996 175330 231675 425165 565869 1128644 3112286
1997 177869 235287 431627 576318 1160282 3247300
1998 182733 241685 444484 593375 1189661 3302297

Table E.2: Estimations of taxable income 1945-1998 - Thresholds
Source: Results of estimations using raw inheritance tax tabulations.
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90% 95% 99% 99.5% 99.9% 99.99%
1919 14230 22234 62487 96664 254781 854730
1920 18096 27315 74272 113822 285719 997739
1921 17877 26695 69729 104916 256794 825445
1922 19464 29334 76778 115965 283583 890412
1923 22247 33817 89970 136167 331018 1047309
1924 24200 36310 93590 138550 321893 955950
1925 26994 40376 100736 148167 344789 1038744
1926 31104 46158 119735 178917 428536 1399055
1927 32127 47162 120496 181109 444821 1451292
1928 34562 50132 128276 192403 469993 1542516
1929 35800 51423 126963 189141 450895 1479195
1930 36365 51737 124091 182538 430681 1339588
1931 32858 46688 108391 157307 363132 1116274
1932 31351 44251 99848 143084 322622 957091
1933 31132 43786 97386 138846 312756 956909
1934 29546 41422 92097 131244 294318 876589
1935 29455 40767 91216 129954 294244 931951
1936 31845 43927 98255 140421 319368 1016105
1937 36478 50492 113477 162878 370033 1213786
1938 39339 54050 119699 169296 367755 1146235
1939 37480 51998 117359 170113 393590 1265018
1940 34769 47928 104152 146958 319269 907769
1941 44392 62078 139076 195989 415213 1157057
1942 52258 72698 156594 214176 422785 1065745
1943 59104 80724 166497 222972 423974 1072364
1944 66603 88479 167828 218318 391766 888283

Table E.3: Estimations of taxable income 1919-1944 - Average income
Source: Results of estimations using raw inheritance tax tabulations.
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90% 95% 99% 99.5% 99.9% 99.99%
1945 128962 168433 315045 415250 797345 2068957
1946 225342 305368 628781 865306 1807203 5032246
1947 296979 398086 779056 1052867 2122554 5422727
1948 489842 649928 1306690 1787715 3648920 9593709
1949 608049 819482 1679515 2322728 4874111 13162622
1950 700616 942833 1929777 2663329 5575460 15272759
1951 902018 1201046 2418681 3311610 6811993 18347230
1952 1059616 1421513 2869097 3903073 7869499 20408654
1953 1030609 1390260 2843698 3878349 7851808 20835884
1954 1057229 1433103 2960824 4037398 8148318 21888888
1955 1168066 1585566 3261466 4436564 8919618 24057658
1956 1276786 1734897 3576797 4853715 9677307 26281914
1957 1440527 1952747 3993355 5402226 10728072 28877664
1958 1605301 2165026 4366458 5876621 11667623 30639456
1959 1708334 2323905 4700790 6332100 12458932 32978808
1960 18766 25683 52951 71715 142129 378738
1961 20812 28550 58714 79314 156627 423218
1962 22850 31193 63405 85301 166722 436235
1963 25394 34555 69345 92813 179558 465890
1964 27941 38094 76728 102670 197688 506540
1965 30186 41139 82556 110311 211974 547598
1966 31877 43340 87017 116584 226198 595396
1967 34397 46877 94798 127496 249841 672157
1968 36329 49077 97902 131419 258919 705734
1969 39583 53429 106881 143618 282858 783515
1970 43702 59035 118104 158458 308971 830550
1971 48295 65429 132339 178231 349401 941043
1972 52869 71819 146843 198759 393789 1088731
1973 60695 82788 171380 233325 472999 1367417
1974 69138 93606 190169 256290 504110 1349538
1975 79592 107379 217433 292237 574987 1553118
1976 90685 122337 248085 333815 660756 1784053
1977 97976 130969 260194 349645 696448 1914694
1978 110160 147492 294968 396187 785199 2116993
1979 123191 165621 334778 451998 906229 2477040
1980 138117 184926 370197 498550 994562 2697416
1981 156870 209489 414896 558119 1117484 3056574
1982 172313 227898 440564 586964 1147918 3033552
1983 191402 250852 474765 625872 1188945 3004161
1984 203967 267191 505651 667160 1277173 3276315
1985 217311 285554 544326 720054 1380851 3540809
1986 228932 302451 585479 780387 1522462 4001389
1987 236952 315297 625132 844971 1707448 4731862
1988 247480 330625 663254 890227 1735118 4532914
1989 260960 350492 712976 977165 2043384 5959106
1990 273276 366900 743295 1018282 2129383 6212271
1991 278525 371597 738669 1003603 2058305 5836887
1992 280978 372524 728892 983820 1987284 5512831
1993 282002 372597 723014 974183 1962791 5428774
1994 284929 376373 732588 990323 2013001 5643259
1995 289514 382090 741355 999720 2018016 5597176
1996 292294 385134 742015 999029 2011005 5556907
1997 297431 392268 760734 1028507 2091329 5866105
1998 305345 402654 780412 1053419 2130568 5925698

Table E.4: Estimations of taxable income 1945-1998 - Average income
Source: Results of estimations using raw inheritance tax tabulations.
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E.1.2 Fiscal income

90% 95% 99% 99.5% 99.9% 99.99%
1919 5559 8158 27274 46932 144793 548439
1920 7894 11603 33878 55835 178621 698989
1921 8364 12397 34359 56882 173779 747777
1922 8982 13300 37782 61625 184925 721274
1923 9950 15239 43434 71133 219485 833264
1924 11201 17437 49801 82126 245530 900152
1925 13073 20028 54810 90605 263279 955649
1926 15174 22759 61478 102975 297381 1055861
1927 16312 24352 61314 99765 283207 1022967
1928 18007 25983 64538 105335 302606 1089207
1929 19505 28002 68004 108947 308786 1109499
1930 20554 29272 68221 108248 292680 1055169
1931 19656 28262 63552 98332 263066 919896
1932 18971 27386 60628 91788 234254 816584
1933 18981 27502 60074 89546 222336 763256
1934 18169 26288 56900 84810 209983 739021
1935 17631 25451 55267 82238 201100 673635
1936 19005 26402 58138 86109 213008 738549
1937 21985 30501 66527 99699 256256 875672
1938 24195 33848 72924 110152 284626 987244
1939 22430 31874 68915 106345 288451 1036258
1940 20897 29751 65276 99035 264088 1028531
1941 26185 37425 84402 127661 315801 1033289
1942 32162 45994 105113 161011 388414 1191306
1943 38368 54207 121678 182812 419159 1143091
1944 45874 64334 133753 192764 416848 1137776

