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Abstract

I combine measures of neighbourhood characteristics with high-resolution remote-sensing data

to provide the first national-scale study of cross-sectional and longitudinal inequality in ex-

posure to fine particulate matter (PM2.5) in France. Descriptive evidence indicates that,

at the national level, there is a U-shaped relationship between income and PM2.5 exposure,

which is not reflected within urban areas. Fixed-effect models confirm that on average, higher

neighbourhood income is associated with lower exposure. Longitudinal inequality measures

suggest that recent air quality improvements accrued predominantly to areas that had a lower

initial exposure, and intermediate income. I then exploit a change in air quality schemes at

the level of urban areas in an event-study framework, so as to shed light on potentially un-

equal benefits from the induced reduction in exposure. I find that initially lower-income areas

received smaller benefits from the policy change, and quantile regression estimates suggest

that exposure decreased more in less polluted areas. As some results are sensitive to formally

accounting for spatial autocorrelation, this study also underlines the need to pay specific

attention to this issue when measuring environmental inequality.
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1 Introduction

As public goods, environmental amenities are an integral part of the real income of households.

This makes their distribution part of the general panorama of inequality. More specifically, unequal

access to clean air may reinforce preexisting health inequalities, both across space and across income

groups. Despite both policy-makers and the general public showing growing concern about it, the

French economic literature on the issue is still in its infancy. In addition, over the last two decades,

the country recorded substantial air quality improvements, driven in part by long-term technological

development, and in part by dedicated policies. It is thus necessary to evaluate whether the latter

benefitted all individuals to the same extent.

1.1 Main contributions

The contribution of this study to the academic literature is threefold. First, I provide the first

nationwide evidence of cross-sectional and longitudinal inequality in exposure to fine particulate

matter (PM2.5). In mainland France, the associated health burden was recently estimated to 48,000

early deaths a year, which is equivalent to 2-year reduction of life expectancy at 30 on average

(Medina et al., 2016). Albeit these detrimental health impacts, this pollutant has been overlooked

by the French literature on environmental inequality, partly due to the fact that there were very

few PM2.5 monitors in France prior to the 2010s. I thus contribute in filling this gap by exploiting

high-resolution satellite data, coupled with census block-level INSEE data. This allows the study

not only to cover the whole of metropolitan France, but to do so at a fine spatial granularity. This

is particularly crucial so as to limit the risk of ecological fallacy, i.e., to avoid making erroneous

inference on individual correlations based on neighbourhood correlations (Banzhaf et al., 2019).

I show that, at the national level, there is a U-shaped relationship between PM2.5 exposure

and income, which is not reflected within urban areas, where only the lowest income deciles face

a disproportionate burden of exposure. I tackle the omitted variable bias related to unobserved

neighbourhood heterogeneity using fixed-effect models, and confirm that there is indeed a negative

relationship between the two variables of interest in France. The results also suggest that the share

of immigrants is positively associated with PM2.5 concentration, hinting at an ethnic gap in exposure

reminiscent of that observed in the United States. I also contribute to the literature by providing

longitudinal measures of inequality, and present evidence that census blocks that benefitted from

the smallest air quality improvements are those that had the highest initial exposure, and that were
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located either at the lower or upper end of the distribution of income. This study thus uncovers

that despite the fact that PM2.5 exposure dropped throughout the country between 2006 and 2016,

there is growing inequality in its distribution.

My second contribution consists in taking advantage of a policy change that occurred at the

level of urban areas, in order to investigate whether new PM2.5 regulation played a role in this

evolution. In France, since the 1996 LAURE law, part of the regulation of air quality is effected by

the local authorities of the largest cities, through Plans de Protection de l’Atmosphère. Following

the 2008 EU Directive on ambient air quality and cleaner air for Europe, urban areas had to revise

their schemes so as to newly include measures aimed at reducing PM2.5 concentration. Given that

the years of implementation vary from 2012 to 2016, I make use of an event-study design in order to

analyse how inequality in exposure to air pollution evolved as a consequence of this change. In line

with the abovementioned findings, I demonstrate that these revised plans predominantly benefitted

initially advantaged neighbourhoods, i.e., those whose income lay above the median. In addition, I

provide quantile regression estimates which suggest that lower quantiles of exposure received larger

air quality improvements.

As a third contribution, throughout this study, I pay specific attention to the robustness of

the results to formally accounting for spatial autocorrelation, as opposed to most of the economic

literature in the field of environmental inequality. Concomitantly, I provide a concise review of

the methods used in Public Health studies, and argue that the spatial lag model, which seems

the most widespread, relies on arbitrary parametric assumptions that may threaten the validity of

the estimates. I thus rely on a non-parametric approach to model spatial autocorrelation, using a

smoothing spline of census block geographic coordinates. I show that after controlling for neighbour-

hood location, while the pollution-income relationship remains similar, there is a stronger positive

correlation between the share of immigrants and PM2.5 exposure. Hence, the sensitivity of the

results to controlling for neighbourhood location is consistent with observed segregation patterns.

1.2 Contextual elements

Ever since the publication of a seminal report that brought to light significant racial disparities in

exposure to toxic industrial waste, at the disadvantage of Blacks (Chavis and Lee, 1987), and the

subsequent emergence of the environmental justice movement in the 1980s, research in environmental
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inequality has flourished in the United States. A considerable body of literature has unambiguously

shown that there is pervasive racial and ethnic inequality in exposure to various environmental risks

and hazards, be it from air, water or soil pollution (see, e.g., reviews by Hajat et al., 2015; Mohai

et al., 2009). Focusing on the former, it was demonstrated that ethnic minorities face a higher

burden of exposure to air pollutants, from those of the Toxics Release Inventory (TRI) (Boyce

et al., 2016; Downey, 2007; Zwickl et al., 2014), to particulate matter or ozone (Bell and Ebisu,

2012; Brochu et al., 2011). Lower-income individuals or neighbourhoods were also repeatedly shown

to have a significantly higher likelihood of being exposed to high levels of pollution, although this

discrepancy was generally found to be less acute than racial and ethnic differences (Bell and Ebisu,

2012; Boyce et al., 2016; Muller et al., 2018).

But as opposed to the US, where the notion of environmental inequality has been part of

the public debate and the policy arsenal for several decades, the French literature on the issue

is considerably scanter. The topic was mostly addressed by Public Health scholars, who provided

cross-sectional evidence of inequality in exposure to air pollution based on the level of neighbourhood

deprivation, an index which encapsulates both objective and subjective poverty measures (Pornet

et al., 2012). Their results suggest that patterns of inequality may be heterogeneous across French

cities. While it was found that disadvantaged neighbourhoods were relatively more exposed to air

pollution in Marseille (Padilla et al., 2014), Strasbourg (Havard et al., 2009), Brittany (Bertin et al.,

2015) or Dunkerque (Occelli et al., 2016), the relationship appeared to be reversed in Paris, and

U-shaped in Lyon and Grenoble (Padilla et al., 2014; Morelli et al., 2016). These mixed results may

be attributed to the fact that segregation levels are lower (Quillian and Lagrange, 2016) and urban

design is more diverse in France than in the US, where most cities are built on a Black-centre/White-

suburb structure,1 which favours both racial and income gaps in exposure to air pollution.

One of the main limitations of most of these Public Health studies relates to their spatial scope.

Indeed, the aforementioned papers focused on one administrative region (e.g., Bertin et al., 2015),

specific urban areas (e.g., Padilla et al., 2014), or even one single municipality (e.g., Havard et al.,

2009). This limited spatial extent has the benefit of bringing to light heterogeneous patterns of

inequality in exposure to air pollution. Nonetheless, it also implies that not only does a number

1According to recent work, this historical structure is evolving, as urban centres attract more and more Whites
and college-educated workers, which helped reduce the racial gap in fine particulate matter exposure between 2000
and 2015 (Currie et al., 2020).
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urban areas and rural localities await to be studied, but national trends also remain to be identified.

To my knowledge, two studies provided inceptive evidence of nationwide disparities in exposure to

ambient air pollution. First, Ouidir et al. (2017) exploit the precision of the ELFE mother-child

cohort data and link it to pollution and deprivation measures. They find that particulate matter

(PM10), nitrogen dioxide (NO2) and PM2.5 exposure during pregnancy is positively correlated with

deprivation in urban areas, while the relationship is U-shaped in rural areas. Second, Lavaine (2015)

investigates the extent to which socioeconomic characteristics and NO2, PM10 and ozone (O3) con-

centrations affect the total mortality rate of French départements, and finds that a higher NO2

concentration has a greater impact on mortality in poorer areas than in wealthier ones. So far as

I am aware, it is the only French study related to environmental inequality that aims to determine

a causal impact: the low spatial resolution is concomitantly a weakness and a strength, as it may

conceal large heterogeneity within départements, but allows to limit bias linked to residential sorting.

Indeed, the fact that substantial gaps are yet to be filled in terms of measurement and under-

standing of environmental inequality in France is at least partly attributable to how challenging it

is to circumvent the endogeneity bias of the pollution-income relationship. As framed by Laurent

(2009), the spatial dimension of social inequality already implies that it is not straightforward to

discern it from local inequalities; adding environmental considerations further muddies the waters.

Banzhaf et al. (2019) provide a summary of potential explanations to the disproportionate exposure

of disadvantaged populations to pollution in a recent review: selective firm siting, selective neigh-

bourhood sorting, or a market-like combination of the two. On the one hand, selective siting assumes

that factories and other polluting economic activities disproportionately choose to locate within or

in the vicinity of poorer areas. On the other hand, selective neighbourhood sorting may occur if

better air quality translates into higher housing prices, with poorer (resp., wealthier) households

self-selecting into more (resp., less) polluted areas. There is evidence favouring the siting hypothesis

in the US (Mohai and Saha, 2015; Pastor et al., 2001), as well as in France in the context of inciner-

ator building (Laurian and Funderburg, 2014) during the 1960-1990 period. One may imagine that

nowadays, in part due to greater awareness of environmental issues, the sorting hypothesis may play

a greater role. However, very few US studies were able to tackle this endogeneity issue, and have

diverging conclusions (Gamper-Rabindran and Timmins, 2011; Mohai and Saha, 2015; Voorheis,

2017), while, to the best of my knowledge, there exists none in France. Although the study of

environmental inequality is intrinsically interdisciplinary, the focus that Economics places on causal
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relationships gives it an advantage in disembroiling the mechanisms at stake here (Banzhaf et al.,

2019). The tools developed by economists are also key to the evaluation of the causal impact of

specific policies on environmental inequality patterns, which is what this study proceeds to do.

In particular, inequality in exposure to fine particulate matter (PM2.5), and the influence that

public policies have over it, are worth investigating. Indeed, the French literature has for now mostly

focused on nitrogen dioxide (NO2), which is often considered as an indicator for traffic (e.g., Bertin

et al., 2015; Lavaine, 2015; Padilla et al., 2014), or particulate matter (PM10) (e.g., Havard et al.,

2008; Lavaine, 2015). This is partly due to data availability reasons, since PM2.5 concentration

was not regulated prior to 2009, which implies that the number of appropriate monitors likely

was insufficient prior to the mid 2010s (Le Moullec, 2018). The fact that fine particulate matter

was listed as a controlled pollutant quite recently does not entail that it is quite innocuous and

uncommon; it is in fact harmful and ubiquitous. Indeed, it is constituted of aerosol particles whose

diameter is smaller than 2.5 µm, hence their name, that are emitted through combustion, which

implies that they are produced by various sources, from domestic wood burning to traffic, from

industrial facilities to agriculture. Their small size implies that they penetrate and remain deep

in the lungs, thus causing asthma and other cardiovascular and respiratory diseases, and making

them the fifth-leading mortality risk factor worldwide (Cohen et al., 2017). It was also shown that

they have detrimental impacts on short-term worker productivity (Graff Zivin and Neidell, 2012;

Chang et al., 2016), even for indoor employees, as they easily enter buildings (Chang et al., 2019).

Ebenstein et al. (2016) also provide evidence that early exposure to PM2.5 is associated with lower

human capital attainment and earnings.

This Master’s Thesis is organised as follows. Section 2 presents the data on neighbourhood

characteristics and fine particulate matter concentration. Section 3 describes the cross-sectional

patterns of inequality in exposure to PM2.5 in France, first using graphical evidence, then turn-

ing to fixed-effect models and their robustness to controlling for spatial autocorrelation. It also

provides evidence on the evolution of these inequalities, using both vertical and horizontal equity

measures. Section 4 focuses on the differential effects of the adoption of revised Plans de Protection

de l’Atmosphère. After providing some elements on the regulative context, it describes the event-

study and quantile regression approaches and discusses the results, as well as their sensitivity to

the use of a spatial model. Section 5 concludes.
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2 Data

2.1 Income and neighbourhood characteristics

I make use of IRIS-level data made publicly available by INSEE, the French National Institute for

Statistics and Economic Studies. IRIS (Ilôts Regroupés pour l’Information Statistique, or aggregated

units for statistical information) were designed by INSEE so as to prepare for the dissemination of

the data collected through the 1999 Census. They were built using criteria based on both adminis-

trative boundaries and demographic characteristics, so as not only to be tractable in the long-term,

but also to constitute a sufficiently homogeneous fraction of a municipality in terms of housing and

land use. There are 3 categories of IRIS, starting with residential IRIS, which are home to between

1,800 and 5,000 inhabitants and make up 92% of the total number of IRIS. Business IRIS cluster at

least 1,000 workers, and no less than twice as many workers as inhabitants. Finally, miscellaneous

units are large and specific areas that are sparsely populated, such as parks, forests or harbours,

and represent 3% of IRIS. To this day, all cities that are home to more than 10,000 inhabitants, and

the majority of municipalities with 5,000 to 10,000 inhabitants are divided into IRIS. By extension,

and so as to cover the entire French territory, every municipality that is not divided into IRIS is

considered as an IRIS.2 In 2016, there were on average 1,379 inhabitants per IRIS when counting all

municipalities, and 2,860 when focusing on IRIS cities. Putting restricted-access databases aside,

this is the finest spatial unit of observation available in French data.

