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Abstract

This dissertation studies the distribution of wealth in the United States and six European countries:

Austria, France, Germany, Italy, Portugal and Spain. To estimate the top tail of the distribution, I

combine survey data with journalist rankings of top wealth holders. I also adjust the distribution

for consistency with macroeconomic aggregates. I suggest a method which, unlike previous

approaches, does not rely on the Pareto distribution or any other parametric assumption. Instead,

I use the properties of order statistics to estimate the quantile function nonparametrically. In

the United States, I find that the top 1% owns 40% of the wealth, and the top 0.1% owns 18%.

In Europe, wealth inequality is much lower overall, but there are large differences between

countries.
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Introduction

Wealth, as opposed to income, is not taxed in most countries. That deprives economists of an

important data source, which has proved extremely useful in the study of income inequality.

When related tax information is available, there are ways around the problem: the estate

multiplier method uses inheritance tax data (eg. Kopczuk and Saez, 2004), and the capitalization

method uses tax data on capital income (eg. Saez and Zucman, 2016).

Another solution is to use surveys, in which a randomly selected sample of households are asked

to tell us about their wealth. The limitation of these sources are well-understood, which is why

recent work on inequality (eg. Atkinson and Piketty, 2010) has privileged tax data. Survey data

can be subject to misreporting or nonresponse bias. By nature, they are also ill-suited to deal

with extreme values. Samples typically include a few thousands observations, which means

that the famed top 1% will be represented only by a few dozen data points. Estimates of top

shares (or any other statistic that relies on extreme parts of the distribution) may therefore

be unreliable. Despite these limitations, surveys have been a useful source to assess income

inequalities when no better option is available (eg. Milanovic, 2002).

But when it comes to wealth, survey estimates are even more likely to go wrong. First, because

wealth is much more unequally shared than income, so that all the problems associated with

the estimation of the shares of small groups of top earners are exacerbated. Saez and Zucman

(2016) have shown for example that the increase in wealth inequality in the United States since

the 1980s has happened not within the top 1%, but the top 0.1%. Such a tiny fraction of the

population cannot, in general, reasonably be captured by a survey. Some countries alleviate

those concerns by strongly oversampling the wealthiest. This is desirable, but it can actually

create a second problem: since not all countries do it equally well, it hinders comparability.

Some countries might report higher top shares just because they capture the top tail of the

distribution more accurately than others.

The goal of this dissertation is to use surveys to estimate the distribution of wealth, but improve

them using external sources of information. I use the national accounts to correct for systematic

misreporting of assets, and I rely on journalist rankings of top wealth holders such as Forbes to
estimate the top tail.

Until fairly recently, many European countries lacked a proper wealth survey. That has changed
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around 2010 with the first wave of the Household Finance and Consumption Survey (HFCS),

headed by the European Central Bank (ECB), which established a regular survey of household

wealth. I use it alongside its American counterpart, the Survey of Consumer Finances (SCF).

Similar exercises have been done previously in the literature. The annual Global Wealth Report
from Credit Suisse, which builds upon the work of Davies, Sandström, et al. (2009), also

uses similar sources to estimate the worldwide distribution of wealth, although the precise

methodology is not made explicit. Vermeulen (2014) combined surveys with the Forbes list
of billionaires worldwide under the assumption of a Pareto shaped tail to correct raw survey

estimates of wealth inequality. Bach, Thiemann, and Zucco (2015) used the same method with

more precise rankings published by national magazines. Vermeulen (2016) improved his initial

estimates also using data from the national accounts. Using survey data only, Eckerstorfer et al.

(2015) estimated a Pareto tail for the wealth distribution in Austria, and then tested their method

against a journalist ranking of Austria’s wealthiest.

Until now, all these corrections have assumed that the tail of the wealth distribution follows

a Pareto law. I innovate by providing a new, rigorous framework which does not rely on any

parametric assumption. The gist of the method is to characterize the distribution of wealth by

the graph of its quantile function on a logarithmic scale. In the Pareto case, that graph is simply

a straight line. In the general case, it is a curve that can be estimated nonparametrically by a

quantile regression of order statistics against some well-defined transformation of their rank.

I use the method jointly with the rescaling of assets to match the national accounts, thus

providing new estimates of the wealth distribution that should correctly capture the top tail,

and be consistent with the national accounts. I apply it to the United States and six European

countries for which sufficiently good data was available: Austria, France, Germany, Italy, Portugal

and Spain. In Europe, I give estimates for years around 2010, and in the United States I can go

back to 1989.

Main �ndings

In line with the literature, I find that survey data correction increases significantly estimates of

inequality, in particular when the survey does not strongly oversample the wealthy.

I find wealth inequality in 2010 to be much stronger in the United States than in Europe: in the

six European countries studied, the share of the top 1% is at 22%, and the share of the top 0.1%

at 10%. In contrast, the same shares for the United States are 40% and 18%.

The situation in Europe reveals important disparities. Austria, despite important statistical

uncertainty surrounding the results, appears about as unequal as the United States, followed by

Germany. Spain, on the other hand, has the most equal repartition of wealth, with a top 1%

share of 15%, and a top 0.1% share of 5%.
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In the United States, I get results consistent with the finding of Saez and Zucman (2016), who

used the capitalization method, that wealth inequality has increased significantly over the past

decades: between 1989 and 2013, the share of the top 1% went from 31% to 41%, and the

share of the top 0.1% went from 12% to 18%.1

Organization

This dissertation is divided in three chapters. The first one compares household surveys with

national accounts, both in terms of concepts and numbers. I adjust survey data to match the

national accounts aggregates, and see how it affects the distribution of wealth.

The second one is purely theoretical. It introduces an important tool — order statistics — to

look into the general problem of estimating the tail of a distribution. I start by applying this tool

to the Pareto distribution to study the properties of estimators currently used in the literature,

and then move to the nonparametric case.

The third chapter applies the method to the actual data. I present the different journalist rankings

of top wealth holders that we use, and develop some methodological points that are specific to

our setting. Finally, I present the results we obtain with the new method.

1Those values are actually very close to what the authors find themselves after adjusting the SCF to the national
accounts and adding the Forbes 400 to the sample. This simple approach works well enough in the United States
because the SCF implements strong oversampling while it excludes the Forbes 400 for confidentiality reasons. But it
wouldn’t be enough in other countries.
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Chapter 1

From national accounts to
household surveys

The first chapter of this dissertation looks at household wealth from two perspectives: from

the macroeconomic side, using the national accounts, and from the microeconomic side, using

household surveys.

National accounts started fairly recently to record the stock of assets and liabilities into national

balance sheets (Piketty and Zucman, 2014). Those estimates constitute a good point of reference.

They are the product of important efforts poured into the harmonization of concepts to make

figures comparable between countries and over time. But, like all national accounts data, they

are solely concerned with aggregates.

Household surveys, on the other hand, do carry information on the distribution of wealth, so

they can be a useful addition to the national accounts. But to make a coherent whole out of

these two sources present some difficulties.

Section 1.1 will deal with the conceptual and methodological differences. Importantly, this is

where I give the definition of wealth that will be used throughout this dissertation. Section 1.2

will compare estimates of aggregate wealth between both sources, and section 1.3 will make a

simple adjustment to the surveys to make them consistent with the national accounts, and see

how this affects the distribution of wealth.

1.1 Sources, methodology and concepts

1.1.1 De�nition of wealth

There is no universally agreed definition of wealth. Different concepts coexist, each of which

can have its own purpose. Even within the study of inequality, different notions may have some

relevance: in the end, the structure of inequality will naturally depend on the definition that is

adopted. Empirically, we are also constrained by the availability of the data: some assets may be
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too difficult to estimate and thus may be excluded for purely practical reasons. Finally, a good

definition should be consistent across time and countries.

National accounts

The system of national accounts (SNA) defines assets as entities “over which ownership rights

are enforced by institutional units” and “from which economic benefits may be derived by their

owners” (United Nations, 1993, § 10.2).1 As noted by Piketty and Zucman (2014), that definition

excludes human capital, over which property rights cannot be enforced.2

The first main item on countries’ balance sheets are financial assets, which “arise out of contractual
relationships between institutional units” (United Nations, 1993, § 10.4). They essentially include

deposits (currency, sights and savings accounts), bonds and shares, life insurance and private

pension funds. The SNA does not record pay-as-you-go, unfunded pensions as assets: doing so

would also call for the inclusion of the net present value of all future taxes and benefits, whose

computation raises all sorts of difficulties.

The other assets are called non-financial, or real. The SNA distinguishes non-produced assets

(land, essentially) from produced assets. They mostly consist in dwellings, but also include

other types of buildings, machinery and cultivated resources. More recently, the SNA started

including non-tangible assets (intellectual property), but coverage is still erratic, and it essentially

pertains to the non-profit sector, so we will ignore it (see section 1.1.2). More importantly, real

assets exclude consumer durables: spending in furniture or jewelry by households is considered

consumption, not investment, even though it yields a flow of benefits over time. This is done

for a purely practical reason: if we consider such goods as wealth, then we must also consider

the flow of capital income they produce, which would be difficult to estimate given the lack of

rental market for them. Some countries try to do it anyway, but again coverage is erratic so we

will ignore them.