Table E.5: Estimations of fiscal income 1919-1944 - Thresholds
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90% 95% 99% 99.5% 99.9% 99.99%
1945 91545 122818 231496 313676 602847 1538093
1946 147775 201111 407707 561599 1168566 3243210
1947 215787 287280 544490 747864 1557727 4379668
1948 336674 443832 857776 1185574 2471585 6578605
1949 405947 550595 1087088 1509848 3239083 9177718
1950 474325 641517 1255240 1759200 3747233 10539281
1951 624899 827966 1600528 2226114 4607695 12730885
1952 722249 967590 1931257 2678092 5499669 14920041
1953 737849 982465 1955118 2675556 5504041 15011724
1954 797589 1060701 2123271 2915555 5822782 15421696
1955 873391 1173568 2354102 3217971 6368193 16740557
1956 953688 1284752 2593737 3547210 6965067 17994462
1957 1083879 1447620 2924592 3963834 7725461 20272126
1958 1222976 1624583 3252418 4350185 8303210 21717576
1959 1335478 1818078 3677424 4897654 9189419 23391306
1960 14684 19950 41070 55047 104587 264489
1961 16126 22132 45567 61306 114455 288794
1962 17920 24463 49550 66039 123512 305832
1963 20041 27323 54639 72307 133042 325381
1964 21964 29900 60112 79868 146187 353279
1965 23662 32304 64748 85698 154922 377751
1966 25153 34093 67753 89355 162334 399503
1967 26958 36527 72783 96067 175564 441686
1968 29071 38921 75677 98679 179849 456904
1969 31823 42306 81923 107082 194084 487600
1970 35049 46510 90397 118138 215080 523630
1971 38566 50910 99775 130944 241399 590911
1972 42052 55403 109329 144182 267972 670502
1973 47792 63010 125746 166343 309696 814592
1974 55686 72743 143056 189005 345377 859499
1975 64616 83880 164903 216244 391609 982279
1976 73754 95627 188435 245586 449237 1130145
1977 81106 105058 198773 256930 467672 1195712
1978 91324 117425 225635 291324 534099 1343010
1979 101382 130135 252247 327486 609709 1555454
1980 114936 147542 280100 362986 673031 1704034
1981 131365 169414 315337 405925 751850 1917878
1982 147148 187604 343475 438135 792719 1953561
1983 166977 211386 379677 480955 848070 1999869
1984 178109 225487 403677 509588 901670 2156499
1985 188158 239229 431594 548059 974645 2331886
1986 195773 249761 456221 583497 1055313 2587754
1987 199419 255555 471718 609379 1137572 2938865
1988 206799 266229 512027 663894 1206906 2946014
1989 215177 277319 520026 678992 1308232 3554431
1990 224799 291446 542790 707822 1362986 3704154
1991 231940 300635 550933 713024 1347458 3560053
1992 237303 306229 552833 710918 1323461 3420717
1993 239984 309029 551076 706435 1310355 3376034
1994 242643 312174 554155 711639 1330119 3472562
1995 247001 317555 564106 723531 1344340 3473191
1996 250473 321770 566886 725472 1343623 3458095
1997 254099 326788 575502 738869 1381288 3608111
1998 261047 335674 592645 760738 1416262 3669218

Table E.6: Estimations of fiscal income 1945-1998 - Thresholds
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90% 95% 99% 99.5% 99.9% 99.99%
1919 17283 27301 79538 124487 334719 1151417
1920 22685 34766 99052 155522 416018 1571694
1921 22858 34876 97252 151280 401346 1476375
1922 24440 37425 102842 159085 412440 1418258
1923 27928 43127 120358 186472 480417 1654693
1924 30947 47455 131017 201141 511999 1744133
1925 34676 53110 143012 218493 551643 1843693
1926 39458 59708 164039 251994 639031 2239459
1927 40256 60113 161426 247789 631321 2157239
1928 43182 63662 170687 261449 665158 2296070
1929 45004 65930 172601 263865 663563 2313118
1930 45595 66153 168245 254329 631443 2118551
1931 41356 60040 148736 222367 544730 1797737
1932 39137 56292 134743 198465 472930 1521429
1933 38713 55421 130356 190682 452035 1476111
1934 36800 52546 123561 180637 427077 1380639
1935 36326 51034 119498 173835 410223 1352404
1936 39234 54898 128511 187649 447509 1516916
1937 45208 63672 151240 223124 542491 1905309
1938 49351 69309 165020 242344 577910 2016301
1939 47517 67502 164077 246064 611274 2123711
1940 44340 62768 149256 221099 542752 1826545
1941 54675 77579 182566 264155 600599 1831818
1942 65739 93550 218323 312572 687955 1997764
1943 75035 105269 238335 335368 708503 1965541
1944 84202 115063 242056 332208 671451 1761917

Table E.7: Estimations of fiscal income 1919-1944 - Average income
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90% 95% 99% 99.5% 99.9% 99.99%
1945 155278 204435 394482 526534 1023782 2667088
1946 267282 362545 750066 1031546 2124265 5819626
1947 361044 488197 983395 1344891 2755388 7265309
1948 582298 774474 1569819 2150215 4345067 11275039
1949 727339 984190 2042067 2831070 5889327 15702604
1950 840357 1136703 2361456 3271832 6809339 18450992
1951 1078812 1442758 2946003 4048437 8278331 22106934
1952 1269907 1711865 3505190 4787496 9607705 24729634
1953 1293886 1740390 3537548 4812225 9696234 25443710
1954 1402810 1888305 3820989 5173890 10206563 26698112
1955 1546731 2083766 4195209 5664731 11124136 29228016
1956 1691160 2280867 4601651 6199869 12076265 31949558
1957 1906942 2565217 5134316 6893172 13367284 35061612
1958 2126515 2846823 5620548 7508452 14555833 37350684
1959 2378172 3202757 6271519 8316346 15713106 40155272
1960 26372 35678 70928 94386 178806 456127
1961 29177 39538 78355 103993 196223 507256
1962 31983 43103 84334 111427 208020 521873
1963 35462 47596 91764 120520 222415 552147
1964 38919 52294 100995 132494 243032 595358
1965 41960 56318 108218 141684 259063 639162
1966 44210 59146 113495 148874 274579 689744
1967 47552 63699 122846 161624 300745 771965
1968 50139 66520 126322 165768 309911 806076
1969 54473 72127 137049 179869 335735 887162
1970 59992 79433 150712 197376 364364 933636
1971 66104 87697 167962 220674 409157 1049925
1972 72325 96202 186254 245960 460923 1214608
1973 82968 110797 217132 288381 553159 1525319
1974 94629 125451 241361 317314 590406 1505771
1975 108966 143934 275976 361773 673308 1732870
1976 124143 163969 314827 413170 773754 1990546
1977 134228 175641 330121 432600 815280 2136186
1978 150916 197800 374340 490365 919503 2362036
1979 168670 221979 424590 559161 1060969 2763645
1980 189185 247937 469627 616895 1164552 3009592
1981 214958 280955 526281 690471 1308280 3410223
1982 236376 306017 559530 726949 1344748 3384893
1983 262875 337251 603808 776148 1393894 3352560
1984 280118 359183 642880 827037 1496944 3656102
1985 298354 383756 691961 892566 1618473 3951266
1986 314071 406131 743651 966632 1783686 4464901
1987 324669 422760 792622 1044929 1998487 5279129
1988 339227 443668 842383 1102771 2033046 5058099
1989 357034 469182 902347 1206387 2389345 6647269
1990 373914 491199 940729 1257144 2489885 6929660
1991 381471 498024 935878 1240209 2408101 6511494
1992 385152 499694 924250 1216646 2325978 6150399
1993 386692 499951 916944 1204867 2297438 6056674
1994 390638 504870 928667 1224311 2355612 6295705
1995 397002 512670 940113 1236341 2361954 6244499
1996 400906 516881 941100 1235647 2353914 6199645
1997 407823 526235 964333 1271495 2447245 6544304
1998 418714 540246 989539 1302630 2493561 6610961