The data used in this study is obtained by merging 77 year- and theme-specific IRIS-level files

covering the period between 2006 and 2016. In addition to income, the main variable of interest

that I extract from INSEE data, I select several neighbourhood characteristics listed in Table 6

in Appendix. These variables were first selected based on theoretical grounds, in the sense that

they could be potential confounders in the pollution-income relationship that I study in Section 3.

Moreover, epidemiological studies on social disparities in health and on environmental inequality

generally rely on the European Deprivation Index (EDI) as a measure for the degree of neighbour-

hood precariousness (e.g., Morelli et al., 2016; Ouidir et al., 2017; Padilla et al., 2014). The variables

2Hereafter, I use the terminology of “IRIS cities” for those that are divided into IRIS and that were home to
more than 10,000 inhabitants throughout the entire study period, while I call “non-IRIS municipalities” those that
are either not divided into IRIS or those that are, but had less than 10,000 inhabitants at least once during the study
period (for which I use weighted means of characteristics). However, the word “IRIS” or “census block” (the equivalent
of IRIS in the American context) is used to define the observation level, regardless of the type of municipality it refers
to.
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included in this index are those that are the best predictors of both objective and subjective poverty

measures within each European country. I thus add as controls those found by Pornet et al. (2012)

to best mirror individual deprivation in France. In addition to the descriptive list provided in Table

6, summary statistics of all neighbourhood characteristics for year 2016 are available in Table 7

in Appendix. Note that the 2016 median of IRIS median incomes amounts to e20,252, which is

approximately equal to the 2016 French median income of e20,500. However, due to the difference

in observation level, the first decile of income is equal to e16,162 in 2016 in my data, as opposed

to e11,040 based on individual-level data (Argouarc’h and Picard, 2018).

There are several issues arising with the use of a panel of yearly IRIS datasets:

1. Some IRIS boundaries (slightly) changed over time;

2. There was a large wave of mergers of towns during the study period;

3. Some cities were newly divided into IRIS during the period;

4. Income data at the IRIS level is provided only for municipalities with more than 10,000

inhabitants, and not for those with 5,000-10,000 inhabitants that are divided into IRIS.

These issues are dealt with step by step. Regarding the first issue, I construct a matching file of

IRIS identifiers for IRIS that changed boundaries over time. This is arguably not problematic per

se, since, according to INSEE, IRIS boundaries changed only slightly over the period. Still, part of

this work has to be performed by hand, due to missing conversion tables.3

Second, there was a large wave of mergers of towns during the study period. A rather substantial

fraction of these mergers occurred in 2015 and 2016, after the 2015-292 Law passed, which facili-

tated the creation of new merged cities if it would take place during this period. This is particularly

problematic since data for year t is provided using the geographic breakdown of year t+2. In addi-

tion, other mergers occurred before 2015. In this case, it is not possible to only rely on a matching

file. When towns are merged, it is the identifier of the chosen “head municipality” (commune siège)

that becomes the identifier of the new merged town. As such, characteristics associated with the

identifier before the merger are simply not comparable to characteristics associated with the same

identifier after the merger. Hence, there are 2 available options: 1) using observations that were

available at the initial pre-merger level for soon-to-be-merged municipalities, and considering the

new merged municipality as a new entity, or 2) setting 2006 as a “fake” merger date, and thus

3The resulting dataset is available upon request.
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computing the weighted average of the characteristics of the merged municipalities to assign it to

the single identifier. The first option directly entails that these towns would be missing from all

the parts of this study that exploit the longitudinal dimension of the data, and is thus discarded. I

opt for the second option, although it presents two main disadvantages. First, it is not possible to

compare, not even for a single year, the weighted average with the actual value for the new merged

municipality, and second, this increases measurement error, especially in pollution, since the sur-

face areas of merged towns are very large.4 Nonetheless, this last issue is slight, since municipality

merging mostly occurs in rural and rather sparsely populated areas. They do not carry very large

weights in the following computations, since the latter are based on population weights.

Third, some (though few) municipalities were divided into IRIS during the period. This issue is

tightly linked with the fourth one listed above in terms of consequences. This one implies that for the

915 municipalities of 5,000-10,000 inhabitants, while I observe socio-demographic characteristics at

the IRIS level, I observe income at the municipality level. Hence, in both cases, I eventually observe

some characteristics at the municipality level, and some at the IRIS level. In such a case, I keep all

variables at the municipality level, and compute weighted means of IRIS-level variables. As a direct

consequence, there is a need to assess the degree of validity of the weighted means. INSEE provides

Figure 1: Kernel density of p-value of the difference between actual value and weighted mean –
2015, 2016

Variables tested: shares of each occupation, shares of French, immigrants and foreigners, share of unemployed, share
of homeowners, tenants and subsidised housing tenants, share of each education level, share of single-parent families.

4For instance, 4 of the 10 largest municipalities in metropolitan France in terms of surface area are newly merged
municipalities. All of them are located in Maine-et-Loire, where municipality merging was particularly frequent
during the 2010-2016 period.
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municipality-level information for the characteristics that were selected only for years 2015 and 2016,

which is the reason why one cannot simply replace the IRIS-level observations by the municipality-

level observations. Still, this allows me to assess how close the weighted means I computed are from

the true value for these specific years. I present the results of this exercise in Figure 1, which plots

the density of the p-value of the difference between the INSEE municipality-level value and the

weighted mean I computed for each municipality in question. For any variable tested, the weighted

means are not significantly different from the actual value for most observations.

2.2 Exposure to fine particulate matter

I use PM2.5 concentration data from the Atmospheric Composition Analysis Group (ACAG) in Dal-

housie University, Canada. The researchers exploited both remote-sensing sources and ground-level

monitor data gathered by the European Environment Agency (EEA) in order to deduce the spatial

distribution of fine particulate matter throughout the whole of Europe. They make use of GEOS-

Chem, a recent chemical transport model that was jointly developed by the ACAG and Harvard

University researchers.5 I observe PM2.5 concentration for years 2001 to 2016. The yearly files are

made available to the public in raster format in grids of .01 × .01 degrees, i.e., approximately 1 km2

at the equator. Note that the degree of precision of this data appears to be primarily adapted to

large-scale studies like this one.

I infer pollution concentration at the IRIS level by computing the weighted average of the level

of pollution associated with each raster grid that (at least partly) overlaps with each IRIS, using

the Zonal Statistics plugin of QGIS. This implies that exposure is defined as the mean of the values

of the raster grids at least part of which are inside the boundaries of each IRIS, weighted by the

proportion of the area of the grid present within the area of the IRIS. I also extract the number of

grid values used to compute the mean pollutant concentration for each IRIS. The latter measure

is important because it is reflective of the level of measurement error of the pollution exposure

variable. Indeed, as exposed in Section 2.1, not all French municipalities are divided into IRIS,

and the average surface area of a French commune is 14.88 km2 (14.83 in my data). This is small

compared to most European countries, but remains an issue in this context: on average, 17.71 grid

points were used to compute average concentration for non-IRIS municipalities, while only 2.15

5Further information relative to the GEOS-Chem transport model is available on the dedicated website: http:
//acmg.seas.harvard.edu/geos/.
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were used in the case of IRIS municipalities. Therefore, the independent variable is subject to

measurement error, which reduces the power of the statistical tests conducted in following sections,

or, in other words, increases the risk of Type-II error.

I define average exposure as the population-weighted mean PM2.5 concentration within a given

IRIS. IRIS-level data, including population data, are not available for years prior to 2006. These

data constraints imply that this analysis focuses on the 2006-2016 time period. According to the

data, average exposure to fine particulate matter is equal to 9.54 µg/m3 in 2016, which complies

with both the European limit value of 25 µg/m3 and the World Health Organisation (WHO) guide-

line of 10 µg/m3, on average. However, the distribution of PM2.5 concentration ranges from 4 to

15.1 µg/m3 at the IRIS level (see the first row of Appendix Table 7).

The Atmospheric Composition Analysis Group also provides estimates of ground-level PM2.5

concentration at a larger scale of .1 × .1 degrees, that cover almost the whole world surface

(Van Donkelaar et al., 2016). These were used in the context of the Global Burden of Disease

Study of 2015 (Cohen et al., 2017), and are channelled on OECD’s website (OECD, 2018), making

its higher-definition counterpart likely reliable. Nonetheless, I proceed to evaluate the consistency of

the ACAG data using the few national-scale sources of information on fine particulate matter con-

centration. I compare the map of average of 2007-2008 exposure provided in a study by researchers

of Santé publique France6 with the one that I obtain using ACAG data in Figure 17 in Appendix.

The two maps are very similar, which confirms the validity of the data used in this study; the

minor differences may be attributed to the difference in air transport models (Gazel’Air for Medina

et al., while the ACAG uses GEOS-Chem) and to the threshold effect of the caption, which is not

continuous, but uses a 5-µg/m3 increment. I also look at the consistency of ACAG data with the

evolution of average PM2.5 concentration provided in the 2017 Report on Air Quality.7 Figure 18

in Appendix thus displays the 2009 base-100 index of PM2.5 concentration in mainland France.

While the index values at the end of the period are similar, there is up to a 7-point discrepancy

between the two estimates in the 2011-2013 period. This might again be explained by the fact that

Le Moullec uses another air transport model, or by a significant initial divergence between the two

estimates, but the author only provides indices.

6See Figure 6 in Medina et al. (2016).
7See Figure 3 in Le Moullec (2018).
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3 Descriptive evidence

3.1 Patterns of inequality

Starting with macro-scale patterns of inequality in exposure to fine particulate matter, Figure 2 de-

picts PM2.5 concentration by decile alongside a map of median income by decile and by département.

The latter administrative division roughly corresponds to the county-level of the United States or

the United Kingdom. Comparing these two maps allows to confirm that, in France, even focusing

on the regional scale and avoiding delving into urban area-specific heterogeneity, the relationship

between PM2.5 exposure and income is not at all monotonic. Île-de-France (excluding Seine-Saint-

Denis) and the former Rhône-Alpes region combine some of the highest levels of both fine particulate

matter exposure and income, while, unsurprisingly, the association is reversed for the rural areas of

central France. On the other hand, the northern départements of Nord, Pas-de-Calais, Aisne and

Ardennes belong to the highest decile of exposure and the two lowest deciles of income. On the

other side of both spectra, the Atlantic South-West and Brittany compound relatively high income

and low exposure. These differences cannot simply be explained by the presence of large cities,

which couple comparatively higher pollution and higher income, as the situation in the north of

France strongly contradicts this argument.

Figure 2: Exposure to PM2.5 and median income by decile – 2016

(a) PM2.5 (b) Median income

Sources: Atmospheric Composition Analysis Group (left) and INSEE (right).
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I now turn to neighbourhood-level information, and split the data into two groups: the top 50%

of the distribution (i.e., those that could be roughly defined as middle- and upper-class IRIS), and

the bottom 50% of the initial income distribution. Recall that the median of census block-level

income is roughly equal to the median of individual-level income (Argouarc’h and Picard, 2018).

Average exposure is roughly equal between the two groups in 2016: the bottom 50% have a mean

exposure of 9.49 µg/m3, while that of the top 50% is equal to 9.58 µg/m3. Throughout the study

period, the gap between the exposure of the top 50% and the bottom 50% of neighbourhood income

was equal to .3 µg/m3 on average, only reaching .5 µg/m3 in 2008-2009. This is further discussed

in Section 3.4, which is dedicated to the evolution of (inequality in) PM2.5 exposure.

This small difference in average exposure between the two groups masks specific patterns, as

shown in Figure 3. The latter displays the distribution of exposure to PM2.5 within the two halves

of the national distribution of IRIS (median) income. Given that the number of observations is

identical between the two groups, I can directly interpret gaps in the probability density functions

as an occurrence of over- or under-representation. It seems that one can split these two distribu-

tions into three parts. At “very low” levels of exposure, between 4 and 7 µg/m3, the bottom 50%

of income is over-represented, in all likelihood due to the fact that rural areas usually combine low

income and low pollution levels. At middle-range levels (7-10 µg/m3), the top 50% of income is

over-represented. Finally, focusing on levels of exposure above the WHO guideline of 10 µg/m3, the

top and bottom 50% are quite similarly represented, with a slightly higher proportion of top-50%

neighbourhoods. This pattern is likely attributable to the characteristics of French urban areas:

Figure 3: Distribution of exposure to PM2.5, top and bottom 50% of income – 2016

Note: The dashed vertical lines represent the mean value of exposure for each group. The median level of income is
equal to e20,252.
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albeit different levels of residential segregation, statistically more polluted city centres and inner

suburbs usually compound both high- and very low-income neighbourhoods, and peri-urban areas

are increasingly well-off (Aerts et al., 2015; Floch, 2014, 2017).