Finally, there are liabilities, which are financial by nature. The SNA solely distinguishes short-

term from long-term loans.3 In the end, net wealth is defined as the sum of all assets, minus the

liabilities.

The situation is somewhat different in the United States. The Federal Reserve publishes a very

detailed balance sheet, which does not exactly follow the SNA’s guidelines. That is not generally

a problem because it is possible to rearrange items to match the SNA’s definition, but it is

1We will rely on the 1993 version of the SNA. In 2008, new guidelines were jointly introduced by the UN, the
OECD, the World Bank, the IMF and the European Commission. However, not all countries have moved to the new
standard yet, so that the 1993 still provides better country coverage. The differences between both standards are
modest and do not impact the results.

2Moreover, to include it would require treating education and health spending as an investment; but because those
are also services with a consumption value, a basic distinction upon which national accounts are built (consumption
vs. investment) would collapse.

3A third category exists, “other accounts payable”, but represents a very small fraction of total liabilities. It
includes late payments and otherwise hard to identify liabilities.
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something to be aware of. For example, contrary to the SNA, the United States financial accounts

do record defined benefit pensions as assets. I will mention these differences whenever they are

relevant.

Household surveys

We will be working with two surveys of household wealth: the SCF for the United States, and

the HFCS for European countries. Those surveys do not provide a definition of wealth per se:
they simply make an inventory of a household assets and liabilities. They do provide a variable

for total wealth that is derived from the value of assets and liabilities that the household listed,

but this is done solely for convenience.4 The definition that stem from this variable does not,

obviously, carry the same normative weight as the SNA’s definition.

In this dissertation, wewill use a definition of wealth that is mostly driven by a wish for consistency

between macroeconomic and microeconomic data. That is not the case for the wealth variables

included in the surveys. The results will therefore sensibly differ from previous studies, including

in particular the official publications of the SCF (Bricker et al., 2012) and the HFCS (HFCN,

2013b). I build upon similar exercises that have been realized for the United States (Henriques

and Hsu, 2014; Dettling et al., 2015) and Europe (Honkkila and Kavonius, 2013; Andreasch

and Lindner, 2014).

Start with the real assets. The SNA’s distinction between produced and non-produced assets is

absent from the surveys, and understandably so: most homeowners would not be capable of

separating the value of their dwelling from the value of the land on which it sits. Real assets

in the surveys include consumer durables, which we can remove straightaway since they are

usually absent from the national balance sheets. We are then left with real estate assets, and

self-employment businesses.

The definition of self-employment businesses is one of the major discrepancies between macro

and micro data (HFCN, 2013a, p. 93). The surveys define it as the value of the businesses

owned by the household, and where at least one of its members is currently working. That

category is absent from the SNA which only considers the legal form of companies. Regardless

of the household’s involvement in the business, ownership of entities involved in production is

considered a financial asset and recorded as either quoted or unquoted equity. Unincorporated

businesses are not registered as a separate entity in the national accounts, and so their assets

and liabilities are directly attributed to the households. The surveys do provide information on

the legal form of businesses, so that it is possible keep defining as real assets the ownership of

unincorporated businesses, and recast as financial assets the ownership of corporations. This

adjustment should remove most of the discrepancy, although it still doesn’t account for the fact

4In fact, the SCF does not even provide such a variable in its raw form. But the Federal Reserve Board publishes
the SAS programs that are used for the Bulletin articles associated with each release of the SCF. Those programs
generate a variable for net wealth that researchers often use.
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that only the net value of businesses is recorded in the survey, while the national accounts record

separately the assets and liability of unincorporated businesses alongside the household’s.

Once this adjustment has been done, we get roughly comparable concepts of real wealth by

summing the value of land, dwellings and other non-financial assets in the national accounts,

and summing the value of real estate and self-employment wealth in the survey. It is not possible

in general to further discriminate between real assets in a way that is consistent between surveys

and the SNA. The United States are the exception: their balance sheet does include “equity in

non-corporate business” as a separate item, so that we can consider separately real estate and

self-employment businesses in both the SCF and the national balance sheet.

Next, we move the financial assets. Currency is not recorded in the surveys, so we remove

it from the national balance sheets. That is the one place where the United States balance

sheet is actually less detailed than in other countries: it does not record currency as a separate

item, so we cannot remove it. This is a very minor issue since the value of currency is always

negligible. The rest of deposits (sights and savings accounts) can be matched without much

difficulty. Retirement products (life insurance and private pension funds) are also present in

both the surveys and the national accounts. However, the surveys only ask about whole life

insurance, while the national accounts calculate the value of all life insurance products based on

the actuarial reserves of life insurance companies. This can at least partly explain why the value

of life insurance tends to be lower in the surveys than in the national accounts (by about 30% to

40% in the United States). As I said earlier, “pension entitlements” in the United States balance

sheet also include defined benefit pension plans by default, which are not included in the SCF.

I therefore remove that item and replace it with the sum of “defined contribution pensions”

and “annuities at life insurance companies” (see Dettling et al., 2015). The remaining financial

wealth is made up of stocks and bonds, either held directly or by the intermediary of mutual

funds. It is hard to precisely match each of these items between the surveys and the national

accounts. That is especially true of the United States, where those assets are often held through

managed accounts, including individual retirement accounts (IRA). The surveys directly record

the value of managed assets, and gives little information regarding what these managed assets

are ultimately invested in. The SNA, however, act as if those assets were held directly by the

household sector. Therefore, it is preferable to consider them jointly. In the United States, the

balance sheet gives the total value of IRAs, which I remove from bond and stock wealth and add

to pension wealth.

Finally, we look at liabilities. While the SNA distinguishes liabilities based on terms, the surveys

distinguish them based on the presence of a collateral. I therefore consider all liabilities jointly.

Otherwise, with a few adjustments (see Dettling et al., 2015), concepts are broadly comparable

between sources.

The precise definition of wealth that we will use is finally given in table 1.1. I divide financial

assets into three broad categories: deposits, pension products (including life insurance) and the
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joint value of stocks, bonds and mutual funds. I consider all real assets jointly, except in the

United States where equity in incorporate business is a separate item on the balance sheet. I

also consider all liabilities jointly.

1.1.2 Coverage and estimation methods

Estimations of wealth

The national accounts can estimate wealth by two methods. The first one is a census of wealth.

Financial assets, for example, are estimated based on the balance sheets and off-balance sheets

of individual financial institutions. The second is the perpetual inventory method (PIM), which

cumulates past investment flows with suitable price adjustments to approximate the current

value of assets. Both methods, including their strength and weaknesses, are discussed in detail

in the data appendix of Piketty and Zucman (2014).

In surveys, wealth is measured based on the households’ best assessment of the market value

of their assets and liabilities. It mirrors the census-based estimates in the national accounts

because a household’s asset is some other entity’s liability, and vice versa. It should also match

PIM based estimates because present wealth must reflect past investments. In accounting terms,

both should be equal. In practice, that is not the case. Discrepancies can be due to remaining

inconsistencies between definitions, which cannot be fully eliminated. But that is probably

not sufficient to explain what we observe. The rest of the disparities need to be explained by

incomplete population coverage (especially of the wealthiest), or systematic errors of valuation.

Section 1.2.2 compares both sources in detail.

Survey estimates are, of course, subject to sampling variability, and therefore have standard

errors associated to them. But because of the complex design of the HFCS and the SCF, standard

formulas do not apply. Instead, both surveys provide a set of a thousand so-called replicate

weights, following the rescaling bootstrap procedure of Rao and Wu (1988). Those weights can

be used to perform bootstrap replications of an estimate, which provide an accurate evaluation

of uncertainty.

Another issue needs to be dealt with: partial non-response. All surveys suffer from it, but it is

particularly critical here. We are indeed interested in variables (such as net wealth) that are

derived from many others. If we were to drop an observation as soon as one of its subcomponents

was missing, we would in general be left with very few and very unrepresentative households. To

solve the problem, both the HFCS and the SCF impute missing values. Because the imputation

process is not deterministic, it introduces additional uncertainty that needs to be taken into

account when we report estimates. Both surveys have adopted the multiple imputation procedure

of Rubin (1987): all imputations are performed five times, yielding five slightly different data

sets. We then report average estimates over the five data sets, with a specific adjustment of

standard errors to take into consideration the additional uncertainty due to the imputation.

The HFCS methodological report (HFCN, 2013a) explains in detail how to combine both the
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bootstrap replicate weights and the multiple imputation.

Institutional units

We are interested in household wealth. However, the national accounts do not distinguish in

a systematic way households from non-profit institutions serving households (NPISH). The

frontier between both sectors is indeed fuzzy: for example, tax deductions on charitable givings

can provide incentives for rich households to create shell foundations to shelter their assets and

avoid taxes (Fack and Landais, 2016). In that case, merging both sectors is the right thing to do

(Piketty and Zucman, 2014). In practice, the question of their inclusion is not a primary concern:

whenever they can be distinguished from households, NPISH represent less than 10% of private

wealth.