Table E.8: Estimations of fiscal income 1945-1998 - Average income
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90% 95% 99% 99.5% 99.9% 99.99%
1919 42.25 33.38 19.49 15.28 8.34 2.93
1920 41.13 31.53 18.00 14.16 7.72 3.13
1921 40.71 31.06 17.35 13.51 7.26 2.77
1922 42.33 32.41 17.85 13.83 7.28 2.61
1923 43.80 33.83 18.91 14.68 7.68 2.73
1924 42.25 32.40 17.92 13.79 7.13 2.59
1925 44.05 33.74 18.20 13.94 7.14 2.45
1926 42.81 32.39 17.82 13.71 7.02 2.47
1927 43.49 32.48 17.46 13.43 6.91 2.45
1928 43.64 32.17 17.27 13.25 6.80 2.37
1929 42.11 30.85 16.18 12.39 6.31 2.34
1930 41.46 30.08 15.33 11.61 5.83 1.97
1931 40.50 29.41 14.60 10.94 5.44 1.92
1932 42.75 30.76 14.75 10.89 5.25 1.76
1933 44.15 31.61 14.88 10.90 5.21 1.71
1934 45.28 32.34 15.25 11.18 5.37 1.84
1935 45.84 32.75 15.35 11.17 5.30 1.76
1936 45.00 31.49 14.76 10.80 5.18 1.81
1937 43.19 30.42 14.48 10.70 5.27 1.87
1938 42.53 29.87 14.26 10.49 5.09 1.90
1939 38.48 27.34 13.32 10.00 5.05 1.85
1940 39.60 28.04 13.36 9.91 4.92 1.73
1941 38.56 27.37 12.91 9.36 4.31 1.36
1942 34.59 24.64 11.56 8.32 3.75 1.18
1943 31.73 22.27 10.13 7.15 3.09 0.91
1944 28.98 19.82 8.39 5.79 2.41 0.67

Table E.9: Estimation of fiscal income 1919-1944 - Shares
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90% 95% 99% 99.5% 99.9% 99.99%
1945 29.72 19.57 7.58 5.07 2.00 0.55
1946 32.90 22.32 9.25 6.36 2.62 0.72
1947 33.88 22.91 9.24 6.33 2.60 0.69
1948 32.49 21.61 8.77 6.02 2.45 0.63
1949 32.11 21.72 9.03 6.26 2.63 0.71
1950 31.98 21.63 9.00 6.24 2.62 0.71
1951 32.98 22.05 9.02 6.20 2.56 0.69
1952 33.19 22.37 9.18 6.28 2.54 0.66
1953 32.90 22.13 9.00 6.13 2.48 0.66
1954 33.54 22.58 9.15 6.20 2.46 0.65
1955 34.39 23.17 9.34 6.31 2.49 0.65
1956 34.28 23.12 9.35 6.30 2.48 0.66
1957 34.75 23.38 9.38 6.30 2.47 0.67
1958 34.06 22.80 9.03 6.05 2.39 0.66
1959 35.87 24.16 9.48 6.31 2.42 0.65
1960 36.11 24.43 9.74 6.51 2.51 0.68
1961 36.80 24.94 9.91 6.59 2.51 0.69
1962 35.86 24.17 9.49 6.28 2.37 0.63
1963 36.42 24.44 9.45 6.21 2.33 0.61
1964 36.85 24.76 9.58 6.30 2.35 0.60
1965 37.14 24.93 9.60 6.29 2.35 0.60
1966 36.45 24.39 9.38 6.17 2.32 0.59
1967 36.21 24.26 9.37 6.17 2.32 0.61
1968 34.80 23.09 8.78 5.76 2.17 0.56
1969 33.96 22.49 8.56 5.62 2.12 0.58
1970 33.15 21.95 8.34 5.47 2.03 0.52
1971 33.34 22.12 8.48 5.58 2.09 0.54
1972 33.04 21.98 8.52 5.63 2.13 0.56
1973 33.87 22.62 8.87 5.90 2.28 0.63
1974 33.33 22.09 8.51 5.60 2.09 0.53
1975 33.42 22.08 8.48 5.56 2.08 0.53
1976 33.18 21.92 8.43 5.53 2.08 0.53
1977 31.64 20.70 7.79 5.11 1.94 0.51
1978 31.37 20.56 7.79 5.10 1.92 0.49
1979 31.03 20.42 7.82 5.15 1.96 0.51
1980 30.69 20.11 7.63 5.02 1.90 0.49
1981 30.73 20.09 7.53 4.94 1.88 0.49
1982 29.92 19.37 7.09 4.61 1.71 0.43
1983 30.43 19.52 7.00 4.50 1.62 0.39
1984 30.51 19.56 7.00 4.51 1.64 0.40
1985 31.03 19.96 7.21 4.65 1.69 0.41
1986 31.38 20.29 7.43 4.83 1.79 0.45
1987 31.71 20.65 7.75 5.11 1.96 0.52
1988 32.05 20.96 7.96 5.22 1.93 0.48
1989 32.39 21.28 8.19 5.48 2.18 0.60
1990 32.60 21.41 8.21 5.49 2.18 0.60
1991 32.39 21.15 7.95 5.27 2.05 0.55
1992 32.17 20.87 7.72 5.09 1.95 0.51
1993 32.15 20.79 7.63 5.02 1.92 0.50
1994 32.29 20.87 7.68 5.07 1.96 0.52
1995 32.35 20.89 7.67 5.04 1.93 0.51
1996 32.19 20.75 7.56 4.97 1.90 0.50
1997 32.32 20.86 7.65 5.05 1.95 0.52
1998 32.44 20.93 7.68 5.05 1.94 0.51

Table E.10: Estimation of fiscal income 1945-1998 - Shares

132



E.1.3 Estimations for the years 2001-2012

These estimations are obtained from raw data in tax tabulations for the years 2001-2012. For
the recent years, tax tabulations provide data for nontaxable households and for fiscal incomes.