Figure 4 relies on a finer group definition: Figure 4a compares the distribution of exposure of

the top 10% to that of neighbourhoods between the 8th and the 9th decile of income, while Figure

4b compares the exposure of the bottom 10% to that of neighbourhoods between the 1st and the 2nd

decile of income. It appears that the likelihood of experiencing very high levels of exposure is indeed

considerably higher for the top 10% IRIS than for any of the three other groups. On the other hand,

a large fraction of neighbourhoods whose income lies between the 8th and the 9th decile are exposed

to PM2.5 levels that are below the national average of 9.54 µg/m3. The patterns of distribution of

exposure are very different in Figure 4b, which suggests that the neighbourhoods located below the

1st decile of IRIS-level income (i.e., whose median income is below e16,162) are substantially more

likely to be exposed to high PM2.5 levels: 60% of these low-income neighbourhoods are above the

WHO standard, while, conversely, 80% of the neighbourhoods of the next 10% comply with this

standard (see the CDFs in Appendix Figure 19). This is consistent with the fact that, in France in

2012, 65% of individuals living below the poverty line lived in large urban centres (INSEE’s grands

pôles urbains), and 20% in the Paris urban area (Aerts et al., 2015).

Figure 4: Distribution of exposure to PM2.5 – 2016

(a) 8-9th decile and top 10% (b) Bottom 10% and 1-2nd decile

Note: The 8th decile of income is equal to e23,627, and the 9th decile is equal to e26,286 (left). The 1st decile of
income is equal to e16,162, and the 2nd decile of income is equal to e17,738 (right).
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Figure 5a displays the unconditional average exposure to PM2.5 as a function of a neighbour-

hood’s decile of income, for all even-numbered years of the study period, and rather corroborates

previous evidence. As a consequence of the aforementioned phenomena relating income and location

in France, there appears to be a U-shaped relationship between unconditional average exposure and

income. However, the average exposure of the top 10% of IRIS income is lower than that of those

located at the 9th decile of income, and similar to that of the bottom 10% of IRIS-level income.

Conditioning PM2.5 exposure on urban area yields a completely different story: within urban areas,

neighbourhoods with very low income are substantially more polluted than their wealthier coun-

terparts. Average exposure roughly decreases with income up to the 7th decile, and then slightly

rises with income at the right end of the distribution. Notice also that conditionally on urban area,

the exposure of neighbourhoods whose income lies between the 4th and the 9th decile is lower than

average, while the top 10% have average exposure.

Figure 5: Average exposure to PM2.5 based on (national-level) income decile

(a) Unconditional (b) Conditional on urban area

3.2 Fixed-effect models

I provide a more formal analysis of the correlation between fine particulate matter exposure and

neighbourhood income by running IRIS-level fixed-effect models. By doing so, I exploit the variation

in income and PM2.5 concentration within census blocks, and thus difference out the potentially

confounding effect of unobserved census block-level characteristics which could influence the location

decision of individuals. Indeed, while I control for a series of neighbourhood socio-demographic
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characteristics (listed in Appendix Table 6), it remains that I do not observe the quality of the

amenities present within or in the vicinity of neighbourhoods. These are particularly important in

this study due to the fact that households likely substitute away air quality for other amenities, such

as cultural facilities, schools or proximity to large business districts. Although not discussed, this

omitted variable bias is present in any of the abovementioned cross-section analyses (e.g., Ouidir

et al., 2017; Zwickl et al., 2014) whose model identification relies on variations across study areas.

The corresponding equation is the following:

ln(PMit)− ln(PMi) = α+ βINC(ln(INCit)− ln(INCi)) + βX(Xit −Xi) + λt + (εit − εi) (1)

PM2.5 exposure is right-skewed, so I take its natural logarithm in all regressions. ln(PMit) corre-

sponds to the (log) average exposure in IRIS i, during year t. ln(INCit) is the median income of

IRIS i in year t. Xit includes the covariates taken from the list displayed in Table 6 in Appendix. I

include the share of inhabitants that undertook higher education, since more educated individuals

may attach a higher value to air quality than less educated individuals, and thus hold a different

view of the trade-off between amenities and air pollution, which influences their residential choice.

For similar reasons, I select the shares of population by occupation, divided in 8 categories (see

Appendix Table 6). Moreover, homeowners and subsidised housing tenants, i.e., those who live in

HLM (Habitation à Loyer Modéré), may have more stringent residential mobility constraints than

tenants of privately owned dwellings, which would prevent them from leaving polluted areas. I

also control for the share of dwellings that are not equipped with electric heating, since domestic

wood burning is one of the main sources of PM2.5 in France (Citepa, 2018), and similarly for the

share of households that own a car. The fractions of immigrants, of unemployed individuals, and

single-parent households are also used as measures of deprivation (Pornet et al., 2012). Finally, I

cluster standard errors at the employment-zone level in order to account for autocorrelation within

employment zones, and weight regressions by population.

I take advantage of the panel structure of my data to deal with the omitted variable bias related

to time-invariant unobserved IRIS-level characteristics, and I add year fixed effects in order to tackle

the impact of year-specific shocks that would impact both income and PM2.5 concentration, such

as a shock in economic activity. However, it is likely that there are remaining biases, meaning that

the models do not identify a causal impact. First, the models rely on the assumption that there
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exists no time-varying unobserved heterogeneity across IRIS throughout the 2006-2016 time period,

since it was computationally inaccessible to introduce more than 400,000 time-varying fixed effects.

Second, unlike an individual-level fixed-effect model, the models that I estimate do not fully tackle

the self-selection issue that is inherent to the study of environmental inequality. Indeed, they do

not resolve the potential reverse causality of the pollution-income relationship,8 which opposes the

neighbourhood sorting hypothesis to the firm siting hypothesis. As a consequence, the test that I

provide here boils down to looking at whether any of these two hypotheses, or a combination of the

two, may apply to France.

Table 1 shows the results associated with equation (1). The crude model with only IRIS fixed

effects shows a strong negative correlation between IRIS median income and PM2.5 exposure, and the

following ones as well, though it is less pronounced. In the preferred specification (Column (3)), in

which I control for year fixed effects as well as neighbourhood characteristics, the estimates suggest

that over the 2006-2016 period, a 1% positive deviation from a neighbourhood’s mean income is

associated with a decrease of .18% of its mean PM2.5 concentration, ceteris paribus. While these

models do not identify a causal impact, but a correlation net of the impact of certain variables,

they support the idea that, at the national scale, a higher neighbourhood income is associated

with a lower exposure to PM2.5. Therefore, these results do not contradict the Tiebout (1956)

sorting mechanism evoked in Banzhaf et al. (2019). As a clean environment can be considered as

a luxury good, higher air quality may prop up rents and housing prices.9 As a direct consequence,

there may be a sorting phenomenon of households across income groups, even if households do not

necessarily choose to migrate due to higher air pollution (Banzhaf and McCormick, 2012). These

results are also theoretically consistent with a theory of disproportionate siting by firms. However,

this mechanism likely plays a less significant role in the case of fine particulate matter as compared

to other pollutants, since a bit less of a quarter of emissions are emitted by the manufacturing

sector, while two thirds are from residential sources and transportation (Citepa, 2018). Finally,

this result may also be attributed to a combination of both processes of sorting and siting, through

Coasian bargaining (Banzhaf et al., 2019). In any case, I only provide the first piece of evidence of

8Lagged independent variables are not particularly helpful in this context, given the degree of inertia of the
variable of interest between 2 subsequent years of observation at the IRIS level.

9To my knowledge, only two studies investigated this in France. Lavaine (2019) found evidence of a significant
impact of air quality on housing prices in the highly polluted Dunkirk metropolitan area, while Le Boennec and
Salladarré (2017) did only for specific types of households in the less polluted Nantes region. It may be hypothesised
that the intensity of sorting dynamics could vary depending on the overall pollution level of an urban area.
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Table 1: Fixed effect models – Partial results

Variable (1) (2) (3)

(Log) income -1.274∗∗∗ -.212∗∗∗ -.182∗∗∗

(.137) (.037) (.025)

% Immigrants .143∗∗∗

(.025)

% Higher education .141∗∗∗

(.039)

% White-collar .258∗∗

(.105)

% Inactive excl. retired .113∗∗

(.054)

% Unemployed -.119
(.105)

% Social housing .051
(.054)

Intercept 15.062∗∗∗ 4.542∗∗∗ 4.061∗∗∗

(1.357) (.368) (.344)

Year fixed effects X X

R2 within 0.11 0.78 0.79
R2 between 0.02 0.01 0.21
R2 overall 0.01 0.18 0.37
# Observations 453,386 453,386 453,306
# Groups 42,832 42,832 42,825

Standard errors clustered at the employment-zone level in parentheses. ∗: 10% level, ∗∗: 5% level, ∗∗∗: 1% level.

this national-level correlation: further research based on individual-level data would allow to better

understand the mechanisms behind this inequality.

Finally, paying specific attention to other neighbourhood characteristics, the results also suggest

that there is a positive correlation between the share of immigrants and exposure to fine particulate

matter, even after controlling for income. This cannot be attributed to the fact that a great fraction

of immigrants are gathered in specific neighbourhoods of large metropolitan areas, since I control for

IRIS-level unobserved heterogeneity. Therefore, there might also be an ethnic gap in exposure to fine

particulate matter in France, as observed in the US (Currie et al., 2020; Kravitz-Wirtz et al., 2016).
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The positive link between PM2.5 concentration and the shares of highly educated individuals, of

white-collar workers, and inactive individuals – the latter being mostly students, since the category

excludes retirees – is consistent with the fact that these populations tend to concentrate in urban

centres. On the other hand, there is no significant relationship between unemployment share and

PM2.5 level, likely due to the fact that unemployment is not only high in polluted former industrial

areas, but also in cleaner rural ones. The same observation applies to the share of subsidised

housing, for which I find no significant result. This may also stem from the fact that although there

are significant variations in the share of social housing across IRIS, there may not be large enough

variations within IRIS for any significant difference to be identified. The remainder of the estimates

are provided in Appendix Table 8, and the coefficients all appear consistent with theory.

3.3 Robustness to spatial autocorrelation

Tobler’s (1970) first law of geography states that “everything is related to everything else, but near

things are more related than distant things”. Indeed, spatial autocorrelation is likely to be of par-

ticular concern when one examines the relationship between income and access to clean air. Air

pollution levels are spatially correlated by construction, and income does not verify complete spatial

randomness (CSR) either: in France, residential income segregation is less pronounced than in the

US (Quillian and Lagrange, 2016), but tends to increase (Beaubrun-Diant and Maury, 2020). In Sec-

tion 3.2, standard errors are clustered at the employment-zone level, which means that correlation

within employment zones is allowed for. This implies that spatial correlation is modelled discretely,

since it is designed to follow employment zone boundaries. Pollution, however, is distributed con-

tinuously across space. As a consequence, pollution levels on either side of an employment zone

boundary are thus as likely to be correlated as pollution levels of two IRIS located within the same

zone. This argument also holds for other neighbourhood characteristics. Hence, the residuals of

equation (1) are most likely not independently distributed. Moreover, failing to take spatial au-

tocorrelation into account amounts to have an artificially lower variance in observations, and thus

artificially lower standard errors, thus inflating the risk of Type-I error.

To my knowledge, despite the importance of the issue in this setting, environmental inequality

studies performed by economists generally lack concern for spatial autocorrelation. In a related

study, Lavaine (2015) does use Driscoll-Kraay standard errors, which are robust to cross-sectional

correlation, in some specifications. Nonetheless, a number of studies do not mention it (e.g., Currie
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et al., 2020; Muller et al., 2018; Voorheis, 2017; Zwickl et al., 2014). Concern for spatial autocor-

relation is however more common within the Public Health literature on the topic: some highlight

the consequences of failing to account for it (e.g., Havard et al., 2009), and among those mentioned

in Section 1.2, a large part uses specifically designed spatial models.

Some adopt spatial lag models, a specific version of Spatial Autoregressive (SAR) models (Havard

et al., 2009; Verbeek, 2019). Spatial lag models treat spatial dependence between observations as

substance, as opposed to a disturbance. They assume that the value taken by the dependent

variable in each zone both affects and is affected by the values taken by the dependent variable

in the neighbouring zones, which is exactly what one may expect when the outcome variable is

pollution exposure. With W a weighting matrix, a basic spatial lag model may be thus written

Y = Xβ+ρWY +ε. The choice of the form of the spatial weighting matrixW is however arbitrary,

as it amounts to making parametric assumptions about the behaviour of spatial autocorrelation.

Finally, misspecifying the spatial weight matrix can introduce large biases in the final estimates

(Anselin, 2002; Lam and Souza, 2014).

An appealing solution is thus to opt for a non-parametric approach to account for spatial auto-

correlation. Specifically, I use a Generalised Additive Model (GAM). These are Generalised Linear

Models (GLM) to which one adds a smoothing function of at least some covariates. As such, while

they were not designed as spatial models to begin with, they allow to add a non-parametric function

of geographic coordinates to account for neighbourhood location as a possible predictor of PM2.5.

Unlike spatial lag models, GAM thus do not impose parametric assumptions on the form of spatial

autocorrelation. Hence, they were used to model spatial autocorrelation in studies of interregional

knowledge spillovers (Guastella and Van Oort, 2015), interregional risk sharing (Basile and Girardi,

2010) or hedonic house pricing (Helbich et al., 2014; Von Graevenitz and Panduro, 2015). They

have also been used in few environmental justice studies (Brochu et al., 2011; Padilla et al., 2014).