In the surveys, all households are part of the population of reference, with a few exceptions. The

homeless, the prisoners, and the institutionalized population (including retirement homes) are

typically excluded from the survey design (see HFCN, 2013a, p. 33, for details). Retirement

homes, in particular, may represent a sizable chunk of the population with a relatively high

wealth, and thus sensibly affect the results. In the United States, the SCF also excludes very high

net worth individuals from the Forbes rankings for confidentiality reasons.

We also need to decide on the proper unit of statistical analysis. Wealth is always estimated at

the household level, which is why most publications use the household as the unit of analysis.

That can create problems: because it makes the distribution of wealth depend on household

structure, it may hinder cross-country comparability (Bover, 2010; Fessler and Schürz, 2013).

To avoid that problem, I will use the individual as the statistical unit, and individualize wealth

by splitting it equally between spouses.

Coverage of countries

Regarding the surveys, the SCF and the HFCS cover a total of 16 countries: Austria, Belgium,

Cyprus, Finland, France, Germany, Greece, Italy, Luxembourg, Malta, the Netherlands, Portugal,

Slovakia, Slovenia, Spain, and the United States. First, I remove Finland from the sample because

it uses register data that does not fully match the definitions of the survey (HFCN, 2013a, p. 75).

Then, I also remove Greece and the Netherlands because of concerns over data quality. Of course,

all wealth surveys potentially have weaknesses, and this is precisely what this dissertation is

trying to address. But those two countries seem to be beyond the scope of what we can reasonably

correct using national accounts or wealth rankings. Their surveys suggest implausibly low levels

of inequality, with the top 1% owning less than 10% of the wealth.

The case of Netherlands is easy to observe by comparing the HFCS with administrative wealth

data from Statistics Netherlands, provided by Wiemer Salverda. It is worth noting that this

administrative data does not include life insurance or private pension funds, and uses households

instead of individuals as the statistical unit. Therefore, it gives results that are not directly
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Figure 1.1: QQ-plot comparing net wealth in tax data and in the HFCS for the Netherlands

comparable to the ours. However, we can compare both distributions if we change the definition

of wealth in the HFCS to match the concepts. In figure 1.1, we can see the QQ-plot for net

wealth, which draws the quantile of net wealth in the tax data against the same quantile in the

HFCS. Starting at about €150 000, the wealth associated with the same quantile becomes much

lower in the HFCS than in the tax data. There is a large underestimation of wealth in the top half

of the distribution because even moderately wealthy households are severely underrepresented.

This is confirmed in table 1.2: the HFCS dramatically underestimates the mean and the top

shares. The Dutch survey is also hard to reconcile with the Quote 500, the national ranking of top
wealth holders. The fact that Netherlands is the only country where the survey was conducted

solely through computer-assisted web interviews may at least partially explain the problem.

mean median top 10% share top 1% share

tax data 166 100 33 000 59.6% 22.4%

HFCS
127 300 54 100 46.2% 9.7%
(5 300) (7 600) (1.5%) (1.1%)

Bootstrapped standard errors in parentheses. 2010 euros. Households are
the statistical unit of analysis. Source: author calculations using the HFCS
and wealth data from Statistics Netherlands, provided by Wiemer Salverda.

Table 1.2: Summary statistics of the wealth distribution in the Netherlands

The Greek survey appears to suffer from the same kind of weaknesses, although there are no

administrative data available to make a proper comparison. The problems for Greece may come

from the survey design, which excludes small villages representing about 7% of the population.

Regarding the national accounts, most countries publish a financial balance sheet, but nonfi-

nancial balance sheets are less widespread. That also reduces the number of countries we can

study. Finally, we also need to consider journalist ranking of top wealth holders for chapter 3.
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Countries with insufficient information on that front are also removed from the sample. In the

end, we are left with seven countries for which the analysis can be carried out entirely: Austria,

France, Germany, Italy, Portugal, Spain and the United States.

Oversampling

A major methodological difference between surveys concerns the oversampling of the wealthy,

which means setting a higher probability of inclusion in the survey for richer households. Those

wealthy households are subsequently given lower weights, to keep the survey representative of

the whole population. But doing so can improve the quality of estimates, given that wealth is fat

tailed and highly skewed.

In practice, oversampling requires some prior knowledge of how wealthy a potential respondent

is before they are interviewed: the problem, of course, is that knowing the wealth of a respondent

is precisely what the interview is for. The solution is to use some auxiliary information that can

both be known in advance and is correlated with wealth. That information then serves as the

basis for attributing different probabilities of inclusion. But not all countries have access to the

same information, as shown in table 1.3. France and Spain use household-specific information

on taxable wealth, so they can very precisely target the wealthy. The United States do the same

with taxable income information. Germany uses relatively small-scale regional information on

taxable income, while Austria and Portugal simply oversample their largest cities. Italy, finally,

does not oversample at all.

basis for
oversampling

effective rate of
oversampling number of

houesholds
top 10% top 1%

Austria Vienna oversampled 1% 1% 2380
Germany Taxable income of region 115% 152% 3565
Spain Taxable wealth 193% 880% 6197
France Taxable wealth 126% 439% 15006
Italy No oversampling 3% -17% 7951
Portugal Lisbon and Porto oversampled 14% 24% 4404
United States Taxable income 126% 903% 6482

The effective oversampling rate of the top p% is 100(100Sp/p−1)%, where Sp is the share of observa-
tions in the top p%. Source: author calculation, HFCN (2013a), and Kennickell (2009).

Table 1.3: Comparison of oversampling in different surveys

Those different strategies lead to different effective rates of oversampling. France, Spain and

the United States exhibit extremely high rates of oversampling, followed by Germany. Austria,

Portugal and Italy have much lower — or even negative — rates of oversampling. Unsurprisingly,

oversampling is much more efficient when based on individual information.

Oversampling can decrease the sampling error: it lowers the variance of estimators, and also

lowers finite sample biases (of extreme quantiles and top shares, in particular). It does not, in
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itself, solves the problem of nonresponse bias. But we should still expect surveys with stronger

oversampling to perform better on that front. To see why, we need to understand where

nonresponse bias comes from.

Households refusing to answer do not necessarily create bias. Problems only arise if nonresponse

is both unobserved and endogenous to the variable of interest (i.e. wealth). Statisticians can,

and do correct for any nonresponse that is explained by observable factors through an ex post
adjustment of survey weights. And if nonresponse is independent from wealth, it will not bias

estimates of it. The real worry is that wealthier households have a lower response rate which is

explained by unobserved factors. For countries that base their survey design on taxable wealth

information, that set of potential unobserved factors is dramatically reduced. Bias will not arise

there as long as nonresponse conditional on taxable wealth is independent from survey wealth,

which is a fairly weak assumption.

In practice, it means that when countries have prior information on taxable wealth, they can

observe how response rates vary with it, and correct the survey accordingly. Technically, such a

correction could be made whether the country oversampled or not. In practice, when a country

does not oversample, that is because it did not have access to that information in the first place.

That is why countries with weaker oversampling schemes are also more subject to nonresponse

bias.

There is very little that can convincingly be done on a sound statistical basis to correct for

nonresponse bias, if it exists. There are, however, ways to limit sampling error, which will be the

object of chapters 2 and 3. Sampling bias, in particular, can be a major concern when dealing

with inequality statistics such as top shares (Taleb and Douady, 2015), and strongly limits the

comparability of raw survey estimates.

1.2 Aggregate wealth

1.2.1 Imputation of missing land values

Two countries (Austria and Portugal) do have a non-financial balance sheet, but only for produced

assets (dwellings, essentially). In particular, they give no estimate for the value of land. This is a

problem for comparisons, since in the surveys the value of dwellings and land are combined. To

still include them in the analysis, I perform an imputation based on the fact that the value of

tangible fixed assets is a strong predictor of the value of land (see figure 1.2). I estimate the

following model:

log(land) = β0 + β1 log(tangible fixed assets) + ε

on all OECD countries for which data was available in the period 2006-2014. Table 1.4 shows OLS

estimates with standard errors adjusted for country clusters. The HFCS methodological report

(HFCN, 2013a) does a similar exercise, but simply assumes a constant ratio, which amounts

to setting β1 = 1. I allow for more flexibility, although the estimates I get are not significantly
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Figure 1.2: Value of land and fixed tangible assets in some OECD countries, 2006–2014

different from the simpler model. Based on estimated coefficients, I impute the value of land as:

land= eβ0+
Var(ε)

2 (tangible fixed assets)β1

log(value of land)

log(value of fixed tangible assets)
1.176***
(0.184)

constant
-2.643
(2.624)

Observations 88
Clusters 10
R2 0.843

Robust standard errors adjusted for country clusters in parentheses.
*** p<0.01, ** p<0.05, * p<0.1

Table 1.4: Imputation model for the value of land

For Portugal, in addition to the absence of land value, there is no data for tangible fixed assets

before 2012, whereas the survey was realized in 2010. Since dwellings make up the most part

of that category (> 90%), I calculate a rough estimate for the year 2010 by deflating the 2012

amount using Eurostat’s House Price Index.5 In practice, I divide the 2012 value by 0.88.