90% 95% 99% 99.5% 99.9% 99.99%
2001 56205 76736 177305 260067 636551 2330794
2002 57402 78297 179074 260776 627154 2237582
2003 59315 81847 184951 268183 640739 2269347
2004 61150 84907 196950 289265 712408 2637346
2005 61747 85419 196531 287451 700850 2556411
2006 78110 107389 241451 348514 822781 2861766
2007 81641 113006 258393 375090 896560 3173227
2008 82098 112490 248303 353882 809282 2684245
2009 80157 108060 225514 312609 669335 2016697
2010 83167 112830 241830 339522 748420 2350825
2011 88570 121297 267179 385839 948299 3608228
2012 89568 121979 261793 371378 867033 3091851

Table E.11: Estimations of income distribution 2001-2012 - Threshold
Source: Results of estimations using raw inheritance tax tabulations.

90% 95% 99% 99.5% 99.9% 99.99%
2001 56205 76736 177305 260067 636551 2330794
2002 57402 78297 179074 260776 627154 2237582
2003 59315 81847 184951 268183 640739 2269347
2004 61150 84907 196950 289265 712408 2637346
2005 61747 85419 196531 287451 700850 2556411
2006 78110 107389 241451 348514 822781 2861766
2007 81641 113006 258393 375090 896560 3173227
2008 82098 112490 248303 353882 809282 2684245
2009 80157 108060 225514 312609 669335 2016697
2010 83167 112830 241830 339522 748420 2350825
2011 88570 121297 267179 385839 948299 3608228
2012 89568 121979 261793 371378 867033 3091851

Table E.12: Estimations of income distribution 2001-2012 - Average income
Source: Results of estimations using raw inheritance tax tabulations.

90% 95% 99% 99.5% 99.9% 99.99%
2001 36,17 24,69 11,42 8,39 4,14 1,50
2002 35,92 24,50 11,22 8,18 3,96 1,40
2003 36,08 24,89 11,26 8,17 3,94 1,38
2004 36,34 25,23 11,72 8,61 4,28 1,57
2005 35,97 24,88 11,46 8,39 4,12 1,49
2006 35,62 24,48 11,02 7,96 3,79 1,31
2007 35,95 24,88 11,39 8,28 3,99 1,40
2008 35,38 24,24 10,71 7,64 3,52 1,16
2009 34,58 23,31 9,74 6,76 2,92 0,87
2010 35,04 23,77 10,20 7,17 3,18 0,99
2011 35,30 24,17 10,66 7,70 3,82 1,44
2012 35,11 23,91 10,27 7,29 3,43 1,21

Table E.13: Estimations of income distribution 2001-2012 - Share
Source: Results of estimations using raw inheritance tax tabulations.
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E.2 Inheritance distribution

90% 95% 99% 99,5% 99,9% 99,99%
1902 9258 22675 120910 231278 798511 3464811
1903 10123 23925 128002 245483 926245 3239522
1904 10022 23389 128191 245705 890946 4444482
1905 10171 23612 131024 254228 925213 4472607
1907 10565 24269 131143 249523 903462 3957299
1909 11140 25096 133647 259756 971165 4935991
1910 11509 26563 141071 274361 1010759 4127042
1911 11060 25490 135788 261765 974457 4074758
1912 11644 26809 137557 265844 980378 4521541
1913 12121 27431 146264 274825 990326 4485090
1925 27793 55905 227814 401948 1297756 5231382
1926 32084 62950 265363 469113 1585633 6927137
1927 34513 68269 291002 526524 1802389 8843049
1929 38566 75441 327958 608617 2216410 11685246
1930 43787 86228 368966 678663 2663158 12003789
1931 44832 88058 353781 639139 2219694 9589354
1932 43650 84723 352605 625968 2079418 9092005
1933 42544 82410 338452 597383 1972250 10791831
1935 41460 80455 326807 571442 1890222 7849900
1936 41623 79868 318685 553537 1758376 7477559
1937 45112 85974 351894 632561 1927869 8520936
1938 52451 97334 385211 637667 1961731 7846120
1939 53793 101062 385106 668722 2000160 8367702
1940 48154 86617 309449 491922 1344669 5135244
1941 71047 133961 462756 733739 2112697 8118220
1942 92590 180850 651329 1084022 3181334 10585030
1943 126836 247720 918720 1543554 4443974 15443597
1944 125679 245473 896709 1471682 4427705 17086738
1945 167660 319370 1118157 1785367 5078724 19121070
1946 241183 430735 1377151 2177011 5875611 21822920
1947 331661 588114 1859529 2949725 7881845 27724814
1948 396821 716021 2270416 3566617 9410562 34599948
1949 453410 824249 2567219 4113315 11203541 38650340
1950 550680 1032805 3419171 5503987 15706564 53822012
1951 627382 1177984 3991036 6490455 18347724 58440164
1952 1001310 1912657 6387748 9898641 25885702 86407208
1953 992216 1923016 6564267 10329990 24692960 88673464
1954 1367198 2592613 8297632 12719076 32596666 116995312
1955 1292198 2511014 8309039 12904740 34730576 114893248
1956 1306761 2585862 8795604 13548104 36352540 125927672
1957 1390941 2698800 9668779 15396905 42324480 136847056
1958 1839187 3477004 11579041 18435070 50874656 155643744
1959 2011109 3872347 12997238 20674650 54801696 211810592
1960 21323 41417 134813 212605 590122 1899978
1962 26274 52203 178027 273895 756390 2732173
1964 39715 76418 259799 409295 1040133 3509496
1984 429083 685940 1740691 2449851 5252545 16130809
1994 829518 1308901 3146175 4431961 10185302 27885826

Table E.14: New estimations of inheritance distribution - Threshold
Source: Results of estimations using raw inheritance tax tabulations.
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90% 95% 99% 99,5% 99,9% 99,99%
1902 71604 127351 438781 709685 1949726 6608619
1903 76300 137009 480402 783640 2150237 7448979
1904 82391 149792 544755 910509 2784056 13156384
1905 87212 158909 589306 995702 3112412 15583179
1907 76944 138170 483705 787386 2123706 7082355
1909 83969 151588 546197 904252 2648118 10683374
1910 83332 149488 523350 849934 2307788 8453069
1911 86601 156825 567167 945257 2792709 12427024
1912 88776 160214 579869 969166 2928916 13327304
1913 86601 155564 548638 900991 2596662 10346299
1925 133098 228244 745696 1199451 3224201 11331505
1926 150463 258850 857210 1396365 3970083 15461063
1927 173905 301826 1028313 1685479 4894829 19756828
1929 210860 369609 1288534 2130661 6330680 26575850
1930 238515 418376 1465620 2436281 7270435 30104414