Thus, I add the latitude yi and longitude xi of the centroid of IRIS i as a smoothed term

s(xi, yi) to equation (1).10 s(·) is a thin plate regression spline, which does not require to specify

knots. The most widespread approach used to estimate GAM is the backfitting algorithm of Hastie

and Tibshirani (1990) but, in practice, it implies that one must select the degree of smoothness of

the term s(xi, yi). Selecting the degree of smoothness amounts to selecting the span size, i.e., the

10Modelling spatial autocorrelation this way is thus akin to tackling the omitted variable bias arising from the fact
that although location likely has an impact on both income and pollution level, equation (1) did not control for it.
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Table 2: Fixed-effect generalised additive models – Partial results

Variable Dependent variable: log(PM)

(Log) income -1.274∗∗∗ -0.157∗∗∗ -.125∗∗∗

(.005) (0.003) (.003)

% Immigrants .230∗∗∗

(.009)

% College-educated .219∗∗∗

(.006)

% White-collar .231∗∗∗

(.009)

% Inactive excl. retired .081∗∗∗

(.006)

% Unemployed -.121∗∗∗

(.009)

% Social housing .063∗∗∗

(.004)

Intercept .001 -0.001∗∗∗ .030∗∗∗

(.002) (.000) (.000)

Year fixed effects X X
Other neigh. charac. X

p-value s(xi, yi) 0.128 0.000 0.000
Adjusted R2 0.11 0.78 0.78
# Observations 453,386 453,386 453,306
# Groups 42,832 42,832 42,825

Standard errors clustered at the employment-zone level in parentheses. ∗: 10% level, ∗∗: 5% level, ∗∗∗: 1% level.

number of IRIS in the vicinity of IRIS i whose outcomes are likely correlated with these of IRIS i,

and thus boils down to a bias-efficiency trade-off. In order not to resort to arbitrary choices, I rely

on more recent advances in research on GAM, which led to the development of a new estimation

technique that singles out the degree of smoothness in an automatic and integrated fashion. Hence,

the optimal smoothing parameter is obtained via generalised cross-validation (Wood, 2017).

The results that mirror those of Table 1 are displayed in Table 2, and the full set of estimates is

provided in Appendix Table 9. The approximate p-value of the smoothing term s(xi, yi) is highly

significant, which confirms that latitude and longitude are indeed predictors of IRIS pollution level.
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Another striking element is the fact that, for any specification, the intercept is substantially smaller

than before, and the adjusted R2 substantially higher than before, since neighbourhood location

likely explains a great fraction of PM2.5 variation. Although omitting to allow for spatial autocor-

relation theoretically shrinks standard errors, significance levels are much higher than in previous

models. It appears that as I net spatial autocorrelation out, the pollution-income relationship weak-

ens, although the estimates are not significantly different from before: a 1% increase from the IRIS

mean median income is associated with a .125% reduction in mean PM2.5 exposure. This sup-

ports the idea that the spatial dimension does not attenuate nor invalidate the relationship between

income and environmental hazard in the case of PM2.5 exposure.

Notwithstanding, the positive relationship between PM2.5 concentration and the share of im-

migrants is significantly stronger than under the previous specification at the 5% level, with an

estimate of .230 as opposed to .143. Equation (1) considered IRIS as independent of each other, but

diagnosed a positive correlation between PM2.5 concentration and share of immigrants within census

blocks. There is a positive spatial autocorrelation of both pollution and the share of immigrants

across these blocks, which attenuates with distance. Consequently, controlling for the longitude and

latitude of a census block that has a high (resp., low) pollution level accounts for the fact that its

neighbours also have a high (resp., low) pollution level, and thus a likely high (resp., low) share of

immigrants. In other words, allowing for spatial autocorrelation places IRIS back into their rela-

tive location, thus creating “clusters” that combine high values of PM2.5 and share of immigrants

together, medium values together, and low values together, which implies that the correlation is

indeed higher than what simple FE models estimated. On the other hand, as aforementioned, the

estimate associated with income is lower in absolute terms than previously evaluated, with an esti-

mated coefficient of -.125 against -.182. These two findings can thus seem conflicting at first sight,

but can be reconciled, since they imply that, for a given degree of spatial smoothing, income is

distributed more uniformly across space than the share of immigrants. Indeed, in France, ethnic

segregation measures provided by, e.g., Gobillon and Selod (2007), Préteceille (2011) or Safi (2009),

are higher than income segregation measures (Floch, 2017; Quillian and Lagrange, 2016).

The estimates associated with the shares of college-educated individuals, white-collar workers

and inactive inhabitants, and those only presented in Appendix Table 9, are qualitatively and quan-

titatively similar to the previous ones, making them robust to accounting for spatial autocorrelation.

Finally, the estimates for the unemployment share and the social housing share are now statistically

significant, which may also be attributed to segregation.
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3.4 Evolution in exposure and longitudinal inequality

3.4.1 Graphical evidence

Figure 6 displays the evolution of average exposure to fine particulate matter in metropolitan France

throughout the study period. According to this figure, average exposure increased from 11.85 µg/m3

in 2006 to around 14 µg/m3 for 2009-2011, before falling to 9.54 µg/m3 in 2016. Hence, for years

2014 and 2016, according to matched ACAG and INSEE data, exposure seems to be line with the

World Health Organisation (WHO) guideline of 10 µg/m3, on average. Average exposure fell by

4.63 µg/m3, or 32.7%, between the peak year 2009 and 2016, a decrease similar to the United States’

in the 2000-2014 period (Currie et al., 2020; Voorheis, 2017).

Figure 6: Evolution of average exposure to PM2.5 – 2006-2016

However, this national average masks some considerable spatial disparities in the evolution of

fine particulate matter concentration. Figure 7 shows two years of this concentration for metropoli-

tan France, by decile of the total distribution across these two years. In 2006, the least exposed areas

were Massif Central, the Pyrénées, the southern part of the Bay of Biscay and the tip of Brittany,

and remain so. More specifically, PM2.5 concentration was already very low in Massif Central, and

did not significantly decrease, while it did in the last three regions. On the other hand, the northern

part of the country, the Paris region and the Rhône Valley, which were located in the top 30% of the

distribution in 2006, stayed at this position in 2016. This implies that while pollution was already

high in these areas, and particularly much higher than the WHO guideline, they remained at the

top of the cross-year pollution distribution, while the rest of the country moved down. Taken to-
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Figure 7: Exposure to PM2.5 by decile

(a) 2006 (b) 2016

gether with the map of Figure 2b, this does not allow to draw clear-cut conclusions on longitudinal

patterns of inequality: while the low-income northern départements remained polluted, high-income

ones like Rhône or Seine-et-Marne also did.

As a first piece of evidence on longitudinal environmental inequality, I switch back to the income

group definitions of Section 3.1. Figure 8a distinguishes between the top and the bottom 50% of the

income distribution, and shows that the top 50% of income appears to be consistently more exposed

to PM2.5 than the bottom 50%, experiencing a larger increase in exposure during the 2006-2011

period, and a rather similar overall decrease up to 2016. The fact that urban areas concentrate both

a high level of PM2.5 concentration, a high proportion of individuals, and a relatively high level of

income surely can explain a large part of the gap that we observe in this figure. However, patterns

are rather different when looking at the 4 group definitions also used in Section 3.1, namely the

bottom and top 10% of income, and areas located between the 1st and the 2nd decile, and the 8th and

the 9th decile. The gap between the latter remains quite constant along the years. However, while

they had roughly equal average levels of exposure during the 2008-2013 period, a gap in exposure
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Figure 8: Evolution of average exposure to PM2.5 in different income groups – 2006-2016

(a) Top 50% vs Bottom 50% (b) Two highest and lowest deciles

may be arising between the neighbourhoods at the top and those at the bottom 10% of income, at

the favour of the top 10%. This will be a trend to pay attention to in upcoming years.

Moreover, these results are obtained on the basis of varying ranks in the income distribution. A

small counterfactual exercise can highlight the potential role of mobility. Indeed, one can compute

the average exposure of neighbourhoods in 2016 using their 2006 rank, and compare it to the actual

average. With this definition, the average of exposure of the bottom 10% of 2016 in 2016 is 11.30

µg/m3, but that of the bottom 10% of 2006 in 2016 would have been 11.08 µg/m3, holding the ranks

fixed. On the other end of the spectrum, the 2016 top 10%’s average exposure is equal to 10.86

µg/m3, while it should have been 11.01 µg/m3 holding the ranks fixed. As such, the bottom 10% of

2016 is more exposed than the 2006 bottom 10% would have been, and the reverse holds for the top

10%. This implies that neighbourhoods that are “new” to the bottom 10% are more polluted than

those that “left” the bottom 10%, and that neighbourhoods that are “new” to the top 10% are less

polluted than those that “left” the top 10%. Such a fact is consistent with relative mobility patterns

that would occur due to the neighbourhood sorting mechanisms, where higher-income (resp., lower-

income) individuals would self-select into cleaner (resp., more polluted) neighbourhoods, be it due

to pollution-related out-migration or to market forces (Banzhaf and McCormick, 2012; Banzhaf

et al., 2019). Individual data would be needed to formally test these hypotheses.
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3.4.2 Pollution-reduction profiles

In order to study longitudinal inequality in exposure to fine particulate matter, I proceed to compute

pollution-reduction profiles, following Voorheis (2017). Voorheis argues that, although there is a

sizeable body of literature on the cross-sectional measurement of environmental inequality in the US,

much less is known about longitudinal environmental inequality. As such, he adapts a method used

in the literature on intra-generational mobility and first proposed by Jenkins and Van Kerm (2006),

called income-reduction profiles, to pollution exposure. The resulting pollution-reduction profiles

(PRP) allow to capture both vertical equity concerns (i.e., how PM2.5 exposure varies across ini-

tial ranks of exposure) and horizontal equity concerns (i.e., how PM2.5 exposure varies across initial

ranks of income). Both types of PRP are also computed both in absolute terms, using the difference

between exposure in year t + x and exposure in year t, and in relative terms, using the difference

between the logarithm of exposure in year t+ x and that of year t. As shown in Figure 6, average

exposure increased between 2006 and 2011, and decreased ever since. This framework thus allows

to visualise the distributional impacts of the 2006-2011 air quality deterioration and the 2011-2016

(and overall) air quality improvement. All PRP are obtained by fitting a thin plate regression spline.

Figure 9 (resp., Figure 10) shows the vertical (resp., horizontal) equity profiles, with absolute

changes in exposure on the left-hand side and relative changes in exposure on the right-hand side. I

begin by looking at the change in exposure as a function of a census block’s initial rank in the dis-

tribution of exposure. Between 2006 and 2016, regardless of their initial level of exposure to PM2.5,

on average, IRIS benefitted from overall quite comparable decreases in absolute terms, between

-1.7 µg/m3 and -2.8 µg/m3. However, this implies that, in relative terms, census blocks that were

initially less exposed to PM2.5 benefitted from larger improvements than those who were initially

more exposed. Distinguishing between the two phases of the study period, the graph suggests that

initially disadvantaged census blocks experienced a higher increase in exposure between 2006 and

2011, and a smaller relative decrease in exposure between 2011 and 2016, compared to their initially

less exposed counterparts. In particular, neighbourhoods at the 10th percentile of initial exposure

received a 40% decrease in exposure, while those at the 90th percentile received a 14% decrease. In

short, the vertical equity measures suggest that both the rise and the fall in PM2.5 concentration

have been regressive, with larger benefits accruing to initially less exposed areas.
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Figure 9: Pollution-reduction profiles – Vertical equity

Note: The initial rank of exposure is the rank in the distribution of IRIS exposure to PM2.5 in 2006.

This is consistent with what Figure 6 shows at a larger geographical scale: while PM2.5 con-

centration decreased throughout metropolitan France, regions that were initially the most polluted,

such as Hauts-de-France and Île-de-France, did not experience larger relative decreases than others.

This may partly be attributed to relatively smaller decreases in emissions due to less effective poli-

cies, but another potential explanation for this may be that fine particulate matter concentration

did not decrease more in initially more polluted areas because a potentially significant part of these

particles is imported. Indeed, PM2.5 can travel long distances, which implies that a potentially

non-negligible part of neighbourhoods’ observed concentration is not due to domestic emissions.

For instance, in Île-de-France in 2010, it was estimated that 39% to 68% of their observed quantity

was produced outside the region (Airparif, 2011).

Turning to the horizontal equity measures of Figure 10, the first finding is that, similarly to ver-

tical equity measures, absolute changes in exposure over the whole study period were rather uniform

across the initial income distribution, with a 2 µg/m3 decline up to the 8th decile, and an average

decrease of 1.8 µg/m3 for the top 10% of income. However, in relative terms, the bottom decile

of initial income, i.e. neighbourhoods with a median income of e14,300 in 2006,11 received a 20%
11All values are given in 2016 constant euros.
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decrease in exposure, while those at the 4th decile (e17,360), received the largest relative decrease

of 28%. Neighbourhoods of the top 10% of income (whose 2006 income is above e24,000) benefitted

from the smallest relative improvement, with a 17% average decrease in PM2.5 concentration. To

summarise, in relative terms, it appears that the pollution-reduction profile is U-shaped, with air

quality improvements accruing to a greater extent to neighbourhoods located in the middle 60%,

while those at the top and the bottom of the initial income distribution experienced significantly

smaller relative decreases. Splitting the study period into the two phases studied above, it appears

that the bottom 20% and the top 20% of income not only experienced the largest (relative or abso-

lute) increase in exposure between 2006 and 2011, but also slightly smaller relative decreases after

2011. Taken together with the evidence in Figure 9 and Section 3.1, these patterns are consistent

with an overall improvement of fine particulate matter pollution throughout the country, which,

however, favoured municipalities and neighbourhoods that combine intermediate income and com-

paratively low pollution levels. This implies that although overall PM2.5 exposure underwent a

substantial drop during the study period, inequality in exposure intensified.

Figure 10: Pollution-reduction profiles – Horizontal equity

The initial income rank is the rank in the distribution of IRIS median incomes in 2006.
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4 Role of Plans de Protection de l’Atmosphère

In France, part of the regulation of air quality occurs at the level of urban areas, through mandatory

Plans de Protection de l’Atmosphère. As a consequence of a 2008 EU Directive that incorporated

fine particulate matter as a newly regulated pollutant, urban areas were required to revise their

schemes, so as to include measures aimed at reducing PM2.5 concentration. Using an event-study

design, this section investigates whether this change in policy helped reduce inequality in exposure

to my pollutant of interest.