5See http://ec.europa.eu/eurostat/web/hicp/methodology/housing-price-statistics/house-
price-index.
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1.2.2 Household surveys and national accounts

Table 1.5 gives the aggregate value of net wealth and its components according to the national

balance sheet. To ease comparisons between countries, I give the figures on a per capita basis.

Over the seven countries we study, net wealth per capita ranges from €70 000 in Portugal to

€155 000 in Spain. The composition of wealth also varies: in particular, the United States stands

out as the only country where financial assets (€80 000 per capita) exceed real assets (€50 000

per capita). In Spain, on the contrary, real assets are four times as valuable as financial assets.

That heterogeneity is driven by multiple factors. For Spain, results may partially reflect the

housing bubble, which had not entirely deflated by the year 2009. For the United States, it

reflects both a low value of real assets, combined with a high value of private pension funds,

bonds, stocks and mutual funds.

net wealth

real assets financial assets

liabilitiesall
real housing business

all
financial deposits

bond, stocks
and funds

life insurance
and private

pension funds

Austria† 2010 131 500 94 800 56 200 25 100 21 000 10 000 19 400
France 2010 148 200 108 900 56 400 17 400 16 600 22 400 17 100
Germany 2011 110 300 75 800 53 100 20 800 12 700 19 600 18 600
Italy 2011 139 600 98 400 52 700 16 100 26 300 10 300 11 500
Portugal† 2010 68 600 51 100 32 800 13 600 12 300 6 900 15 400
Spain 2009 156 600 141 300 35 200 16 200 13 800 5 200 19 900
United States 2010 106 200 56 800 40 300 16 500 80 200 19 500 33 100 27 600 30 800
† Value of land imputed. Constant 2010 euros at market exchange rates. Values rounded to the nearest hundred. Source: author
calculations from the Federal Reserve Financial Accounts for the United States, the W2ID for the real assets of Italy and Spain, and the
OECD.

Table 1.5: Private wealth per capita (national accounts)

Table 1.6 estimates the same quantities, but using surveys. The orders of magnitude are similar,

but the precise numbers can be quite different. Remaining differences between definitions can

explain some of the discrepancies, but certainly not all of them.

net wealth

real assets financial assets

liabilitiesall
real housing business

all
financial deposits

bond, stocks
and funds

life insurance
and private

pension funds

Austria 2010 112 900 95 100 69 400 25 700 25 400 13 200 10 300 1 900 7 600
France 2010 94 800 78 800 77 200 1 600 27 000 7 500 10 900 8 600 11 000
Germany 2011 87 200 71 400 65 500 5 900 28 700 10 000 12 600 6 100 13 000
Italy 2011 100 000 91 700 84 700 7 100 12 800 5 100 6 700 1 000 4 500
Portugal 2010 53 300 46 000 44 800 1 200 13 800 5 600 7 400 800 6 500
Spain 2009 104 300 98 700 93 900 4 800 17 800 6 400 9 500 1 900 12 200
United States 2010 126 700 80 400 62 300 18 100 74 400 11 100 37 000 26 300 27 700

Constant 2010 euros at market exchange rates. Values rounded to the nearest hundred. Source: author calculations from the HFCS
and the SCF (for wealth data) and the OECD (for population data).

Table 1.6: Private wealth per capita (household surveys)

Table 1.7 compares both measures by giving the value of aggregate wealth in the survey as a

percentage of aggregate wealth in the national accounts. In the United States, the SCF is in

general quite close to the national accounts, with two exceptions: housing and deposits (see
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net wealth

real assets financial assets

liabilitiesall
real housing business

all
financial deposits

bond, stocks
and funds

life insurance
and private

pension funds

Austria† 2010 86% 100% 45% 53% 49% 19% 39%
France 2010 64% 72% 48% 43% 66% 39% 65%
Germany 2011 79% 94% 54% 48% 100% 31% 70%
Italy 2011 72% 93% 24% 32% 26% 9% 39%
Portugal† 2010 78% 90% 42% 41% 60% 12% 42%
Spain 2009 67% 70% 50% 40% 69% 36% 61%
United States 2010 123% 141% 155% 112% 93% 57% 112% 95% 90%
† Value of land imputed. The percentages are the ratios of aggregate wealth in the surveys to the value of aggregate wealth in the
national accounts. Source: author’s calculations from the HFCS, the SCF and the national accounts.

Table 1.7: Comparison of aggregate wealth in the survey and in the national account

also Henriques and Hsu, 2014; Dettling et al., 2015). Deposits are consistently lower in the SCF

than in the national accounts. Part of the problem may be that currency has to be included in

the national accounts total because the United States balance sheet does not separate it from

other deposits. However, currency is usually a negligible part so it should not affect the result

that much. Henriques and Hsu (2014) refer to Avery, Elliehausen, and Kennickell (1988) for

other explanations: check float and the holdings of nonprofits like churches could explain some

of the difference. Housing is the opposite: the SCF total is higher than in the national accounts,

which can partially be attributed to homeowners overvaluing their house, especially at a time of

price reversal.6

The other countries are covered by the HFCS, which generally finds lower levels of aggregate

wealth than the national accounts. Different methodologies between countries can explain the

heterogeneity of the results. Underestimation of net wealth is most severe in France and Spain,

despite being the two countries with the strongest oversampling of the wealthy. That would

suggest that underreporting, not just insufficient coverage of the top tail, is a problem.

Financial assets are the most severely underestimated. It is especially true of life insurance

and private pension funds, which partially reflects a more restrictive definition (only whole life

insurance is collected in the survey). The value of bonds, stocks and funds in Germany is an

outlier: the survey estimate matches the national account, a result driven by a remarkably high

value of stocks in the survey. For real assets, the survey estimates are closer to the national

accounts. For Austria, in particular, both values are almost equal. That, however, reflects an

exceptionally high value of business assets which is subject to a great uncertainty (see table 1.8).

Moreover, the value of land was imputed in Austria, so it should be interpreted with caution.

6Other explanations have been suggested, having to do with the way national accounts estimate housing wealth:
see Henriques (2013).
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1.3 The distribution of wealth

1.3.1 Before adjustment

Table 1.8 shows mean net wealth, the fraction of people with negative net wealth, and for each

subcomponent the participation rate and mean value conditional on participation. Table 1.9 show

the top 10% and 1% shares for net wealth and each of its subcomponents. All these estimates

come solely from the surveys, so they should be interpreted with caution. The top 1% share, in

particular, is primarily given as a point of reference, but certainly goes beyond what we can ask

of a survey, at least in countries without a strong oversampling of the wealthy (Austria, Germany,

Italy, Portugal).

In spite of these limitations, some observations can be made. Estimates for Austria are character-

ized by large standard errors. This reflects a large variability between imputations in the top

tail, and it is an issue that will be reflected in all the future estimates. The United States has

a few distinctive features that separates it from European countries. First, the share of people

with negative net worth (19%) is far higher than in any European country of the sample. It has

a higher participation in financial assets (except deposits). It also has the highest participation

rate and mean value of business assets (if we set Austria aside, whose estimate is meaningless

given the standard error).

When it comes to inequality, real assets are more equally distributed than financial ones. That is

a well-known fact, but it actually conceals significant heterogeneity. Inequality is indeed quite

low for housing assets, but can be very high for business assets. As for the unequal repartition

of financial assets, it is largely driven by bonds, stocks and mutual funds, more than deposits,

pension funds or life insurance.

As I said, cross-country comparisons should be made with care given the methodological differ-

ences that have not yet been dealt with. But we can say that the United States seem to have the

highest level of wealth inequality, with a top 10% estimated at 75%. For France and Spain, which

have comparable oversampling, the same indicator is at 48% and 44% respectively. Despite low

oversampling, Germany and Austria have much higher shares, around 60% each.

1.3.2 After adjustment

If we compare table 1.9 (which shows inequality for each subcomponent of net wealth) with

table 1.7 (which shows by how much the surveys underestimate each of these subcomponents),

we can see why surveys may underestimate inequality. Financial assets are the most unequal,

and at the same time are relatively less important in surveys than in the national accounts. As a

consequence, total wealth is likely to appear more equal in surveys than it really is.