1931-32 219990 380605 1274018 2081728 5869598 21892006
1932 212000 364853 1197480 1932003 5404150 22173680
1933 201291 346303 1131159 1825413 5086092 17700242
1935 203461 351967 1179398 1932171 5756772 28750960
1936 205599 355305 1191273 1968478 5980845 31591142
1937 206978 354160 1134608 1812911 5009341 21066998
1938 229428 390673 1250968 2031347 5931312 28772394
1939 235315 399994 1287463 2081687 6110628 30017448
1940 158167 261505 758179 1173574 3067032 12210908
1941 260971 426862 1215610 1850172 4604528 14265910
1942 368651 608527 1777269 2718539 6709060 22308678
1943 507870 841018 2446467 3723612 8908560 25443574
1944 507479 841878 2484411 3836515 9743567 31700598
1945 628367 1027849 2935315 4475374 11111664 37674528
1946 783347 1250580 3382195 5048128 12151263 35588840
1947 1069161 1699774 4599540 6918688 16505401 48907928
1948 1295241 2059546 5534244 8246667 19647112 58546376
1949 1581024 2549524 7055769 10486333 24111958 73513592
1950 1993559 3224758 9003571 13698118 33968868 110835320
1951 2335600 3792334 10706515 16229856 39673592 128878544
1952 3549330 5714353 15359013 22765700 54078120 152144416
1953 3542334 5688631 15216540 22423482 52249172 172641408
1954 4626221 7375033 19432038 28668360 68944192 216501824
1955 4571613 7367668 19700782 29134778 68177496 199842832
1956 4801859 7782297 21048170 31277140 75383624 226954432
1957 5462126 8936713 25196552 37946800 91583008 305812448
1958 6663103 10710831 29196732 43475772 99096664 284072320
1959 7601236 12293109 34111896 51448628 129560296 446731776
1960 77653 124534 335052 499146 1170005 3206106
1962 99963 162016 445125 669049 1679370 5543180
1964 143866 232202 626652 927913 2184135 7219659
1984 1033539 1530501 3427670 4763135 10315593 32673196
1994 1903161 2757693 6098757 8534659 18016304 47899512

Table E.15: New estimations of inheritance distribution - Average income above
Source: Results of estimations using raw inheritance tax tabulations.
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90% 95% 99% 99,5% 99,9% 99,99%
1902 83,94 75,47 51,64 41,68 23,12 7,78
1903 86,13 78,28 54,44 44,29 24,40 8,28
1904 87,54 80,52 58,12 48,44 29,79 13,99
1905 88,09 81,03 59,75 50,37 31,65 15,73
1907 86,26 78,43 54,45 44,19 23,93 8,01
1909 86,91 79,24 56,84 46,88 27,58 11,06
1910 86,08 77,94 54,39 43,96 23,94 8,73
1911 87,64 80,14 57,69 47,92 28,44 12,54
1912 87,05 79,17 57,08 47,58 28,90 13,05
1913 86,27 78,20 54,91 44,89 26,03 10,31
1925 80,35 69,18 44,60 35,96 19,26 6,76
1926 80,01 69,06 45,12 36,93 21,19 7,68
1927 81,03 70,40 47,59 39,07 22,84 9,00
1929 82,01 71,93 50,24 41,69 24,73 10,59
1930 81,59 71,61 50,30 41,81 24,88 10,13

1931-32 79,99 69,26 46,47 38,16 21,56 7,95
1932 79,06 68,07 44,76 36,39 20,30 8,26
1933 79,51 68,48 44,93 36,47 20,19 6,77
1935 79,31 68,68 46,09 37,88 22,56 11,13
1936 78,83 68,18 45,77 37,97 23,04 12,06
1937 77,47 66,34 42,63 34,39 18,86 7,88
1938 77,62 65,26 42,02 34,09 19,94 9,59
1939 79,11 66,42 42,89 34,73 20,38 9,94
1940 81,73 64,66 38,65 28,90 15,29 5,98
1941 75,26 62,03 34,88 26,58 13,28 4,13
1942 75,95 62,86 36,85 28,04 14,09 4,52
1943 76,54 63,26 36,84 28,16 13,48 3,88
1944 79,37 64,80 38,28 29,67 15,09 4,90
1945 75,85 62,09 35,26 26,89 13,42 4,52
1946 70,95 56,43 30,67 22,81 10,94 3,15
1947 69,86 55,37 29,92 22,84 10,98 3,27
1948 71,12 56,85 30,38 22,70 11,01 3,36
1949 73,66 59,40 34,01 24,28 12,68 3,42
1950 74,34 60,07 33,61 25,52 12,74 4,13
1951 72,37 58,72 33,04 25,31 12,30 4,02
1952 74,20 59,73 32,32 23,82 11,45 3,16
1953 75,84 60,90 32,56 24,23 11,33 3,70
1954 72,99 58,11 30,52 22,57 10,98 3,40
1955 73,16 58,88 31,48 23,35 11,04 3,19
1956 69,44 56,26 30,38 22,65 10,99 3,28
1957 70,00 57,65 32,27 24,30 11,76 3,91
1958 68,14 54,88 30,07 22,25 10,20 2,92
1959 70,27 56,79 31,88 23,83 12,09 4,18
1960 67,60 54,12 29,46 21,75 10,25 2,86
1962 68,54 55,24 30,33 22,92 11,67 3,89
1964 71,61 57,79 31,34 23,09 10,91 3,65
1984 61,70 44,50 19,63 13,74 5,99 1,89
1994 55,42 40,53 17,73 12,43 5,26 1,43

Table E.16: New estimations of inheritance distribution - Share
Source: Results of estimations using raw inheritance tax tabulations.
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Appendix F

Empirical Pareto curves of the income
and inheritance distributions

F.1 Pareto curves of the income distribution 1915-2012

The links below point to the Pareto curves obtained with French income tax data for the incomes
of the years 1919-2012.

• Whole Pareto curve
http://piketty.pse.ens.fr/files/Fournier2015_inc_pc.pdf

• Zoom on the top 10%
http://piketty.pse.ens.fr/files/Fournier2015_inc_pc_top10.pdf

• Zoom on the top 1%
http://piketty.pse.ens.fr/files/Fournier2015_inc_pc_top1.pdf

• Zoom on the top 0.1%
http://piketty.pse.ens.fr/files/Fournier2015_inc_pc_top01.pdf

The following graphs represent both the Pareto curve interpolated from tax tabulations and
the final Pareto curve corresponding to the income estimations obtained using our new method.