4.1 Context

The EU Directive 2008/50/EC on air quality, also named Directive on ambient air quality and

cleaner air for Europe, includes 4 elements. First, it merged the majority of existing legislation on

air quality into a single directive,12 without any change in existing objectives. Second, it allowed for

time extensions for compliance to EU standards regarding the concentration of particulate matter

(PM10), benzene, and nitrogen dioxide (NO2), up to 2015. Third, it gives the opportunity for

Member States to deduct emissions caused by natural sources, such as those emitted through forest

fires, when assessing compliance to EU limit values of regulated pollutants. The fourth and final

element of the Directive is of particular interest: it established that annual concentration in PM2.5

has to be lower than 25 µg/m3 by the 1st of January, 2015. In terms of exposure, the Commission

chose to refer to a three-year annual average exposure (AEI, for Average Exposure Indicator), which

must be lower than 20 µg/m3. In France, the AEI is computed using monitor data of 49 urban

areas. This became legally binding in 2015, i.e., starting for years 2013-2015. The Directive was

translated into French law, and thus integrated into the Code de l’Environnement, by decree, on

the 21st of October, 2010.13

The LAURE (Law on Air and Rational Use of Energy) of 1996 already compelled urban areas

of more than 250,000 inhabitants to implement an Atmosphere Protection Plan (PPA, for Plan de

Protection de l’Atmosphère), which, among other requirements, has to comprise a precise agenda of

measures taken by local authorities so as to meet air quality standards.14 The 2008 EU Directive

12The Directive 2008/50/EC merged all existing legislation on outdoor air quality, apart from the Fourth Daughter
Directive 2004/107/EC, which regulates the concentration of metals, such as mercury and nickel, in ambient air.

13Said decree is available online at https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=
JORFTEXT000022941254&categorieLien=id.

14In addition to the action plan, the elements that a PPA must contain are: a) an inventory of emissions of
atmospheric pollutants b) an evaluation of air quality c) a description of the sanitary impacts of air pollution d) an
evaluation of the measures taken, in the form of scenarios.
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Figure 11: Evolution of average PM2.5 exposure – Whole PPA sample and selected PPA zones

led the French government to modify the list of pollutants regulated within the PPA framework:

fine particulate matter (PM2.5), which was not included, became so. Hence, although measures

that aimed at decreasing concentration in other air pollutants like PM10 which were implemented

beforehand likely already helped mitigate PM2.5 concentration, the date of implementation of post-

2010 PPAs may constitute a shock in the concentration of fine particulate matter.

Since the 2010 decree, Atmosphere Protection Plans may be implemented if at least one of these

conditions is fulfilled: a) the zone comprises an urban area of more than 250,000 inhabitants, b)

limit or target concentrations of at least one pollutant are exceeded within the zone c) there is a

risk that limit or target concentrations will be exceeded within the zone. To this day, 5,883 French

municipalities belong to a zone covered by a Plan de Protection de l’Atmosphère. Using IRIS-level

data, this represents 13,553 observations each year, but sample restrictions described in Section

4.2.2 drive the yearly number of observations down to 12,853. However, the selected areas represent

27.7 million inhabitants in 2016, i.e., 43% of the metropolitan French population. By construction,

as shown in Figure 11, urban areas that implemented PPAs are more exposed to fine particulate

matter than the national average. Notwithstanding, similarly to the average national reduction of

33% in PM2.5 exposure between 2009 and 2016, average exposure decreased by 31% on average in

all PPA zones, as well as in selected areas, although the latter are on average very slightly more

exposed to PM2.5 than the whole sample (see Figure 11). Figure 12 gives a sense of the spatial

extent of these policies. Some extend up to entire administrative regions, like Île-de-France, or

former Haute-Normandie and Nord-Pas-de-Calais.
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Figure 12: Zones covered by a Plan de Protection de l’Atmosphère

In order to comply with the law, urban areas are required to evaluate their Atmosphere Protec-

tion Plan every 5 years, and to revise it if need be. The time needed to evaluate the existing plan,

to prepare new measures in conjunction with stakeholders, and to adopt the revised PPA sometimes

implies that a longer time period elapses between the adoption of a scheme and its revision. In the

dataset, the revised plans were passed 7.3 years after the former one was adopted, on average. By

construction, this excludes urban areas that were not covered by a PPA before the beginning of the

study period, displayed in italics in Figure 12 and Appendix Table 10.

4.2 Methodological framework

4.2.1 Event-study design

Given that the years of implementation of the revised Plans de Protection de l’Atmosphère vary, I

evaluate the impact of the policy change described above on IRIS-level exposure to fine particulate

matter within an event-study framework. Prior to investigating potential unequal benefits from new

PPA adoption, the baseline equation (2) focuses on the evolution of exposure to PM2.5 in the years

to and from the event.

30



ln(PMizct) = α+

4∑
j=−5

µj 1{t = j}+X ′ictη + γc + λz + εizct (2)

ln(PMizct) is the natural logarithm of particulate matter exposure for census block i, located in

PPA zone z, during calendar year c, and year relative to PPA implementation t. Coefficients µj

are the coefficients of interest of this baseline equation, and capture the change in exposure prior

to and after the event.

The matrix X ′ict contains a series of census block characteristics, listed in Table 6 in Appendix,

as well as census block initial pollution level, since the pollution path of an IRIS likely is dependent

on prior levels. Initial pollution level is defined as PM2.5 concentration in 2009, the year prior

to the signing of the decree that enacted the change in policy. It is defined based on a calendar

year (c = 2009) and not based on a relative year t. At first sight, it would be sensible to assume

that pollution levels follow a (partly) auto-regressive process. Hence, looking at the case where

initial pollution level would be defined as that of t = −2, I focus on the Bouches-du-Rhône and

Montpellier PPA zones, which are geographically close to each other. They adopted their new plans

in 2013 and 2014, respectively, meaning that their initial pollution level would be set as being that

of 2011 and 2012. But if there was a common year-specific shock to pollution levels (due to similar

meteorological conditions, or a generalised lockdown, for instance) in 2012 that would affect both

zones, then, one would not be controlling for comparable initial PM2.5 concentrations. Therefore,

in order to avoid this, initial PM2.5 concentration is defined as that of 2009.

Regressions also include calendar-year and time-varying PPA-zone fixed effects. Calendar year

fixed effects allow to non-parametrically control for time trends, while year-PPA zone fixed effects

allow to take into account potential unobserved heterogeneity in the measures enacted across zones.

Given that variables are at the IRIS level, as opposed to the individual level, all regressions are

weighted using analytic weights that correspond to the population in each IRIS. Standard errors

are clustered at the PPA zone level to account for within-zone autocorrelation.

I first incorporate income in the study by assessing the relationship between the median income

of a neighbourhood and the degree to which it benefitted from the implementation of a revised PPA

without discretising the variable. A significant effect of income would provide inceptive evidence of

the fact that it is a modification factor of the impact of the adoption of a revised PPA on PM2.5

exposure. Denoting inci the median income of an IRIS i, I estimate:
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ln(PMizct) = α+

4∑
j=−5

1{t = j}(µj + βj ln(inci)) +X ′ictη + γc + λz + εizct (3)

Then, I evaluate the potential differentiated impact of the implementation of revised PPAs

between the different groups of income by replacing the (logarithm of) neighbourhood median

income by a dummy 1{ADVi}. The discrete equivalent of equation (3) writes as follows:

ln(PMizct) = α+
4∑

j=−5
1{t = j} (µj + βj 1{ADVi}) +X ′icη + γc + λz + εizct (4)

In the main specifications, 1{ADVi} is a dummy equal to one when census block i is considered as

advantaged at the beginning of the period, and 0 otherwise. This dummy can take two different

forms: it can refer to the initial location in the national distribution of income or to the initial

location in the PPA zone distribution of income. Specifically, 1{ADVi} takes the value 1 when the

census block was located in the top 50% of the national (/PPA-zone) distribution of census block

median incomes at the beginning of the study period, and 0 when it belonged to the bottom 50%.

I also provide estimations that define ADVi as a 4-category variable representing the 4 quartiles of

the national or PPA-zone income distribution, taking the first quartile as a reference. Coefficients

βj , which are associated with the interaction term between belonging to an initially advantaged

group and the year relative to PPA implementation, are the coefficients of interest.

4.2.2 Assumptions and sample selection

In an event-study design, the following assumptions need to be fulfilled. First, the outcome should

not have diverged in t ≥ 0 absent the event. In other words, as long as there are no systematic

changes between neighbourhoods nor PPA zones over time, except for the treatment, the coefficient

of interest can be interpreted as causal. This could arise from different patterns of in- and out-

migration, for instance if certain neighbourhoods become increasingly attractive to a certain type

of population relative to others, since I do not observe individual movements. Note that focusing

on initial median income instead of a varying version of the variable (e.g., ln(incict)) allows to

circumvent part of this potential bias: if income would vary across (relative) years, it could be due

to these mobility patterns. In addition, I use a rich set of controls for IRIS characteristics in Xict, as

well as a control for time-varying PPA zone fixed effects, which account for remaining heterogeneity

between urban areas.
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Second, the outcome in the reference category of the relative time variable should be unaffected

by the event. The chosen reference category is thus t = −1, for both relative year fixed effects (µt)

and relative year interacted with the income dummy (βt). Indeed, some schemes were adopted early

in t = 0, meaning that the event may have an effect at t = 0, the first, even though non-full, year

of implementation. Hence, µj coefficients measure the impact of the revised plan relative to the

year just before the adoption of the plan. However, there exists another threat to identification. 12

urban areas were not yet covered by an Atmosphere Protection Plan prior to the 2010 decree, but

adopted a plan for the first time during the study period. They did so on the basis of the fact that

they showed an exceedance of air quality standards for at least one of the regulated pollutants. All

these exceedances do not necessarily involve fine particulate matter. However, PM2.5 are emitted

through various sources that also diffuse other regulated pollutants. For instance, traffic is a source

of both PM2.5 and nitrogen dioxide (NO2). Hence, the positive correlation of the concentration in

other pollutants with that in PM2.5 implies that including zones that adopted a PPA on the sole

basis of them exceeding air quality standards is a threat to identification, since the timing of the

event would be correlated with the outcome variable. I thus exclude urban areas that were not yet

covered by an Atmosphere Protection Plan prior to 2010 from the analysis. By doing so, the second

assumption of the event-study design, which states that PM2.5 concentration in t = −1 should not

be affected by the adoption of a PPA in t = 0, is likely to hold.

Remaining sample and timeframe restrictions are the following. First, given that in order to

comply with the law, urban areas are required to revise their Atmosphere Protection Plan every 5

years, I reduce the number of relative years prior to the new PPA implementation to 5. I study the

4 years that follow the adoption of the new plan due to data restrictions: the study period extends

to 2016, but new PPAs were adopted only starting in 2012. Most of the plans were revised in 2013

and 2014; for instance, the new scheme for Île-de-France was adopted in 2013. PPAs adopted in

2016 were dropped from the analysis. This implies that I do not study the impact of the measure

for the Toulouse urban area.15 A summary of adoption dates and of the number of observations per

urban area, which distinguishes between those that revised their plan and those that did not have

one prior to 2010, is made available in Table 10 in Appendix. The ensuing number of observations

per relative year t is available in Table 11 in Appendix.

15The Creil and Nîmes urban areas also adopted their plan in 2016, but they were already discarded from the
analysis due to the fact that they did not have any PPA before the 2010 decree passed.
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4.2.3 Quantile regression

The pollution-reduction profiles computed in Section 3.4 hint at the fact that the decrease in PM2.5

concentration that occurred between 2011 and 2016 was not uniform over the whole pollution

distribution, and that this change was progressive, in the sense that higher (absolute) gains in

air quality accrued to initially most exposed individuals. Although these computations do not

comprise only studied PPA zones, the latter represent 43% of the 2016 population. As such, it is

worth examining how the adoption of new Atmosphere Protection Plans affected different quantiles

of the distribution of fine particulate matter exposure. This will allow to understand whether the

adoption of new PPAs contributed to the observed difference in air quality improvements across the

pollution distribution.

Moreover, the comparison between the cumulative distribution functions of PM2.5 exposure be-

fore and after the event, depicted in Figure 20 in Appendix, is an indication that there may be some

heterogeneity in the change in exposure resulting from PPA adoption, depending on the census

block’s location in the PM2.5 distribution. Indeed, had the effects been unconditionally homoge-

neous, the cumulative distribution of pollution at t = 1 would have been a perfect translation of the

cumulative distribution at t = −1, which is not the case. Hence, in addition to the question being

worth investigating in itself, the data calls for a quantile regression approach.

One of the main advantages of quantile regression is that it relies on weaker assumptions than

standard OLS does, as error terms need not be identically distributed. Nonetheless, they are still

assumed to be independent from one another. Hence, PPA zone fixed effects are, for now, assumed

to drain all the autocorrelation out of the model. There is an additional requirement that could

potentially not be fulfilled when applying quantile regression techniques to this study’s data. Indeed,

the dependent variable should be very continuous, as quantile regression performs less well when

there are many ties at some values of Y . For instance, this may happen if two IRIS are located

within one single raster grid of 1 km2, thus taking the same value of PM2.5 concentration. For

instance, in Paris and its inner suburbs, the average surface area of an IRIS is .3 km2, which indeed

creates ties at some values of the dependent variable, but this issue remains marginal.