We can easily deal with that issue under the assumption that misreporting of assets reflects

systematic valuation mistakes, which are constant along the distribution of each component

of wealth. All we need to do is to rescale the value of each assets and liabilities to match the

36



national accounts totals. In practice, because financial assets are a bigger share of net wealth at

the top, that assumption means richer households do undervalue their wealth more severely,

which is often suspected. But that effect is purely driven by the composition of their wealth.

before adjustment after adjustment

mean
top 10%
share

top 1%
share mean

top 10%
share

top 1%
share

Austria 2010
165 000 60.6% 22.6% 192 200 63.5% 22.6%
(31 700) (6.4%) (7.1%) (35 800) (7%) (7.1%)

France 2010
138 000 48.5% 17.3% 215 800 49.7% 18.2%
(3 900) (1.3%) (1.9%) (5 800) (1.2%) (1.9%)

Germany 2011
116 800 58.9% 23.8% 147 900 56.2% 20.7%
(8 200) (2.5%) (3.7%) (9 200) (2.3%) (3.2%)

Italy 2011
155 800 45.4% 14% 217 300 49.5% 16.3%
(4 900) (1.1%) (1%) (7 300) (1.3%) (0.9%)

Portugal 2010
84 400 54.1% 21.8% 108 700 60.9% 25.6%
(4 800) (2%) (2.8%) (7 600) (2.2%) (3.6%)

Spain 2009
170 500 44.4% 15% 256 000 44.9% 15.1%
(5 700) (1.1%) (1.4%) (8 600) (1.1%) (1.4%)

United States 2010
210 900 74.3% 33% 176 700 80.7% 36.2%
(6 900) (0.7%) (0.9%) (6 300) (0.8%) (1%)

Constant 2010 euros at market exchange rates. Source: author calculations from the
HFCS, the SCF and the national accounts.

Table 1.10: The distribution of wealth before and after adjustment to the national accounts

Table 1.10 compares the distribution of wealth before and after the adjustment to the national

accounts. In general, the adjustment increases wealth inequality, but there are exceptions. In

Austria, the top 1% share is not affected by the adjustment, and in Germany it actually decreases.

That is because the adjustment also increases the importance of deposits, life insurance and

pension funds, which are less unequal. In Germany, in particular, bonds, stocks and funds are

the same in the survey and in the national accounts, so they lose importance compared to other

assets. As I explained earlier, that effect is largely driven by an exceptionally high value of stocks

in the surveys, for reasons that are not entirely clear.

Wealth inequality also increases in the United States. Housing and deposits are the only assets

that are strongly affected by the adjustment. Both assets are quite equally shared. Thus, after the

adjustment, the value of deposits is higher, which decreases inequality, and the value of houses

is lower, which increases it. Overall, the effect on houses dominates, and overall inequality is

higher. The reason why housing assets in the United States are so much higher in the survey

that in the national accounts is not entirely clear either, but as we can see it is relevant to wealth

inequality.

37





Chapter 2

Pareto and beyond

The first chapter of this dissertation looked at what household surveys could teach us on the

distribution of wealth. I emphasized the limitations of these sources and the need to combine

them with external information on top wealth holders. It is usually not enough, however, to just

add those individuals to the sample. A true correction requires statistical modeling, which is the

object of this second chapter.

The first statistical model for the distribution of income and wealth famously dates back to

Vilfredo Pareto who, in the 1890s, noticed a striking fact: when plotted on logarithmic paper,

the relationship between a given level of income x and the number N(x) of people above that

level looked linear. Pareto therefore conjectured the following relationship:

∀x ≥ω log
�

N(x)
N(ω)

�

= −α log
� x
ω

�

(2.1)

and the associated probability distribution became known as the Pareto distribution. To Pareto,

the relation (2.1) was not a mere empirical regularity: it was a universal law, one by which all

human societies must abide. This had the far-reaching implication that nothing could — or for

that matter should — be done about the unequal repartition of wealth and power.

That dogmatic interpretation has fallen out of fashion, but the model remains. Davies and

Shorrocks (2000) call it a stylized fact. The Pareto distribution underlies many of the discussions

on income and wealth: in particular, it is used by all the papers trying to address the measurement

of wealth inequality from survey data (Vermeulen, 2014; Eckerstorfer et al., 2015; Bach,

Thiemann, and Zucco, 2015; Westermeier and Grabka, 2015).

When it comes to the estimation of the model, however, the literature seems stuck in a dilemma.

The first solution was adopted by Pareto himself, and involves fitting equation (2.1) using, say,

ordinary least squares (OLS). The second solution is to use maximum likelihood estimation

(MLE). The first approach is natural, intuitive, and has a clear graphical interpretation. Because

it is simple to understand, it can easily be adapted to nonstandard configurations, which is

why Vermeulen (2014) or Bach, Thiemann, and Zucco (2015) use it when combining survey
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data and wealth rankings. But, to the best of my knowledge, there is no rigorous analysis of its

statistical properties. The second approach is the standard of parametric statistics, and as such

it has the stamp of approval of modern statistical theory. But, to the practitioner, it may seem to

work in mysterious ways.

That dichotomy is, in fact, a false one. I will show that the regression approach has two well-

identifiable flaws. Upon correction, it yields a new estimator with excellent properties that turns

out to be exactly equal to the maximum likelihood estimator. It is therefore possible to recast

the MLE procedure in a way that has the same graphical and intuitive interpretation as the

regression approach.

Then, I will deal with the possibility that the Pareto distribution may in fact be too restrictive

a model. I will introduce a new concept, the tail function, as a nonparametric generalization

of (2.1). It builds on Pareto’s original insight that the relationship between the logarithm of

wealth and the logarithm of the rank behaves well, but allows for more flexibility. The parametric

framework can be adapted to estimate the tail function nonparametrically, yielding a newmethod

which also works for distributions that are not strictly Paretian.

Section 2.1 introduces the basic tools used to derive the estimators. Section 2.2 analyzes the

parametric problem, and section 2.3 extends the results to the nonparametric case.

2.1 Preliminaries

This section start by introducing the so-called order statistics, which will prove central in the

analysis. I give a few of their properties, most of which can be found in David and Nagaraja

(2005). I then present the Pareto distribution in detail, and most importantly its relation with

the exponential distribution.

2.1.1 Order statistics

Let (X1, X2, . . . , Xn) be n independent and identically distributed (iid) absolutely continuous

random variables. Denote F their cumulative distribution function (CDF), and f their probability

density function (PDF). If the variables are sorted in increasing order and written as:

X(1) ≤ X(2) ≤ · · · ≤ X(n)

then X(r) is called the r-th order statistic. Although the original sample (X1, X2, . . . , Xn) is iid, the

sorted sample (X(1), X(2), . . . , X(n)) obviously isn’t: different order statistics cannot have the same

distribution, and the inequality between them implies at least some dependence.

Increasing transformation

Let g be an increasing function. For all i ∈ {1,2, . . . , n}, define Zi = g(X i). Then, for all

r ∈ {1,2, . . . , n}:
Z(r) = g(X(r)) (2.2)
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That property simply states that an increasing transformation does not change the ordering of

variables.

Distribution of a single order statistic

Let f(r) be the PDF of X(r):

f(r)(x) = lim
dx→0

P{X(r) ∈ [x , x + dx]}
dx

(2.3)

The event X(r) ∈ [x , x + dx] can be represented as in figure 2.1. Out of the entire set of n

variables, it requires r − 1 variables in ]−∞, x], one variable in [x , x + dx], and n− r variables

in [x + dx ,+∞[.

•
X(1)

•
X(2)

•
X(r−1)

x
•

X(r)

x + dx
•

X(r+1)
•

X(n)

r − 1 values n− r values

Figure 2.1: Configuration of the event X(r) ∈ [x , x + dx]

It amounts to choosing r−1 variables from the entire set of n variables, then one variable among

the remaining n− r + 1; the rest will necessarily fall in the last category. Define Cr,n the number

of such groupings. Recall that the number of ways of choosing k values among n is given by the

binomial coefficient:
�

n
k

�

=
n!

k!(n− k)!
Therefore:

Cr,n =
�

n
r − 1

�

︸ ︷︷ ︸

choose r − 1
values among n

×
�

n− r + 1
1

�

︸ ︷︷ ︸

choose 1 value among
the remaining n− r + 1

which simplifies to:

Cr,n =
n!

(r − 1)!(n− r + 1)!
×
(n− r + 1)!
1!(n− r)!

=
n!

(r − 1)!(n− r)!

F being the CDF of X , each of these repartitions happens with probability:

[F(x)]r−1 × [F(x + dx)− F(x)]× [1− F(x + dx)]n−r

Therefore, the probability of the event X(r) ∈ [x , x + dx] is:

P{X(r) ∈ [x , x + dx]}= Cr,n × [F(x)]r−1 × [F(x + dx)− F(x)]× [1− F(x + dx)]n−r

= Cr,n × [F(x)]r−1 × f (x)dx × [1− F(x + dx)]n−r +O(dx)2

Replacing in (2.3) gives:

f(r)(x) = Cr,n f (x)[F(x)]r−1[1− F(x)]n−r (2.4)
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Joint distribution of two order statistics

Similar arguments can be used to derive the joint PDF of two order statistics X(r) and X(s)
(1≤ r < s ≤ n). Consider the event X(r) ∈ [x , x +dx] and X(s) ∈ [y, y +dy], which is realized by

the configuration of figure 2.2.