• Whole Pareto curve
http://piketty.pse.ens.fr/files/Fournier2015_inc_pc_fin.pdf

• Zoom on the top 10%
http://piketty.pse.ens.fr/files/Fournier2015_inc_pc_fin_top10.pdf

• Zoom on the top 1%
http://piketty.pse.ens.fr/files/Fournier2015_inc_pc_fin_top1.pdf

• Zoom on the top 0.1%
http://piketty.pse.ens.fr/files/Fournier2015_inc_pc_fin_top01.pdf

137

http://piketty.pse.ens.fr/files/Fournier2015_inc_pc.pdf
http://piketty.pse.ens.fr/files/Fournier2015_inc_pc_top10.pdf
http://piketty.pse.ens.fr/files/Fournier2015_inc_pc_top1.pdf
http://piketty.pse.ens.fr/files/Fournier2015_inc_pc_top01.pdf
http://piketty.pse.ens.fr/files/Fournier2015_inc_pc_fin.pdf
http://piketty.pse.ens.fr/files/Fournier2015_inc_pc_fin_top10.pdf
http://piketty.pse.ens.fr/files/Fournier2015_inc_pc_fin_top1.pdf
http://piketty.pse.ens.fr/files/Fournier2015_inc_pc_fin_top01.pdf


Finally, here are the graphs of the quantile functions, that is, the estimates of incomes
corresponding to the different percentiles of the distribution.

• Whole quantile function
http://piketty.pse.ens.fr/files/Fournier2015_inc_q.pdf

• Zoom on the top 10%
http://piketty.pse.ens.fr/files/Fournier2015_inc_q_top10.pdf

• Zoom on the top 1%
http://piketty.pse.ens.fr/files/Fournier2015_inc_q_top1.pdf

• Zoom on the top 0.1%
http://piketty.pse.ens.fr/files/Fournier2015_inc_q_top01.pdf

F.2 Pareto curves of the inheritance distribution 1902-1994

The graphs below represent the Pareto curves obtained with French inheritance tax data for the
years 1902-1994.

• Whole Pareto curve
http://piketty.pse.ens.fr/files/Fournier2015_inh_pc.pdf

• Zoom on the top 10%
http://piketty.pse.ens.fr/files/Fournier2015_inh_pc_top10.pdf

• Zoom on the top 1%
http://piketty.pse.ens.fr/files/Fournier2015_inh_pc_top1.pdf

• Zoom on the top 0.1%
http://piketty.pse.ens.fr/files/Fournier2015_inh_pc_top01.pdf

The graphs below depict both the Pareto curve interpolated from tax tabulations and the
final Pareto curve corresponding to the inheritance estimations obtained using our new method.

• Whole Pareto curve
http://piketty.pse.ens.fr/files/Fournier2015_inh_pc_fin.pdf

• Zoom on the top 10%
http://piketty.pse.ens.fr/files/Fournier2015_inh_pc_fin_top10.pdf

• Zoom on the top 1%
http://piketty.pse.ens.fr/files/Fournier2015_inh_pc_fin_top1.pdf

At last, these links point to the graphs of the quantile functions, that is, the estimates of
inheritance corresponding to the different percentiles of the distribution.
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• Whole quantile function
http://piketty.pse.ens.fr/files/Fournier2015_inh_q.pdf

• Zoom on the top 10%
http://piketty.pse.ens.fr/files/Fournier2015_inh_q_top10.pdf

• Zoom on the top 1%
http://piketty.pse.ens.fr/files/Fournier2015_inh_q_top1.pdf

• Zoom on the top 0.1%
http://piketty.pse.ens.fr/files/Fournier2015_inh_q_top01.pdf

139

http://piketty.pse.ens.fr/files/Fournier2015_inh_q.pdf
http://piketty.pse.ens.fr/files/Fournier2015_inh_q_top10.pdf
http://piketty.pse.ens.fr/files/Fournier2015_inh_q_top1.pdf
http://piketty.pse.ens.fr/files/Fournier2015_inh_q_top01.pdf


Bibliography

Aaberge, R., Atkinson, A. B., Königs, S., and Lakner, C. (2015). From Classes to Copulas:
Wages, Capital, and Top Incomes. Forthcoming.

Acemoglu, D. (2015a). Topics in Inequality, Lecture 5, Superstars and Top Inequality. MIT
teaching slides.

Acemoglu, D. (2015b). Topics in Inequality, Lecture 8, Pareto Income and Wealth Distributions.
MIT teaching slides.

Aigner, D. J. and Goldberger, A. S. (1970). Estimation of Pareto’s Law from Grouped Observa-
tions. Journal of the American Statistical Association, 65(330):712–723.

Aitchison, J. and Brown, J. A. C. (1957). The Lognormal Distribution. London: Cambridge
University Press.

Alvaredo, F., Atkinson, A. B., Piketty, T., and Saez, E. (2013). The Top 1 Percent in Interna-
tional and Historical Perspective. Journal of Economic Perspectives, 27(3):3–20.

Alvaredo, F., Atkinson, A. B., Piketty, T., and Saez, E. (2015). The World Top Incomes
Database. http://topincomes.g-mond.parisschoolofeconomics.eu/.

Aoki, S. and Nirei, M. (2014). Zipf’s Law, Pareto’s Law, and the Evolution of Top Incomes in the
U.S. UTokyo Price Project Working Paper Series 023, University of Tokyo, Graduate School
of Economics.

Arnold, B. C. (2015). Pareto Distributions. Monographs on Statistics and Applied Probability.
Chapman and Hall/CRC Press, 2nd edition.

Atkinson, A. B. and Harrison, A. J. (1978). Distribution of Personal Wealth in Britan. Cambridge
University Press.

Atkinson, A. B. and Piketty, T., editors (2007). Top Incomes over the Twentieth Century: A
Contrast Between European and English-Speaking Countries. Oxford University Press.

Atkinson, A. B. and Piketty, T., editors (2010). Top Incomes: A Global Perspective. Oxford
University Press.

140

http://topincomes.g-mond.parisschoolofeconomics.eu/


Atkinson, A. B., Piketty, T., and Saez, E. (2011). Top Incomes in the Long Run of History.
Journal of Economic Literature, 49(1):3–71.

Benhabib, J. (2014). Wealth Distribution Overview. NYU teaching slides.

Benhabib, J., Bisin, A., and Zhu, S. (2011). The Distribution of Wealth and Fiscal Policy in
Economies With Finitely Lived Agents. Econometrica, 79(1):123–157.

Benhabib, J., Bisin, A., and Zhu, S. (2014). The Wealth Distribution in Bewley Models with
Investment Risk. NBER Working Papers 20157, National Bureau of Economic Research.

Benhabib, J. and Zhu, S. (2008). Age, Luck, and Inheritance. NBER Working Papers 14128,
National Bureau of Economic Research.