Defining the τ -th conditional quantile function QY |X(τ) = X ′βτ , the coefficient of interest βτ

must be interpreted as the average marginal effect of X on the conditional quantile of Y . As

census blocks likely have a different position in the pollution distribution depending on the value
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of X, βτ cannot generally be interpreted as the effect of a small variation in X for census blocks

at the τ -th quantile of Y |X. However, if census blocks have the same ranking in the distribution

of Y (x) whatever x, that is, if the rank invariance assumption holds, then the latter interpretation

is valid. This is likely not to hold unconditionally on urban area, since census blocks that have

similar socioeconomic characteristics may be located in either the very polluted North of France,

or in the less polluted South-West. This assumption would thus theoretically be more likely to

hold thanks to the use of PPA-zone fixed effects. Nonetheless, there likely is some heterogeneity

in the patterns relating income to PM2.5 exposure within PPA zones as well. As such, the rank

similarity condition does not hold conditionally on socioeconomic characteristics, but likely does

conditionally on socioeconomic characteristics, PPA-zone fixed effects, and neighbourhood-level

initial pollution level. Nevertheless, formally testing for rank similarity in an event-study design is

not straightforward. Indeed, existing methods proposed by, e.g., Frandsen and Lefgren (2018) or

Dong and Shen (2018) are applicable to a program evaluation framework, but cannot be adapted to

an event study without a control group. As such, I cannot and do not formally test this assumption.

4.3 Results

4.3.1 Indirect assumption tests

Prior to interpreting the results, I look at whether the assumptions formulated in Section 4.2.2

and 4.2.3 are likely to hold. Indeed, although they are untestable by construction, the event-study

design provides an indirect test of these assumptions, by focusing on coefficients µt for t < 0. Them

being statistically significant would imply that exposure to PM2.5 in PPA zones was not stable

during the years leading up to the adoption of a new PPA. This would imply that the timing of

the event would likely be endogenous, even conditionally on the control variables, which would

hamper identification. This test is also necessary for βt coefficients for t < 0. Indeed, if initially

richer neighbourhoods were to trend differently from initially disadvantaged neighbourhoods prior

to the event, I would not be able to infer a causal impact. This test is presented for both baseline

event-study coefficients µj and income-related βj in Table 12 in Appendix. It should be remembered

that the reference category is t = −1, hence the absence of an associated coefficient in Table 12.

The check can also be performed based on a visual inspection of the pre-trends in Figures 13 and

14. None of the pre-trend µj coefficients are statistically different from zero, which supports the

validity of the baseline event-study design. This also holds for βj coefficients, apart from βt=−5,
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Figure 13: Effect of PPA adoption on average exposure

Note: Estimates of coefficients µj in equation (2). The shaded area corresponds to the 95% confidence interval.

which is statistically significantly positive at the 10% level. Given that this coefficient accounts for

a differential trend 5 years prior to the event, this does not seem alarming.

4.3.2 Baseline results

I start by examining the effect of the adoption of revised PPAs on average exposure to fine particulate

matter. Figure 13 shows the estimates of the event-study coefficients µj in equation (2), and Table

3 presents the detailed coefficients, with all coefficients multiplied by 100 for the sake of readability.

The implementation of a new Atmosphere Protection Plan does not have any significant effect on

exposure during the year it is implemented, nor the following one. Everything else equal, two years

after the adoption of a new PPA, PM2.5 concentration decreased by (e−.0378−1 =) 3.71% on average

relative to the year before the signing, an effect significant at the 10% level. This effect is stable

through the third year following the event, with an average decrease of (e−.352 − 1 =) 3.46%, also

significant at the 10% level, and is similar when controlling for initial (log) income. Average exposure

throughout metropolitan France decreased by 33% between 2009 and 2016, and by 31% on average

in the urban areas I study here. Hence, the identified effects remain significantly smaller than the

average observed decrease in PM2.5 exposure, suggesting that even if a different year of reference

is used for every different year of implementation, the adoption of revised Plans de Protection de

l’Atmosphère did not drive much of the improvement in air quality.
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Finally, relative year t = 4 is associated with a much greater decrease in exposure (-13%), but

this effect only concerns the Bordeaux PPA zone, since it is the only studied urban area that adopted

its plan in 2012, thus allowing to observe the outcome variable 4 years as of the event. This brings

to light a weakness of this study, namely the lack of post-event years. Indeed, the ACAG has not

yet disseminated PM2.5 data for years after 2016, which restricts the study period, and thus, the

number of exploitable relative-year timepoints.

I start by looking at the results associated with equation (3), shown in Column (1) of Table 3.

Note that again, in Table 3, all coefficients and standard errors were multiplied by 100 for the sake

of readability of coefficients in Columns (2) and (3). Similarly to the estimates of coefficient µt=1,

the first post-event estimate β̂t=1 is not statistically different from zero, suggesting an absence of

differential effect between initially advantaged and initially disadvantaged neighbourhoods in the

first year after the adoption of the new scheme. Starting two years after, it appears that income

indeed alters the impact of the event on exposure. For instance, on average at t = 2, in addition to

the 3.7% average decrease in exposure, an additional 10% in initial (t = −1) income allows to benefit

from a .37% lower exposure on average. However, at t = 3, this negative effect is a bit smaller.

Taken together with the fact that the absolute value of µ̂t=3 is greater than that of µ̂t=2, though not

significantly, this alludes that, three years after the event, after accruing chiefly to higher income

areas, air quality improvements may start benefitting more deprived areas as well. This cannot be

attributed to mobility between neighbourhoods, which could induce variations in income, since this

value is fixed. Again, observing later timepoints would prove handy to verify this finding.

Figure 14: Relative effect of PPA adoption on exposure of initially higher income areas (βj)

(a) National distribution (b) PPA zone distribution

Note: Estimates of coefficients βj in equation (4). The shaded area corresponds to the 95% confidence interval.
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The results for the estimation of equation (4) taking 1{ADVi} as reflecting initial location in

the national distribution of income are displayed in Column (3) of Table 3 and in Figure 14a.

Again, there is no significant difference in exposure between initially advantaged and disadvantaged

census blocks at t = 1. However, starting from the second year after the event, it appears that

neighbourhoods that were located in the top 50% of the national distribution of income prior to

the event benefitted more from the implementation of a new air quality scheme than those that

were located in the bottom 50%. For instance, 2 years after the implementation of a new PPA,

living in an initially advantaged census block in terms of income implies that one’s exposure would

be 2.2% lower than if she lived in an initially disadvantaged census block, ceteris paribus. Hence,

it appears that neighbourhoods that were initially more advantaged in terms of income obtained

larger benefits from the measures taken so as to reduce PM2.5 exposure. One could argue that this

result may be driven by the fact that there are initial differences between PPA zones, because some

of them may comprise more initially disadvantaged neighbourhoods than others, and because the

implementation of a revised air quality plan may be more or less effective depending on PPA zones,

but this confounding effect should be taken into account by the year-PPA zone fixed effect. As

the effect is smaller at t = 3, one may reiterate the hypothesis that this differential impact may

dissipate with time. Moreover, it appears that, as I control for the indicator 1{ADVi}, the overall

impact on exposure, captured by the estimates in the upper part of the table, becomes smaller in

magnitude and insignificant. Hence, it seems that only neighbourhoods located within the top 50%

of the national income distribution significantly benefitted from the adoption of a revised PPA.

Next, I reshape the variable 1{ADVi} and define it based on the neighbourhood’s location in

the distribution of income of its PPA zone. The corresponding results are provided in Column

(3) of Table 3 and Figure 14b. The estimates of βj are qualitatively similar to those obtained

using other definitions of income, in the sense that there is a differential effect only 2 years after

the event, which only seems to benefit neighbourhoods located above the median of the income

distribution. In other words, one recovers “national” trends even within urban areas. However, the

estimates are smaller in magnitude: at t = 2, on average, an initially advantaged neighbourhood has

a PM2.5 exposure that is .9% lower than an initially disadvantaged neighbourhood, ceteris paribus.

Contrarily to the results of previous specifications, this effect does not seem to be attenuated at

t = 3. This differential effect in favour of higher-income neighbourhoods could be attributed to the

fact that census blocks located in historical centres of cities or urban areas, which may be wealthier
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Table 3: Event study results – Change in exposure relative to t = −1

Variable (1) (2) (3) (4)
Baseline Continuous 50/50 national 50/50 PPA zone

t = 0 -.026 -15.260 -.009 .204
(2.851) (9.116) (2.766) (2.861)

t = 1 -2.262 -9.116 -2.671 -2.149
(3.086) (12.669) (3.457) (3.305)

t = 2 -3.781∗ -3.681∗∗∗ -2.574 -3.340
(2.015) (1.220) (2.266) (2.167)

t = 3 -3.523∗ -3.804∗∗∗ -2.368 -3.012
(1.831) (.787) (1.960) (1.960)

t = 4 -13.828∗∗∗ -53.110∗∗∗ -10.648∗∗∗ -.881
(2.376) (4.945) (2.427) (.679)

(t = 0)× income var. .169 -.116 -.465
(.167) (.936) (.371)

(t = 1)× income var. .067 -.519 -.234
(.106) (1.020) (.543)

(t = 2)× income var. -.374∗∗∗ -2.189∗∗ -1.043∗∗∗

(.108) (.816) (.218)

(t = 3)× income var. -.264∗∗∗ -1.718∗∗ -.899∗

(.063) (.649) (.428)

(t = 4)× income var. -.517∗∗∗ -4.333∗∗∗ -2.847∗∗∗

(.038) (.362) (.190)

Intercept 30.783∗∗∗ 21.489∗∗∗ 29.754∗∗∗ 29.836∗∗∗

(4.562) (7.275) (4.516) (4.223)

Initial pollution X X X X
Neigh. charac. X X X X
PPA zone FE X X X X
Year FE X X X X

# Obs. 102,704 102,704 102,704 102,704
# Groups 12,853 12,853 12,853 12,853
# Clusters 20 20 20 20
R2 0.92 0.93 0.93 0.93

Coefficients multiplied by 100 for the sake of readability. Standard errors clustered at the PPA zone level in paren-
theses. ∗: 10% level, ∗∗: 5% level, ∗∗∗: 1% level. Column (1) gives the results of equation (2), Column (2) the results
of equation (3), and Column (3) and (4) the results of equation (4).
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on average, were targeted by public authorities to be cleaned up. It may be worth obtaining more

information on the exact measures undertaken by urban areas in the context of these revised air

quality schemes in order to further analyse the reasons behind this difference.

Again, the results obtained for t = 4 are to be taken with caution, since they only regard the

Bordeaux PPA area, but they are so specific they are worth analysing. As one can easily see in

the graphical representation of Figure 14, the confidence interval for this specific timepoint is very

small, which brings more confidence to the result. It appears that in this area, when I control for

location in the national distribution of income, the overall effect at t = 4 is significant (-10%), with a

greater reduction accruing to higher-income IRIS (additional -4% compared the lower-income IRIS).

But on the other hand, the pattern is very different when controlling for location within the PPA

zone income distribution: four years after the implementation, in the Bordeaux area, the estimates

suggest that the effect of the PPA adoption is solely received by neighbourhoods located above the

zone’s median income (-3% on average, ceteris paribus).

In order to provide a more precise picture of the differential effects from the change in policy,

I look at what takes place within the two halves of the distribution of PPA-zone income. Given

that certain areas under study only comprise about 100 observations (see Appendix Table 10), I

proceed to use quartile-based bins. As shown in Figure 21 in Appendix, similarly to the upper

panel of Column (4) in Table 3, there is no significant impact of the event on average exposure at

t ≥ 0, abstracting from t = 4, when using this definition as a control for income. Selected results are

presented in Table 4, using the neighbourhoods located in the first 25% of the PPA-zone distribution

of income as a reference. Hence, there is no significant fall in PM2.5 for neighbourhoods located below

the 1st income quartile. At t = 0 and t = 1, the estimates associated with the 2nd and 3rd quarter

of income are statistically significantly different from zero, while those of the upper quarter are

not. This suggests that only the middle 50% of the PPA-zone neighbourhood income distribution

received any improvement in air quality during the first 2 years of implementation, which likely

explains the insignificance of the corresponding estimates when using the former 50/50 splitting

definition. After 2 years, the relative impact of the event gets larger for the second quarter, but is

still insignificant for the top quarter, and after 3 years, all income groups seem to have benefitted,

to different extents, from the adoption of a revised air quality plan, apart from the bottom 25% of

income. Indeed, 3 years after the event, all other things held equal, the bottom quarter does not

benefit from any reduction, the second quarter a 1.2% one, the third quarter a 1.3% one, and the
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Table 4: Change in exposure relative to t = −1 and PPA-zone 1st quartile of income

Variable (1) (2) (3)
2nd quarter 3rd quarter 4th quarter

(t = 0)× income group -.009∗ -.006∗ -.007
(.005) (.004) (.009)

(t = 1)× income group -.008∗∗ -.011∗ -.005
(.004) (.006) (.009)

(t = 2)× income group -.012∗∗ -.013∗∗ -.009
(.005) (.005) (.007)

(t = 3)× income group -.011∗∗∗ -.016∗∗∗ -.011∗

(.039) (.036) (.064)

(t = 4)× income group -.037∗∗∗ -.040∗∗∗ -.054∗∗∗

(.002) (.002) (.003)

Standard errors clustered at the PPA zone level displayed in parentheses. ∗: 10% level, ∗∗: 5% level, ∗∗∗: 1% level.
Results based on the formulation of equation (4) defining ADVi as a 4-category variable.

top quarter a 1.1% one. This is consistent with the previous finding that the top 50% of PPA-zone

income did receive a 1% decrease in PM2.5 exposure at t = 3. However, it is not shared equally

within this group, nor is it within the bottom 50%. All in all, the PM2.5 concentration improvements

arising from the adoption of revised PPAs seem to follow a similar trend as the nationwide evolution

depicted by the horizontal-equity pollution-reduction profiles of Section 3.4.2: larger benefits seem

to accrue to the middle of the income distribution while the two ends obtain little to no benefit.