•
X(1)

•
X(r−1)

x
•

X(r)

x + dx
•

X(r+1)
•

X(s−1)

y
•

X(s)

y + dy
•

X(s+1)
•

X(n)

r − 1 values s− r − 1 values n− s values

Figure 2.2: Configuration of the event X(r) ∈ [x , x + dx] and X(s) ∈ [y, y + dy]

Here, it requires r − 1 variables in ] −∞, x], 1 in [x , x + dx], s − r − 1 in [x + dx , y], 1 in

[y, y + dy], and finally n− s in [y + dy,+∞[. The number of such groupings is:

Cr,s,n =
�

n
r − 1

�

︸ ︷︷ ︸

choose r − 1
values among n

×
�

n− r + 1
1

�

︸ ︷︷ ︸

choose 1 value among
the remaining n− r + 1

×
�

n− r
s− r − 1

�

︸ ︷︷ ︸

choose s− r − 1 values
among the remaining n− r

×
�

n− s+ 1
1

�

︸ ︷︷ ︸

choose 1 value among
the remaining n− s+ 1

which simplifies to:

Cr,s,n =
n!

(r − 1)!(s− r − 1)!(n− s)!
Each of these configurations happens with probability:

[F(x)]r−1 × [F(x + dx)− F(x)]× [F(y)− F(x)]s−r−1 × [F(y + dy)− F(y)]× [1− F(y)]n−s

Using the same argument as before, it follows that for y > x:

f(r)(s)(x , y) = Cr,s,n f (x) f (y)[F(x)]r−1[F(y)− F(x)]s−r−1[1− F(y)]n−s (2.5)

and f(r)(s)(x , y) = 0 otherwise.

Expected value

Define µ(r) the expected value of X(r), if it exists.
1 Equation (2.4) implies:

µ(r) =

∫ +∞

−∞
x f(r)(x)dx

= Cr,n

∫ +∞

−∞
x f (x)[F(x)]r−1[1− F(x)]n−r dx

With the change of variable u= F(x), we get:

µ(r) = Cr,n

∫ 1

0

Q(u)ur−1(1− u)n−r du (2.6)

where Q = F−1 is the quantile function of X .
1µ(r) will always be finite if E|X |< +∞. This condition is sufficient but not necessary, since for example all the

order statistics of a Cauchy distribution except the first and the last one have a finite expected value. Analogous
conditions hold for all moments.
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Variance

Define σ2
(r) the variance of X(r). As before, equation (2.4) implies:

µ(r) =

∫ +∞

−∞
(x −µ(r))2 f(r)(x)dx

= Cr,n

∫ +∞

−∞
(x −µ(r))2 f (x)[F(x)]r−1[1− F(x)]n−r dx

With the change of variable u= F(x), we get:

µ(r) = Cr,n

∫ 1

0

[Q(u)−µ(r)]2 ur−1(1− u)n−r du (2.7)

Covariance

The covariance σ(r)(s) of X(r) and X(s) can be derived similarly using equation (2.5):

σ(r)(s) =

∫ +∞

−∞

∫ y

−∞
(x −µ(r))(y −µ(s)) f(r)(s)(x , y)dx dy

= Cr,s,n

∫ 1

0

∫ v

0

[Q(u)−µ(r)][Q(v)−µ(s)]ur−1(v − u)s−r−1(1− v)n−s dudv (2.8)

Median

We finish this overview of order statistics by looking at the median. We know that X(r) is absolutely

continuous because we previously derived its PDF: see formula (2.4). Hence, a median value

m(r) of X(r) is any solution to the equation:

F(r)[m(r)] =
1
2

(2.9)

where F(r) is the CDF of X(r). An expression for F(r) can be obtained by integration of (2.4), or

more simply by a direct argument:

F(r)(x) = P{X(r) ≤ x}

= P{at least r of the X1, X2, . . . , Xn are less than or equal to x}

=
n
∑

i=r

P{exactly i of the X1, X2, . . . , Xn are less than or equal to x}

=
n
∑

i=r

�

n
i

�

F i(x)[1− F(x)]n−i (2.10)

Then, define the regularized incomplete Beta function as:

Ip(a, b) =
1

B(a, b)

∫ p

0

ta−1(1− t)b−1 dt (2.11)
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where B(a, b) is the Beta function. A well-known relationship (Walck, 1996, p. 163) states

that (2.10) can be rewritten as:

F(r)(x) = IF(x)(r, n− r + 1)

Equation (2.11) implies that p 7→ Ip(a, b) is continuous and strictly increasing from 0 to 1 over

[0, 1]. If, moreover, F is also continuous and strictly increasing, then equation (2.9) admits a

unique solution, and the median of X(r) is uniquely defined. Solving the equation yields:

m(r) =Q[I−1
1/2(r, n− r + 1)] (2.12)

where p 7→ I−1
p is the inverse regularized Beta function.

2.1.2 The Pareto distribution

Let ω> 0 and β > 0. We say that X follows a Pareto distribution, and write X ∼P (ω,β) if for

all x ≥ω:
P{X ≥ x}=

�ω

x

�1/β
(2.13)

and P(X ≥ x) = 1 for x < ω. Therefore, the CDF and the PDF of a Pareto distribution are, for

x ≥ω:

f (x) =
ω1/β

β x1/β+1
and F(x) = 1−

�ω

x

�1/β

Comments on the parameters

Most authors — including Pareto himself, as we saw in introduction — work with a different

parameterization, namely α= 1/β , where α is called the Pareto coefficient. The parameterization

we use will prove more practical for our purpose. It is also consistent with extreme value theory

where β is called the tail index.

The Pareto distribution has a strictly positive lower bound ω. For that reason, it is obviously

not a suitable model for the lower end of the wealth distribution. In practice, the researcher

chooses ex ante a value for ω above which the Pareto model is deemed adequate, and discards

all observations below that threshold. The choice of ω is not always obvious and results may

be sensitive to it. The nonparametric approach of section 2.3 will be a way to circumvent the

problem. From now on, I will assume that ω is known and focus on the estimation of β .

Relation to Pareto’s original formulation

The link between Pareto’s original statement (2.1) and the definition (2.13) appears if we

consider P{X ≥ x}= N(x)
N(ω) , where N(x) is the size of the population with wealth above x . Take

the exponential on both sides of (2.1) and we get:

P{X ≥ x}=
� x
ω

�−α

=
�ω

x

�1/β
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with β = 1/α, which is the definition (2.13).

The reversed Pareto law

In addition to the change of parameterization, we will write Pareto’s original law (2.1) in a

different way: we will put log(x/ω) on the left-hand side of the equality, and logP{X ≥ x} on
the right-hand side. Using β as the parameter, it means:

log
� x
ω

�

= β × (− logP{X ≥ x}) (2.14)

lo
g
P
{X
≥

x}

log(x/ω)

slope=
−
α

0 •

0

(a) Pareto’s original diagram

lo
g(

x/
ω
)

− logP{X ≥ x}0

slo
pe
=
β

(b) The new diagram

Figure (a) correspond to Pareto’s original decreasing relationship between wealth x and the probability of being
above x . α is the so-called Pareto coefficient from equation (2.1). Figure (b) is more suited to the alternative

parameterization used in this dissertation: the slope β = 1/α is called the tail index.

Figure 2.3: The Pareto diagrams for two parameterizations

Figure 2.3 compares the diagram initially used by Pareto with the one implied by (2.14). The

distinction may seem superfluous, yet there are good reasons to use (2.14) rather than (2.1).

Indeed, in the estimation, we will interpret (2.14) as a regression equation where log(x/ω) is

random and logP{X ≥ x} is fixed. Thus, the algebra will be more natural if we view the former

as the “outcome variable” and the latter as the “explanatory variable”.

Expected value and variance

Table 2.1 gives the expected value and the variance of a Pareto distribution for different values of

the parameter. Obviously, β ≥ 1 is not acceptable since it implies an infinite mean, which would

translate into an infinite amount of aggregate wealth. Any other value 0 < β < 1 is possible,

although evidence strongly suggests 1/2< β < 1.

The distribution of wealth would therefore have an infinite variance. That fact is not innocuous

for statistical analysis: with infinite variance, many staples of statistical theory break down.
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tail index β 0< β < 1/2 1/2≤ β < 1 1≤ β < +∞

Pareto coefficient α= 1/β 2< α < +∞ 1< α≤ 2 0< α≤ 1
inverted Pareto coefficient b = 1

1−β 1< b < 2 2≤ b < +∞ +∞

expected value ω
1−β +∞

variance ω2β2

(1−β)2(1−2β) +∞

Table 2.1: Moments of a Pareto distribution

Although the law of large numbers still applies, convergence may be very slow, and the absence

of central limit theorem prevents an easy assessment of uncertainty.