Cantelli, F. P. (1921). Sulla deduzione delle leggi di frequenza da considerazioni di probabilità.
Metron, 1(3):83–91.

Cantelli, F. P. (1929). Sulla legge di distribuzione dei redditi. Giornale degli Economisti e Rivista
di Statistica, 69(11):850–852.

Champernowne, D. G. (1953). A Model of Income Distribution. The Economic Journal,
63(250):318–351.

Cho, J. S., Park, M.-H., and Phillips, P. C. B. (2015). Minimum Distance Testing and Top
Income Shares in Korea. Cowles foundation discussion paper no. 2007, Yale University.

Clauset, A., Shalizi, C. R., and Newman, M. E. J. (2009). Power-Law Distributions in Empirical
Data. SIAM Review, 51:661–703.

Clementi, F. and Gallegati, M. (2005). Pareto’s Law of Income Distribution: Evidence for
Germany, the United Kingdom, and the United States. Papers physics/0504217, arXiv.org.

Cowell, F. A. (1998). Inheritance and the Distribution of Wealth. LSE Research Online Docu-
ments on Economics 2124, London School of Economics and Political Science, LSE Library.

Cowell, F. A. (2009). Measuring Inequality. LSE Perspectives in Economic Analysis. Oxford
University Press, http://darp.lse.ac.uk/MI3.

Cowell, F. A. and Mehta, F. (1982). The Estimation and Interpolation of Inequality Measures.
The Review of Economic Studies, 49(2):273–290.

der Wijk, J. V. (1939). Inkomens-en Vermogens-Verdeling (The Distribution of Income and
Property). Netherlands Economic Institute.

Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag New York.

Dougherty, R. L., Edelman, A., and Hyman, J. M. (1989). Nonnegativity-, Monotonicity-, or
Convexity-Preserving Cubic and Quintic Hermite Interpolation. Mathematics of Computation,
52(186):471–494.

141



Esteban, J. (1986). Income-Share Elasticity and the Size Distribution of Income. International
Economic Review, 27(2):439–444.

Feenberg, D. R. and Poterba, J. M. (1993). Income Inequality and the Incomes of Very High-
Income Taxpayers: Evidence from Tax Returns. In Tax Policy and the Economy, volume 7,
pages 145–177. MIT Press.

Fisk, P. R. (1961). The Graduation of Income Distributions. Econometrica, 29(2):171–185.

Fritsch, F. N. and Carlson, R. E. (1980). Monotone Piecewise Cubic Interpolation. SIAM Journal
on Numerical Analysis, 17(2):238–246.

Gabaix, X. (2009). Power Laws in Economics and Finance. Annual Review of Economics,
1(1):255–294.

Gabaix, X. (2014). Power Laws in Economics: An Introduction. Prepared for the Journal of
Economic Perspectives.

Gabaix, X. and Landier, A. (2008). Why has CEO Pay Increased So Much? The Quarterly
Journal of Economics, 123(1):49–100.

Gibrat, R. (1931). Les inégalités économiques. Paris: Librairie du Recueil Sirey.

Harrison, A. (1979). The Upper Tail of the Earnings Distribution: Pareto or Lognormal? Eco-
nomic Letters, 2:191–195.

Harrison, A. (1981). Earnings by Size: A Tale of Two Distributions. The Review of Economic
Studies, 48(4):621–631.

Herriot, J. G. and Reinsch, C. H. (1973). Algorithm 472: Procedures for Natural Spline Inter-
polation. Communications of the Association for Computing Machinery, 16(12):763–768.

Hyman, J. M. (1983). Accurate Monotonicity Preserving Cubic. SIAM Journal on Scientific and
Statistical Computing, 4(4):645–654.

Hyman, J. M. and Larrouturou, B. (1982). The numerical differentiation of discrete functions
using polynomial interpolation methods. In Thompson, J. F., editor, Numerical Grid Genera-
tion for Numerical Solution of Partial Differential Equations, pages 487–506. Elsevier North-
Holland, New York.

Johnson, N. O. (1937). The Pareto Law. The Review of Economics and Statistics, 19(1):20–26.

Jones, C. I. (2014). Simple Models of Pareto Income and Wealth Inequality. Technical report,
Stanford GSB and NBER.

Jones, C. I. (2015). Pareto and Piketty: The Macroeconomics of Top Income and Wealth
Inequality. Journal of Economic Perspectives, 29(1):29–46.

142



Jones, C. I. and Kim, J. (2014). A Schumpeterian Model of Top Income Inequality. NBER
Working Papers 20637, National Bureau of Economic Research.

Kaldor, N. (1961). Capital Accumulation and Economic Growth. In Lutz, F. A. and Hague,
D. C., editors, The Theory of Capital, pages 177–222. St. Martin’s Press.

Kesten, H. (1973). Random difference equations and Renewal theory for products of random
matrices. Acta Mathematica, 131(1):207–248.

Keynes, J. M. (1936). The General Theory of Employment, Interest and Money. London: Macmil-
lan.

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sci-
ences. John Wiley & Sons.

Kremer, M. (1993). The O-Ring Theory of Economic Development. The Quarterly Journal of
Economics, 108(3):551–575.

Kuznets, S. (1953). Shares of Upper Income Groups in Income and Savings. New York: National
Bureau of Economic Research.

Kvasov, B. I. (2000). Methods of Shape-Preserving Spline Approximation. World Scientific.

Landais, C., Piketty, T., and Saez, E. (2011). Pour une révolution fiscale: un impôt sur le revenu
pour le XXI e siècle. La république des idées. Seuil.

Lorenz, M. O. (1905). Methods of Measuring the Concentration of Wealth. American Statistical
Association, 9:209–219.

Lydall, H. F. (1959). The Distribution of Employment Incomes. Econometrica, 27(1):110–115.

Mandelbrot, B. (1960). The Pareto-Lévy Law and the Distribution of Income. International
Economic Review, 1(2):79–106.

Mandelbrot, B. (1961). Stable Paretian Random Functions and the Multiplicative Variation of
Income. Econometrica, 29(4):517–543.

McAllister, D. F., Passow, E., and Roulier, J. A. (1977). Algorithms for computing shape
preserving spline interpolations to data. Mathematics of Computation, 31:717–725.

McDonald, J. B. (1984). Some Generalized Functions for the Size Distribution of Income. Econo-
metrica, 52(3):647–665.

McDonald, J. B. and Ransom, M. R. (1979). Functional Forms, Estimation Techniques and the
Distribution of Income. Econometrica, 47(6):1513–1525.

McLure, M. and Wood, J. C. (1999). Vilfredo Pareto: Critical Assessments. Critical Assessments
of Leading Economists. Routledge.

143



Metcalf, C. E. (1969). The Size Distribution of Personal Income During the Business Cycle. The
American Economic Review, 59(4):657–668.