Given that, on average, the middle of the income distribution is also initially less polluted, results

would suggest that the PPA policy reinforced preexisting inequality in exposure to PM2.5. One

must recall that the magnitude of the effects is small compared to the overall decrease in exposure

experienced during the study period, meaning that the scope of this regressive impact was limited.

4.3.3 Quantile regression results

I also explore how the adoption of revised Plans de Protection de l’Atmosphère affects different

quantiles of the distribution of fine particulate matter. Figure 15 depicts the effect three years after

the event, by vigintile of initial exposure, while Appendix Figure 22 presents the equivalent for

t = 2. Under the assumption that, conditionally on socioeconomic characteristics, PPA-zone fixed

effects and neighbourhood-level initial pollution level, the rank invariance condition holds, one can
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Figure 15: Quantile event-study effects – Focus on t = 3

interpret the coefficients as follows: everything else equal, PPA adoption leads to a decline of 10%

in exposure on average, for neighbourhoods located at the first to third vigintile of exposure. Given

that this assumption is not formally tested for, however, it may be argued that these effects should

be interpreted as marginal effects on the conditional quantile of exposure, instead of neighbourhoods

located at this quantile. In any case, there is a significant benefit from the adoption of a revised

PPA only up to the 4th decile of initial exposure. From the latter to the 7th decile, the effect is also

negative, but not significantly. And finally, there might even be an economically positive effect of

the policy change at the upper vigintiles, although it is not statistically significantly different from

zero. The confidence intervals are substantially larger on the right-hand side of the graph than on

the left-hand side, suggesting that there is greater heterogeneity in the effects of PPA implementa-

tion at higher quantiles of exposure.

Finally, the degree to which income alters the effect of the new policy may vary depending

on the initial level of exposure. For instance, one could hypothesise that in a large PPA zone,

conditionally on wanting to target poorer neighbourhoods, policy-makers may be more likely to

specifically target more polluted areas than less polluted ones. I thus investigate the benefits for

neighbourhoods whose median income lay either at the bottom or the top 50% of the national

and PPA-zone income distributions at different quantiles of initial pollution level. Note that unlike

previously, the splitting based on the position in the PPA-zone income distribution may arguably

not be as informative, because the support of the distribution of PM2.5 within PPA zones may be
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narrower than that of the entire sample, especially those of limited spatial extent, e.g., these of

Orléans or Clermont-Ferrand.

Figure 16 presents the quantile regression results three years after the event, distinguishing be-

tween neighbourhoods that are initially located above vs below the median of the national (Figure

16a) and PPA-zone (Figure 16b) income distribution. The equivalent for t = 2 is shown in Figure

23 in Appendix. It appears that at the lower quantiles of the pollution distribution, neighbourhoods

that were initially below the median income benefitted from substantially lower air quality improve-

ments than their top 50% counterparts. This difference is reversed and very small when looking at

the estimates within the PPA-zone income distribution. At upper quantiles of the pollution distri-

bution, the results are coherent with those of Figure 15, in two respects. First, the effects are not

statistically different from zero, again hinting at heterogeneity, this time even within income groups.

Second, abstracting from significance, the estimates suggest that while census blocks located at the

top 50% of the PPA-zone distribution received a reduction in exposure, though to a lower extent

than those at lower quantiles of exposure, those at the bottom saw theirs slightly rise. For the

sake of visual clarity, the confidence intervals are omitted, but either way, at any vigintile, they

overlap, meaning that I cannot reject the null hypothesis that there is no income-related differ-

ence in benefits from the adoption of PPAs. This might be due to a lack of power arising from the

fact that the specification may be too demanding compared to the number of available observations.

Figure 16: Quantile event-study effects – Focus on t = 3, based on initial income

(a) National distribution (b) PPA-zone distribution

Note: Confidence intervals were omitted for the sake of visual clarity. Estimates are not statistically significant above
the 4th decile, and are not significantly different from each other within the same vigintile when I distinguish between
income groups.
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4.4 Robustness to spatial autocorrelation

Clustering standard errors at the PPA zone level strips the effect of autocorrelation within PPA

zones away, but, as in Section 3.2, this likely is not enough for the model errors to be independently

distributed. Indeed, the same argument as in Section 3.3 holds: clustering errors at the PPA zone

level amounts to assume that there are discrete shifts in the distribution of residuals at the cluster

zone boundary, while they are probably continuously distributed across space. In other words, PPA

zones that are contiguous, such as those of Bouches-de-Rhône, Avignon and Toulon, which are likely

to exhibit correlated pollution levels, are not considered as neighbouring in the models of the previous

section, due to the fact that clusters are not defined continuously, but based on administrative

divisions. The argument of continuousness also pertains with regard to non-neighbouring PPA

zones. For instance, since fine particulate matter can travel long distances, especially when it is

carried by speedy winds, the effectiveness of the measures implemented within the PPA framework

in Grenoble might influence pollution levels in Bouches-du-Rhône. Moreover, computing Moran’s

I test-statistic16 confirmed that there is remaining positive spatial autocorrelation in the residuals,

meaning that high (resp., low) values of residuals are located close to high (resp., low) values

of residuals in the 2 areas that encompass the PPA zones of Avignon, Bouches-du-Rhône and

Toulon, and those of Haute-Normandie and Île-de-France.17 Test results are provided in Appendix

Table 13. This is coherent with the fact that fine particulate matter is itself positively spatially

autocorrelated. Regarding the modelling approach, the same reasoning as in Section 3.3 applies:

spatial lag models involve making arbitrary and potentially consequential parametric choices on the

form of spatial autocorrelation, and modelling it in a smoother fashion seems relevant. Hence, I

opt for a Generalised Additive Model, meaning that I add a smoothing spline of longitude xi and

latitude yi of the centroid of IRIS i as a potential predictor of (log) PM2.5 concentration. Equation

(4) thus rewrites:

ln(PMizct) = α+

4∑
j=−5

1{t = j} (µj + βj 1{ADVi}) +X ′icη + γc + λz + s(xi, yi) + εizct (5)

16Specifically, Moran’s I (1950) test-statistic ranges from -1 (indicating perfect negative autocorrelation) to 1
(indicating perfect positive correlation. A value of 0 means that there is no autocorrelation across residual values of
the estimated model.

17In order to conduct the test, I use a spatial weight matrix built using inverse-distance weighting. Missing values
are automatically created since only certain parts of the French country are studied. To my knowledge, the only way
to handle missing values in this context is to interpolate values over neighbours. However, given the spatial scale of
missing observations in this context (see Figure 12), this approach is not adapted. Hence, I only run the tests on 2
sets of contiguous PPA zones, and separately for each aggregate.
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I keep PPA-zone fixed effects so as to account for potential heterogeneity in the measures imple-

mented as part of each specific Plan de Protection de l’Atmosphère. 1{ADVi} is equal to 1 when the

census block belongs to the top 50% of the national or PPA-zone income distribution. The model is

estimated in the same fashion as in Section 3.3, using generalised cross-validation to automatically

select the degree of smoothness of the spline.

Table 5 presents the corresponding results, with coefficients multiplied by 100 for ease of reading.

The results are rather different from those obtained in the previous subsection, in which I concluded

that only the top 50% of the national or PPA-zone distributions of income perceived air quality

improvements from the adoption of revised PPAs. Indeed, once I allow for spatial autocorrelation,

the average effect µj is not only significantly negative, but it is so as soon as one year after the event.

Moreover, the magnitude of the coefficient is non-negligible, which comes to slightly contradict

the previous conclusion that the revision of PPAs played a minor role in the decrease in PM2.5

concentration. Indeed, according to these results, 2 years (resp., 3 years) after the revision of a

PPA, there was an average decrease of 6% to 7% (resp., 5%) in exposure, ceteris paribus. This fall

was even greater in the Bordeaux area (-15% on average). Turning to estimates of βj , however,

the results are similar to those of the lower panel of Table 3, be it in terms of significance or in

terms of magnitude. They imply that, regardless of whether one looks at the income distribution at

the national level or within PPA zones, initially advantaged neighbourhoods perceived additional

gains from this policy change of around 2%, i.e., 25% to 40% higher benefits than the initially

disadvantaged neighbourhoods. The discrepancy observed for µj is thus absent for βj . This may

stem from reasons akin to those of Section 3.3. The PM2.5 concentration of a census block influences,

and is influenced by, that of nearby census blocks. Therefore, by assuming that observations are

randomly distributed across space, one may fail to detect variations that are statistically significant

at higher aggregation levels than the high-resolution IRIS. In other words, allowing for spatial

autocorrelation rightly “clusters” census blocks that have comparable outcomes, and allows not to

underestimate the impact encapsulated by µj . However, the results for βj are similar to previous

ones. This can at least partly be attributed to residential segregation patterns: neighbourhoods

whose income is located above the median are very likely to be located close to each other, while

those whose income is located below the median are very likely to be located further away, but close

to each other as well. Hence, in the baseline equation (4), the dummy variable 1{ADVi} in itself

already captured part of the spatial autocorrelation.

45



Table 5: Event study results – Generalised additive models

Variable (1) (2) (3)
Baseline 50/50 national 50/50 PPA zone

t = 0 -3.191 -3.943 -3.451
(3.682) (2.847) (2.850)

t = 1 -7.311∗∗∗ -7.261∗∗ -7.189∗∗

(1.944) (2.174) (2.057)

t = 2 -6.637∗∗∗ -6.074∗∗∗ -6.182∗∗∗

(1.789) (1.934) (1.890)

t = 3 -5.921∗∗∗ -5.970∗∗∗ -5.812∗∗∗

(1.660) (1.813) (1.763)

t = 4 -17.614∗∗∗ -14.441∗∗∗ -16.199∗∗∗

(4.956) (.627) (.553)

(t = 0)× income var. .120 -.059
(.128) (.120)

(t = 1)× income var. -.276∗∗ -.258∗∗

(.128) (.123)

(t = 2)× income var. -2.680∗∗∗ -1.087∗∗∗

(.131) (.126)

(t = 3)× income var. -1.797∗∗∗ -.848∗∗∗

(.148) (.140)

(t = 4)× income var. -4.468∗∗∗ -3.043∗∗∗

(.539) (.476)

Intercept -9.384∗∗∗ -8.798∗∗ -7.998∗∗

(3.552) (.892) (.897)

Initial pollution X X X
Neigh. charac. X X X
PPA zone FE X X X
Year FE X X X

p-value s(xi, yi) <2 × 10−16 <2 × 10−16 <2 × 10−16

# Obs. 102,704 102,704 102,704
# Groups 12,853 12,853 12,853
R2 0.96 0.97 0.97

Coefficients and standard errors multiplied by 100 for the sake of readability. Standard errors displayed in parentheses.
∗: 10% level, ∗∗: 5% level, ∗∗∗: 1% level. Column (1) gives the results of equation (2), and Column (2) and (3) the
results of the two forms of equation (4).

46



5 Conclusion and discussion

Throughout this study, the matching of IRIS-level information on income and other neighbour-

hood characteristics with high-resolution satellite-based data on ground-level fine particulate mat-

ter (PM2.5) concentration allowed to draw a picture of current national-scale patterns of inequality

in exposure to this harmful pollutant. According to population-weighted estimates, average PM2.5

exposure in metropolitan France amounts to 9.54 µg/m3 in 2016, which is lower than the WHO

guideline. Nonetheless, this average masks pronounced heterogeneity, both across space and across

income groups. While no clear trend seems to emerge across départements, descriptive evidence

suggests that, at the national level, the unconditional relationship between PM2.5 exposure and

neighbourhood-level income decile follows a U-shape. Indeed, in 2016, only those located at the

lower and upper tail of the distribution of income are exposed to average concentrations that are

above the WHO standard of 10 µg/m3. Specifically, 60% of neighbourhoods of the bottom 10%

of income are exposed to PM2.5 levels that exceed the WHO standard, while, conversely, 80% of

the neighbourhoods of the next 10% comply with this standard. Turning to the top 20% of the

distribution, the highest levels of exposure are also experienced by neighbourhoods whose income

lays above the 9th decile of income. These patterns are coherent with the fact that despite different

levels of residential segregation (Quillian and Lagrange, 2016), statistically more polluted city cen-

tres and inner suburbs usually compound both high- and very low-income neighbourhoods, while

less polluted peri-urban areas are increasingly well-off (Aerts et al., 2015; Floch, 2014, 2017).

However, these findings are not reflected within urban areas, as, on average, exposure appears

to decrease as a neighbourhood gets higher up the distribution of income. Fixed-effect models then

allow to exploit the panel structure of the data to get rid of the confounding impact of unobserved

neighbourhood-level heterogeneity, and confirm that, over the 2006-2016 period in France, higher

neighbourhood income is indeed associated with lower PM2.5 exposure. This result is robust to for-

mally accounting for spatial autocorrelation using a smoothing spline of census block coordinates.

I also find a significantly positive relationship between the share of immigrants and fine particulate

matter concentration, hinting at the fact that there may be an ethnic gap in pollution exposure in

France as well. This positive link is stronger when accounting for spatial autocorrelation, which

not only confirms the need to pay great attention to this issue, but also brings to light one of the

consequences of the racial and ethnic segregation that pertains to large French cities (Préteceille,
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2011; Safi, 2009). These findings echo those of the American literature, which unambiguously shows

that there is a pervasive income and racial gap in exposure to various pollutants (see the reviews of

Banzhaf et al., 2019; Mohai et al., 2009). They can be explained either by selective neighbourhood

sorting (Tiebout, 1956), selective facility siting, or a combination of both. One limitation of this

study is that IRIS-level data does not allow to study relative mobility patterns so as to test the

sorting hypothesis. Indeed, aggregate changes in the number of inhabitants of a census block are

very often uncorrelated with changes in pollution levels, even in the presence of Tiebout sorting, be

it due to general equilibrium effects, stickiness in neighbourhood composition or multiplier effects

(Banzhaf et al., 2019). Depro et al. (2015) show that individual sorting is not even identified from

non-micro data, since one does not observe substitution behaviours. Consequently, further research

relying on individual-level data will provide a better understanding of the mechanisms underlying

the phenomena that this study brought to light.