The logarithm of a Pareto law: the exponential distribution

Let θ > 0. We say that X follows an exponential distribution, and write X ∼ E (θ ) if for all x ≥ 0:

P{X ≥ x}= e−x/θ

and P(X ≥ x) = 1 for x < 0. Therefore, the CDF and the PDF of an exponential distribution are,

for x ≥ 0:

f (x) =
1
θ
e−x/θ and F(x) = 1− e−x/θ

The exponential distribution is tamer than the Pareto distribution since it admits finite moments

of every order. Interestingly, there is a simple relation between both distributions. Assume

X ∼P (ω,β) and define Z = log(X/ω). We have, for all z > 0:

P{Z ≥ z}= P{log(X/ω)≥ z}

= P{X ≥ωez}

=
� ω

ωez

�1/β

= e−z/β

Hence Z ∼ E (β). By working with the logarithm of wealth, we can circumvent the infinite

variance problem while still retaining all the relevant information on the parameter of interest.

Order statistics of the exponential distribution

Let Z ∼ E (θ ). Its quantile function is given by:

Q(x) = −θ log(1− x)

From (2.6), the expected value of Z(r) is therefore:

µ(r) = θCr,n

∫ 1

0

− log(1− u)ur−1(1− u)n−r du
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Solving the integral yields (Balakrishnan and Basu, 1995, p. 19):

µ(r) = θ (Hn −Hn−r) (2.15)

where Hm is called the m-th harmonic number and is defined as:

Hm =
m
∑

k=1

1
k

Similarly, equations (2.7) and (2.8) yield the formula for variance and covariance (1≤ r < s ≤ n):

σ2
(r) = σ(r)(s) = θ

2(H(2)n −H(2)n−r) (2.16)

where H(2)m is called the second order m-th harmonic number and is defined as:

H(2)m =
m
∑

k=1

1
k2

Finally, equation (2.12) gives the median value of Z(r):

m(r) = −θ log[1− I−1
1/2(r, n− r + 1)] (2.17)

2.2 Parametric estimation

Let ω > 0 and β > 0. Let (X1, X2, . . . , Xn)
iid∼ P (ω,β). ω is known and we seek to estimate the

tail index β . In section 2.2.1, I consider what I call the simple estimator, which is akin to Pareto’s

original approach, and is still used in practice. In section 2.2.2, I address the flaws of the simple

estimator and define the generalized least squares (GLS) estimator of the tail index, which will

turn out to be identical to MLE.

None of the methods developed in this section will be directly applied in this dissertation, yet I

mention them for two reasons. First, they provide results on the estimation of Pareto distributions

which may be of interest and seem currently missing from the literature. Second, they lay the

groundwork for the nonparametric approach of section 2.3.1, which will be used afterwards in

chapter 3.

2.2.1 The simple estimator

Recall from section 2.1.2 that the Pareto distribution obeys:

log
� x
ω

�

= −β logP{X ≥ x}

For k ∈ {1,2, . . . , n}, consider the following empirical counterpart, which corresponds to the

diagram 2.3b:

log
�X(k)
ω

�

≈ −β log
�

n− k+ 1
n+ 1

�

(2.18)
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To get an estimate of β , we apply OLS fitting to the n equations (2.18), which leads to the

following minimization problem:

β̂ simple = argmin
β

n
∑

k=1

�

log
�X(k)
ω

�

− β log
�

n+ 1
n− k+ 1

��2

The first order condition for that minimization problem is:

−2
n
∑

k=1

log
�

n− k+ 1
n+ 1

��

log
�X(k)
ω

�

− β̂ simple log
�

n+ 1
n− k+ 1

��

= 0

Therefore:

β̂ simple =

n
∑

k=1

log
�X(k)
ω

�

log
�

n+ 1
n− k+ 1

�

n
∑

k=1

�

log
�

n+ 1
n− k+ 1

��2

The simple estimator applies OLS fitting to a problem that does not strictly satisfy the standard

assumptions of the method: indeed, the approximation (2.18) cannot be written in terms of

conditional expectations, and the observations are not iid. Although that will not affect the

asymptotic convergence of the estimator, that will make it biased and inefficient.

Bias

Since log(X/ω)∼ E (β), equation (2.15) yields:

E

�

log
�X(k)
ω

��

= β(Hn −Hn−k) (2.19)

Therefore:

E[β̂ simple] = β

n
∑

k=1

(Hn −Hn−k) log
�

n+ 1
n− k+ 1

�

n
∑

k=1

�

log
�

n+ 1
n− k+ 1

��2
6= β (2.20)

As we can see, the simple estimator is biased, because the sum at the numerator and the sum at

the denominator in (2.20) do not cancel out. Figure 2.4 shows that the bias can be large for

small n, but diminishes quickly and eventually becomes very little for large enough sample sizes.

However small, a deeper analysis of that bias carries some insights that are relevant to the

pertinence of Pareto’s diagram, especially for the nonparametric approach of section 2.3. The

bias would disappear if we were to replace log
� n+1

n−k+1

�

by Hn−Hn−k in (2.20). Such a modification

would require putting observations along the x-axis according to their harmonic rank Hn−Hn−k,

and not, as Pareto did, their logarithmic rank log
� n+1

n−k+1

�

. Truth is, the difference is subtle since,

as figure 2.5 shows, harmonic numbers are a Riemann sum approximation of the logarithm.

More precisely, Euler proved in 1734:

lim
n→+∞

Hn − log n= γ
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The relative bias is defined as E[β̂ simple]/β − 1.

Figure 2.4: Relative bias of the simple estimator of the tail index
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(b) Hn and its asymptotic limit γ+ log n

In figure (a), the logarithm is the dark-gray area under the curve (i.e. the integral) while the harmonic number is the
dark and light-gray area under the rectangles (i.e. the Riemann sum). The area of the difference (light-gray)

converges towards the Euler-Mascheroni constant γ≈ 0.577.

Figure 2.5: Comparison of harmonic numbers and the natural logarithm

where γ≈ 0.577 is the Euler-Mascheroni constant.

That result has different consequences depending on which order statistic we consider at the

limit. For middle range order statistics, i.e. X(k) with k/n→ 0, we have:

lim
n→+∞

Hn −Hn−k − log
�

n+ 1
n− k+ 1

�

= 0

Asymptotically, they are therefore correctly positioned on Pareto’s diagram. That is not true,
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however, of extreme order statistics. Take for example X(k) with k = n− r + 1 (the r-th highest

order statistic, r being fixed):

lim
n→+∞

Hn −Hn−k − log
�

n+ 1
n− k+ 1

�

= γ−Hr−1 + log r

So the last data points on Pareto’s diagram are systematically misplaced, even in very large

samples. Figure 2.6 shows graphically what this misplacing looks like.

••
•
•
•
•
•

•

•

•

− log
� n+1

n−k+1

�

E
�

lo
g
�

X
(k
)

ω

�
�

The simple estimator assumes that, on average, observations lie on the straight line.
The bullets show the true average positions of observations for n= 10.

Figure 2.6: Bias of the simple estimator

The bias of the simple estimator disappears asymptotically because, as opposed to the extreme

order statistics, the middle range order statistics get more numerous when the sample size

increases. Thus, the non-biased part of the estimator dominates eventually. Still, the bias can be

costlessly avoided by choosing the proper abscissa for X(k) on Pareto’s diagram.

Another way to see the problem is that for OLS to operate properly here, we would need to be

able to write:

E

�

log
�X(k)
ω

��

= −β log
�

n− k+ 1
n+ 1

�

But this equality is false. The real relationship is:

E

�

log
�X(k)
ω

��

= −β(Hn −Hn−k)

To understand where the incorrect equality came from, consider n uniform random variables

(U1, . . . , Un)
iid∼ U ([0, 1]). We then have (David and Nagaraja, 2005, p. 35):

E[U(k)] =
k

n+ 1

Apply the quantile function Q : x 7→ −β log(1− x) of log(X/ω) to that equality and we get:

Q(E[U(k)]) = −β log
�

n− k+ 1
n+ 1

�
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Moreover, Q(U) has the same distribution as log(X/ω). Hence:

E[Q(U(k))] = E
�

log
�X(k)
ω

��

Therefore, the simple estimator implicitly equates E[Q(U(k))] and Q(E[U(k)]). But this would

only be true if the quantile function were linear, which would mean that log(X/ω) followed a

uniform distribution in the first place.

In a nutshell, because of the functional non-invariance of the expected value, Pareto’s diagram

does not, without adjustments, lend itself to regression analysis. In the strict Pareto case,

the solution is to use the harmonic ranks of order statistics instead of their logarithmic ranks.

Section 2.3 will explore a more general solution to the problem that works in the nonparametric

case.

Ine�ciency

Even if the bias problem were solved, the simple estimator would still be inefficient because

order statistics are correlated and their variances differ: see formula (2.16). Figure 2.7 shows

how the variance of log(X(k)/ω) increases with k. In particular, there is a dramatic increase for

the very last order statistics.
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Figure 2.7: Standard error of log(X(k)/ω) for n= 100

The intuition behind that result is the following: X(1) cannot be much higher than its expected

value, because by definition, it must be lower than X(2). In other words, for X(1) to be significantly

above average, so must X(2), X(3) and so on: the entire sample needs to be unexpectedly high,

which makes it very unlikely. That constraint is very progressively relaxed as we consider higher

order statistics, until the last one for which no constraint is present.