Mitzenmacher, M. (2003). A Brief History of Generative Models for Power Law and Lognormal
Distributions. Internet Mathematics, 1(2):226–251.

Modigliani, F. (1986). Life Cycle, Individual Thrift, and the Wealth of Nations. The American
Economic Review, 76(3):297–313.

Moll, B. (2012a). Inequality and Financial Development: A Power-Law Kuznets Curve. Technical
report, Princeton University.

Moll, B. (2012b). Why Piketty Says r ´ g Matters for Inequality. Princeton University supple-
mentary lecture notes.

Moll, B. (2014). Lecture 6: Income and Wealth Distribution. Princeton University teaching
slides.

Nelsen, R. B. (2006). An Introduction to Copulas. Springer Series in Statistics. Springer-Verlag
New York, 2nd edition.

Newman, M. E. J. (2005). Power laws, Pareto ditributions and Zipf’s law. Contemporary Physics,
46:323–351.

Nirei, M. (2009). Pareto Distributions in Economic Growth Models. IIR Working Paper 09-05,
Institute of Innovation Research, Hitotsubashi University.

Pareto, V. (1967 (originally published in 1896)). Écrits sur la courbe de la répartition de la
richesse. In Œuvres complètes de Vilfredo Pareto. Giovanni Busino, Librairie Droz, Genève.

Persky, J. (1992). Retrospectives: Pareto’s Law. Journal of Economic Perspectives, 6(2):181–192.

Piketty, T. (1998). Les hauts revenus face aux modifications des taux marginaux supérieurs de
l’impôt sur le revenu en france, 1970-1996. Working Paper, CEPREMAP.

Piketty, T. (2001). Les Hauts revenus en France au 20e siècle : inégalités et redistribution,
1901-1998. Paris: B. Grasset.

Piketty, T. (2011). On the Long-Run Evolution of Inheritance: France 1820–2050. The Quarterly
Journal of Economics, 126(3):1071–1131.

Piketty, T. (2013). Le capital au xxie siècle. Seuil.

Piketty, T. and Zucman, G. (2014). Capital is Back: Wealth-Income Ratios in Rich Countries
1700-2010. The Quarterly Journal of Economics, 129(3):1255–1310.

Piketty, T. and Zucman, G. (2015). Wealth and inheritance in the long run. In Handbook of
Income Distribution, volume 2B, pages 1303–1368. North Holland.

144



Reed, W. J. (2001). The Pareto, Zipf and other power laws. Economic Letters, 74:15–19.

Rodriguez, A. (2014). Does growth promote Equality? A Note on Piketty’s capital on the
twenty-first century. Economics Bulletin, 34(3):2044–2050.

Rosen, S. (1981). The Economics of Superstars. The American Economic Review, 71(5):845–858.

Roy, A. D. (1950). The Distribution of Earnings and of Individual Output. Economic Journal,
60:489–505.

Runge, C. (1901). Über empirische Funktionen und die Interpolation zwischen äquidistanten
Ordinaten. Zeitschrift für Mathematik und Physik, 46:224–243.

Saez, E. and Zucman, G. (2014). Wealth Inequality in the United States since 1913: Evidence
from Capitalized Income Tax Data. NBER Working Papers 20625, National Bureau of Eco-
nomic Research.

Salem, A. B. Z. and Mount, T. D. (1974). A Convenient Descriptive Model of Income Distribu-
tion: The Gamma Density. Econometrica, 42(6):1115–1127.

Simon, H. A. (1955). On a Class of Skew Distribution Functions. Biometrika, 42(3-4):425–440.

Singh, S. K. and Maddala, G. S. (1976). A Function for Size Distribution of Incomes. Econo-
metrica, 44(5):963–970.

Slottje, D. J. (1984). A measure of income inequality in the U.S. for the years 1952-1980 based
on the beta distribution of the second kind. Economic Letters, 15:369–375.

Späth, H. (1969). Exponential Spline Interpolation. Computing, 4:225–233.

Stiglitz, J. E. (1969). Distribution of Income and Wealth Among Individuals. Econometrica,
37(3):382–397.

Stiglitz, J. E. (2015). New Theoretical Perspectives on the Distribution of Income and Wealth
among Individuals: Part II. Equilibrium Wealth Distributions. NBER Working Papers 21190,
National Bureau of Economic Research.

Thatcher, A. R. (1968). The Distribution of Earnings of Employees in Great Britain. Journal of
the Royal Statistical Society. Series A (General), 131(2):133–181.

Thurow, L. C. (1970). Analyzing the American Income Distribution. The American Economic
Review, 60(2):261–269.

Wold, H. O. A. and Whittle, P. (1957). A Model Explaining the Pareto Distribution of Wealth.
Econometrica, 25(4):591–595.

Yule, G. U. (1925). A Mathematical Theory of Evolution, Based on the Conclusions of Dr.
J. C. Willis, F.R.S. Philosophical Transactions of the Royal Society of London B: Biological
Sciences, 213(402-410):21–87.

145


	Introduction
	Existing literature on the Pareto law in income and wealth distributions
	Previous attempts to estimate and generalize Pareto distributions
	The Pareto distribution
	Common estimation methods
	Usual representations of the income distribution

	Theoretical models yielding Pareto distributions
	Earnings distribution
	Accumulation models for wealth distribution


	Generalized Pareto curves: theory and evidence
	Theory
	The income distribution
	Pareto curve and quantile function
	Lorenz curve

	Evidence using micro-files for France 2006
	The Pareto curve
	Asymptotic decline of the Pareto curve for finite populations
	Estimations using tabulations of the income tax


	Application to French income and inheritance tax tabulations 1901-2012
	Application to income tabulations for France 1915-2012
	The income tax in France
	Corrections
	Estimations

	Application to inheritance tax tabulations 1902-1994
	The inheritance tax in France
	Estimations


	Conclusion
	Pareto curves of usual parametric distributions
	Estimating the generalized Pareto curve
	A first try: approximation by a suited functional form
	Shape-preserving interpolation
	Review of basic interpolation methods
	Piecewise cubic Hermite polynomial interpolation

	Extrapolation
	Lower incomes
	Top of the distribution


	Simulation of synthetic micro-files
	Simulation of a population using tax tabulations
	The inversion method
	Matlab code

	Comparison of the results with microdata

	From households to individuals: correcting for the variations in tax units
	Homogenization of series across countries: the problem of the changes in tax units
	The problem
	Method to correct for changes in tax units

	Matlab code
	Description of the code
	Code
	Evidence with microdata of France 2006


	New series
	Income distribution
	Taxable income
	Fiscal income
	Estimations for the years 2001-2012

	Inheritance distribution

	Empirical Pareto curves of the income and inheritance distributions
	Pareto curves of the income distribution 1915-2012
	Pareto curves of the inheritance distribution 1902-1994