Throughout the study period, average exposure to fine particulate matter decreased by 33%.

Following Voorheis (2017), pollution-reduction profiles allow to depict that this improvement in air

quality was regressive in terms of vertical equity, meaning that initially less exposed neighbourhoods

benefitted from larger relative gains in air quality than their more exposed counterparts. Moreover,

neighbourhoods located in the middle 80% of the initial distribution of income, i.e., whose median

income ranged from e14,300 to e24,000 in 2006 (in 2016 euros), received higher air quality improve-

ments than the bottom 10% and top 10%, which, as previously shown, are those that are initially

most exposed to pollution. Hence, as deduced from IRIS-level data, although the overall exposure

fell during the study period, inequality in PM2.5 exposure intensified. This calls for follow-up studies

in later years, as well as an adapted policy response in order to halt this trend.

This is of particular importance since it appears that a policy implemented during the study

period contributed to these unequal changes. Indeed, following the 2008 EU Directive for ambi-

ent air quality and cleaner air for Europe, a number of urban areas that concentrate 43% of the

metropolitan French population revised their existing air quality schemes, called Plans de Protection

de l’Atmosphère (PPA). The adjusted plans had to newly include measures aimed at reducing fine

particulate matter exposure, and were adopted between 2012 and 2016. The event-study design

allows me to estimate the causal impact of this new policy change, since necessary assumptions are

very likely to hold, as confirmed by an examination of the trend in exposure in the years leading up
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to the event. Results are particularly subject to residual autocorrelation, since both the significance

and the magnitude of the baseline effect change substantially before and after taking spatial au-

tocorrelation into account. According to preferred specifications, which control for neighbourhood

location as a potential predictor of PM2.5 concentration, the latter dropped by 5% to 7% in the

years following the adoption of revised PPAs, which indicates that the measure played a role in

the overall air quality improvements over the period. Results suggest that, regardless of whether

one looks at the income distribution at the national level or within PPA zones, initially advantaged

neighbourhoods perceived additional gains from this policy change, estimated around 25% to 40%

higher than the average. Quantile regression estimates suggest that only lower quantiles of exposure

benefitted from this decrease, while the effect may have been quite heterogeneous at upper quan-

tiles. Hence, in the same vein as the country-level trends inferred using pollution-reduction profiles,

it appears that the air quality improvements attributable to the revision of Atmosphere Protection

Plans reduced overall exposure, but likely have exacerbated inequality in exposure. Nonetheless, I

must emphasise that in order to verify this hypothesis, it would be worth conducting this analysis

using data on a larger time span. Indeed, while the revision of PPAs occurred between 2012 and

2016, data availability restricts the study period up to 2016. Observing later years would also allow

to examine potential indirect impacts of these policies, e.g., in the form of in-migration to neigh-

bourhoods that were cleaned, which would be in line with the neighbourhood sorting hypothesis.

Finally, it would be worth drawing a clear typology of the measures implemented as part of these

air quality schemes, so as to evaluate their relative effectiveness, and thus provide recommendations

to local governmental bodies.
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Appendix

Figure 17: Exposure to PM2.5 – ACAG and Santé publique France data

(a) ACAG (2008) (b) SPF (2007-2008)

Sources: Atmospheric Composition Analysis Group and Santé publique France (Medina et al., 2016).

Figure 18: Evolution of exposure to PM2.5 – ACAG and SDES data

Sources: Atmospheric Composition Analysis Group and Le Moullec (2018).
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Table 6: List of selected neighbourhood characteristics

Category Variable

Unemployment Share of unemployed in population aged 15-64

Origin Share of immigrants

Education Share of population with at least some higher education

Occupation

Share of population aged 15+ by occupation:

1) Farmers

2) Craftsmen, tradesmen, business managers (excl. licensed professionals)

3) White-collar jobs: executives and other intellectual professions

4) Intermediary: Technicians, foremen, school teachers, nurses, intermediary

public servant occupations, and other intermediary occupations

5) Employees: Lower civil servant positions, policemen, military, intermediary

administrative positions, service workers, and other employees

6) Blue-collar jobs: Industrial and craft workers, agricultural workers,

drivers, and other blue-collar jobs

7) Retired (excluded to avoid multicollinearity)

8) Others without occupation: unemployed who never worked, students

Housing

Share of population that are homeowners

Share of population that live in subsidised housing (HLM)

Share of dwellings without electric heating

Households
Share of population that live in single-parent households

Share of households that do not own a car

Location Indicator variable of urban/rural
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Table 7: Summary statistics of all variables – Whole sample, 2016

Variable Min. 1st quartile Mean Median 3rd quartile Max. Std dev.

PM2.5 4 6.53 8.59 7.97 10.58 15.1 2.64

Median income 2,210 18,218 20,897 20,252 22,819 70,674 5,108

% Unemployed 0 .06 .09 .08 .11 .38 .04

% Immigrants 0 .02 .07 .04 .08 .60 .07

% College-educated 0 .18 .26 .23 .31 .84 .12

% Farmers 0 0 .02 .004 .03 .47 .04

% Crafts-/tradesmen 0 .02 .04 .03 .05 .32 .03

% White-collar 0 .03 .07 .06 .10 .49 .07

% Intermediary 0 .10 .14 .14 .17 .52 .06

% Employees 0 .13 .16 .16 .19 .61 .05

% Blue-collar 0 .09 .14 .14 .18 .55 .07

% Retired 0 .22 .29 .28 .35 .88 .10

% Other inactive 0 .10 .14 .13 .17 .71 .07

% Homeowners 0 .63 .71 .78 .85 1 .20

% Social housing 0 0 .09 .02 .09 1 .17

% Trad. heating 0 .06 .23 .23 .35 .94 .17

% Single-parent 0 .05 .09 .09 .13 .5 .06

% No car 0 .05 .13 .08 .15 .91 .13

Figure 19: Empirical cumulative density of PM2.5 exposure for selected income groups – 2016
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Table 8: Fixed-effect models – Full set of results

Variable Dependent variable: log(PM)

(Log) income
-1.274∗∗∗ -.212∗∗∗ -.182∗∗∗

(.137) (.037) (.030)

% Immigrants
.143∗∗

(.055)

% Unemployed
-.119

(.105)

% College-educated
.141∗∗

(.039)

% No car
.337∗∗∗

(.105)

% No electric heating
-.124∗∗∗

(.042)

% Farmers
.383∗∗∗

(.105)

% Crafts-/tradesmen
.042

(.045)

% White-collar
.258∗∗

(.105)

% Intermediary prof.
-.003

(.019)

% Employees
.048∗∗

(.024)

% Blue-collar
.069

(.053)

% Inactive excl. retired
.113∗∗

(.052)

% Single-parent
.014

(.009)

% Social housing
.051

(.053)

% Homeowners
.076

(.051)

Intercept
15.062∗∗∗ 4.542∗∗∗ 4.061∗∗∗

(1.357) (.368) (.344)

Year fixed effects X X

R2 within 0.11 0.78 0.74

R2 between 0.02 0.01 0.22

R2 overall 0.01 0.18 0.34

Observations 453,386 453,386 411,458

Groups 42,832 42,832 42,790

Standard errors clustered at the employment-zone level in parentheses. ∗: 10% level, ∗∗: 5% level, ∗∗∗: 1% level.
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Table 9: Fixed-effect generalised additive models – Full set of results

Variable Dependent variable: log(PM)

(Log) income
-.860∗∗∗ -.191∗∗∗ -.160∗∗∗

(.122) (.031) (.026)

% Immigrants
.132∗∗

(.051)

% Unemployed
-.090

(.116)

% College-educated
.128∗∗

(.053)

% No car
.334∗∗∗

(.114)

% No electric heating
-.145∗∗∗

(.053)

% Farmers
.347∗∗∗

(.113)

% Crafts-/tradesmen
.016

(.041)

% White-collar
.242∗∗

(.113)

% Intermediary prof.
-.009

(.017)

% Employees
.028

(.021)

% Blue-collar
.061

(.057)

% Inactive excl. retired
.114∗∗

(.054)

% Single-parent
.022∗∗

(.010)

% Social housing
.051

(.059)

% Homeowners
.089∗

(.052)

Intercept
10.992∗∗∗ 4.334∗∗∗ 3.830∗∗∗

(1.209) (.312) (.311)

Year fixed effects X X

R2 within 0.05 0.73 0.74

R2 between 0.03 0.01 0.22

R2 overall 0.01 0.13 0.34

Observations 411,531 411,531 411,458

Groups 42,797 42,797 42,790

Standard errors clustered at the employment-zone level in parentheses. ∗: 10% level, ∗∗: 5% level, ∗∗∗: 1% level.
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Table 10: Years of adoption of analysed Plans de Protection de l’Atmosphère

Year Zone Number of IRIS Number of municipalities

2012

Bayonne 66 18
Bordeaux 277 52
Dax 31 20
Pau 60 22
Vallée de l’Arve 58 41

277 (492 ) 153

2013

Alpes-Maritimes du Sud 350 52
Belfort (incl. Montbéliard) 244 199
Bouches-du-Rhône 705 112
Haute-Normandie 1,585 1,291
Saint-Étienne 170 55
Toulon 206 26
Île-de-France 4,883 1,267

7,899 (8,143 ) 3,002

2014

Avignon 86 22
Clermont-Ferrand 88 22
Dijon 90 15
Grenoble 403 272
Lyon 508 115
Montpellier 211 114
Nord-Pas-de-Calais 2,300 1,538
Orléans 97 22
Strasbourg 163 28
Tours 138 40

3,994 (4,084 ) 2,188

2015

Bastia 26 12
Chalon-sur-Saône 29 10
Nancy 106 38
Nantes 260 58
Reims 96 16
Rennes 142 43
Trois Vallées (incl. Metz, Thionville) 175 67

683 (834 ) 244

12,853 5,234
(13,553) (5,587)

PPA zones whose names are in italics are those that newly adopted an Atmosphere Protection Plan during the study
period and are excluded from the study in Section 4.3. Totals in italics and parentheses include these urban areas.
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Table 11: Number of observations by relative year of PPA adoption

Relative year -5 -4 -3 -2 -1 0 1 2 3 4

# IRIS 13,360 13,360 13,360 13,360 13,360 13,360 13,360 12,526 8,442 492

# Obs. used 12,853 12,853 12,853 12,853 12,853 12,853 12,853 12,170 8,176 277

Figure 20: Cumulative distribution of ln(PMPM2.5) at t = −1 and t = 1
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Table 12: Event study results – Pre-trends of µj and βj

Variable (1) (2) (3) (4)
Baseline Continuous 50/50 national 50/50 PPA zone

t = −5 -.867 -6.477 -1.154 -1.352

(1.434) (3.847) (1.494) (1.413)

t = −4 -2.176 3.181 -1.817 -2.221

(1.491) (7.035) (1.388) (1.336)

t = −3 -.790 8.068 -.285 -.765

(1.647) (9.032) (1.765) (1.603)

t = −2 -.682 7.592 -.472 -.881

(.702) (5.598) (.766) (.679)

(t = −5)× income var.i .144 .681∗ 1.022∗∗

(.108) (.376) (.312)

(t = −4)× income var.i -.108 -.538 .117

(.157) (.401) (.362)

(t = −3)× income var.i -.148 -.749 -.032

(.148) (.551) (.247)

(t = −2)× income var.i -.119 -.273 .414

(.082) (.659) (.321)

Initial pollution X X X X
Neigh. charac. X X X X
PPA zone FE X X X X
Year FE X X X X

# Obs. 102,704 102,704 102,704 102,704
# Groups 12,853 12,853 12,853 12,853
# Clusters 20 20 20 20
R2 0.96 0.97 0.97 0.97

Coefficients multiplied by 100 for the sake of readability. Standard errors clustered at the PPA zone level displayed
in parentheses. ∗: 10% level, ∗∗: 5% level, ∗∗∗: 1% level. Column (1) gives the results of equation (2), Column (2)
the results of equation (3), and Column (3) and (4) the results of equation (4).
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Figure 21: Relative effect of PPA adoption on average exposure – ADVi in 4 categories

Note: Estimates of coefficient µj in equation (4) taking ADVi as a 4-category variable. The shaded area corresponds
to the 95% confidence interval.

Figure 22: Quantile event-study effects – Focus on t = 2
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Figure 23: Quantile event-study effects – Focus on t = 2, based on initial income

(a) National distribution (b) PPA-zone distribution

Note: Confidence intervals were omitted for the sake of visual clarity. Estimates are not statistically significant above
the 4th decile, and are not significantly different from each other within the same vigintile when I distinguish between
income groups.

Table 13: Event-study – Results of Moran’s I test for residual spatial autocorrelation

Baseline 50/50 national 50/50 PPA zone

(A) (B) (A) (B) (A) (B)

Observed .179 .215 .172 .207 .156 .198

Expected -.012 -.012 -.012 -.004 -.004 -.004

p-value <.001 <.001 <.001 <.001 <.001 <.001

Note: (A) columns give results for the area that encompasses the PPA zones of Avignon, Bouches-du-Rhône and
Toulon, and (B) columns for the area that encompasses the PPA zones of Haute-Normandie and Île-de-France.
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