Heteroscedasticity is well-known to make the OLS estimator inefficient in regressions. The

intuition here is exactly the same: order statistics with low variance are more precisely located
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on Pareto’s diagram, and as such they should be given more weight. Ideally, the weight of

observations should be inversely proportional to their standard error. The dependence between

order statistics creates the same kinds of issues.

2.2.2 The Generalized Least Squares estimator

I now introduce the GLS estimator of the tail index, which addresses both flaws of the simple

estimator. We will regress log(X(k)/ω) against Hn − Hn−k instead of log
� n+1

n−k+1

�

to remove the

bias, and we will use GLS instead of OLS to make the estimator efficient.

For simplicity, we move to matrix notation. Consider the column vectors x and y:

y =













log(X(1)/ω)

log(X(2)/ω)
...

log(X(n)/ω)













x =













Hn −Hn−1

Hn −Hn−2
...

Hn −H0













and the matrix Σ:

Σ=













H(2)n −H(2)n−1 H(2)n −H(2)n−1 · · · H(2)n −H(2)n−1

H(2)n −H(2)n−1 H(2)n −H(2)n−2 · · · H(2)n −H(2)n−2
...

...
. . .

...

H(2)n −H(2)n−1 H(2)n −H(2)n−2 · · · H(2)n −H(2)0













Equations (2.15) and (2.16) imply:

E[y] = βx and Var(y) = E[(y − βx )(x − β y)′] = β2Σ

The GLS estimor of β is:

β̂GLS = argmin
β

(y − βx )′Σ−1(y − βx ) (2.21)

The GLS procedure was introduced by Aitken (1936) as a way to derive an optimal estimator

for linear regression models. It is, however, quite unfashionable among econometricians because

the covariance matrix Σ is generally unknown, so it has to be estimated. That procedure gives

rise to the so-called feasible generalized least squares (FGLS) estimator, and although it is

asymptotically equivalent to GLS, it may have worse finite sample properties than OLS, and

needs stronger assumptions to ensure consistency (Wooldridge, 2010, p. 176). Here, however,

we are in one of the rare cases where Σ is known up to a multiplicative constant, so that the

improvement in efficiency comes at no cost.

Like OLS, the GLS estimator minimizes the distance between y and βx . But instead of using

the Euclidean distance, it uses the so-called Mahalanobis distance, which is defined as the
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quadratic form v 7→ v ′Σ−1v . This choice can be motivated as follows. First, notice that Σ, like

any covariance matrix, is symmetric positive definite. We can therefore factorize Σ as:

Σ= Σ1/2Σ1/2

whereΣ1/2, the square root ofΣ, is also a symmetric positive definite matrix. Then, rewrite (2.21)

as:

β̂GLS = argmin
β

[Σ−1/2(y − βx )]′[Σ−1/2(y − βx )]

The GLS thus amounts to multiplying the data by Σ−1/2 before using OLS. Interestingly, the

covariance matrix of the new, transformed data is given by:

Var(Σ−1/2y) = Σ−1/2 Var(y)Σ−1/2

= β2Σ−1/2Σ1/2Σ1/2Σ−1/2

= β2In

which, up to a multiplicative constant, is the identity matrix. Under those conditions, the

Gauss-Markov theorem applies and states that β̂GLS is the best linear unbiased estimator (BLUE).

Here, the GLS estimator eventually simplifies to (see appendix C for proof):

β̂GLS =
1
n

n
∑

k=1

log
�

Xk

ω

�

This estimator is exactly what we get using MLE (see appendix C). Therefore, for Pareto distri-

butions, MLE does not just have good asymptotic properties, it also inherits the excellent finite

sample properties of GLS estimation.

2.3 Non-parametric estimation

The previous sections showed how to estimate the tail index of a Pareto distribution. We will

now extend the approach developed above to the nonparametric case.

Why is such an extension desirable? Because the Pareto model rarely holds exactly. We usually

think of it as the limit distribution (up to some renormalization) of X |X > x when x goes to

infinity. It is, therefore, an approximation that gets better and better as we consider higher

order statistics. Now, remember that the case for the GLS/MLE estimator of the tail index relied

on the idea that higher order statistics should be weighted less in the regression because of

their higher variance. That argument ignores that higher order statistics may follow the Pareto

distribution more closely. Hence, by weighting them less, we decrease the variance, but at the

cost of increasing the misspecification bias.

Because it gives “too much” weight to extreme order statistics, the simple estimator may, as

a collateral benefit, have better statistical properties when the Pareto model holds only as a
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limiting distribution of the tail. Of course, if we make that argument, then we should find what

weighting scheme that optimally balances the trade-off between bias and variance. That is

implicitly the road taken by Csorgo, Deheuvels, and Mason (1985) with their kernel estimator

of the tail index.

I will take another direction, more suited to our setting, namely to estimate the distribution

nonparametrically. To estimate the tail of a distribution nonparametrically might seem like a

hopeless endeavor, given that there are by definition very few data points in that part of the

distribution. But we can do it here because we have access to the wealth rankings (see chapter 3),

which give information on the very last order statistics, beyond the survey sample. Hence, we

can “interpolate” between the survey and the rankings to impute the wealth of the missing rich:

those too poor to be in the rankings, but too rich to be in the survey.

Chapter 3 will explain in detail how to actually combine the survey samples and the rankings.

For now, we still assume and iid sample.

2.3.1 The tail function

Let X be an absolutely continuous random variable with support [ω,+∞[ and a strictly increasing
CDF. Recall from (2.14) that if it followed a Pareto distribution with tail index β , we would

have:

log
� x
ω

�

= β × (− logP{X ≥ x})

In a nonparametric context, we can always rewrite the relationship above as:

log
� x
ω

�

= φ(− logP{X ≥ x}) (2.22)

where φ :R+ 7→R+ is a strictly increasing, differentiable function such that:

φ(0) = 0 and lim
x→+∞

φ(x) = +∞

Put another way, we replaced the linear relationship between log(x/ω) and − logP{X ≥ x}) by
an arbitrary one. By analogy with the tail index β , I will call φ the tail function. The Pareto

distribution corresponds to the special case where φ : x 7→ β x .

The tail function as a characterization tool

The tail function characterizes any absolutely continuous random variable with support [ω,+∞[
and a strictly increasing CDF. Indeed, by construction, φ is invertible, so that we can write the

CDF using (2.22):

F(x) = 1− exp
h

−φ−1
�

log
� x
ω

��i

(2.23)

and conversely, we can define φ using the quantile function Q = F−1:

φ(x) = log
�

Q(1− e−x)
ω

�

(2.24)
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We will therefore use D(ω,φ) to denote the distribution characterized by the support [ω,+∞[
and the tail function φ. We get the PDF by differentiating (2.23):

f (x) =
exp

�

−φ−1
�

log
� x
ω

���

xφ′
�

φ−1
�

log
� x
ω

���

and the quantile function by inverting (2.24):

Q(x) =ωexp [φ(− log(1− x))]

The point of the tail function is to get a characterization of a distribution that behaves more nicely

in the tail than the PDF, the CDF or the quantile function. For any “Paretoesque” distribution,

the tail function will be close to, if not exactly, a linear function.

The tail function and the exponential distribution

Any random variable X ∼ D(ω,φ), can easily be linked to the exponential distribution:

X ∼ D(ω,φ)⇔ φ−1
�

log
�

X
ω

��

∼ E (1) (2.25)

Indeed, we have for all x ≥ 0:

P

§

φ−1
�

log
�

X
ω

��

≥ x
ª

= P
�

X ≥ωeφ(x)
	

= exp

�

−φ−1

�

log

�

ωeφ(x)

ω

���

= e−x

which characterizes the exponential distribution. In the strict Pareto case, that property collapses

to:

X ∼P (ω,β)⇔
1
β

log
�

X
ω

�

∼ E (1)

which means, as we already saw, that the logarithm of a Pareto distribution is an exponential

distribution.

2.3.2 Estimation

Let (X1, X2, . . . , Xn)
iid∼ D(ω,φ). The definition (2.22) of the tail function strongly suggests using

Pareto’s diagram for its estimation. The idea would be to estimate φ using a nonparametric

regression in the same way that we used linear regression to estimate the tail index of a Pareto

distribution.

Actually, that generalization is not as immediate as we might hope, for the same reasons that

led to the bias of the simple estimator (section 2.2.1). To properly identify φ as a regression

function, the problem must be written as:

E

�

log
�X(k)
ω

��

= φ(rk)
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where rk is a value to be determined. In the strict Pareto case (φ : x 7→ β x), the simple estimator

was biased because it assumed rk = log
� n−k+1

n+1

�

instead of the correct answer rk = Hn −Hn−k.

Here, however, rk = Hn −Hn−k will not work in general. Let (Z1, Z2, . . . , Zn)
iid∼ E (1). On the one

hand, we get from property (2.25):

E

�

log
�X(k)
ω

��

= E[φ(Z(k))]

On the other hand:

φ(E[Z(k)]) = φ(Hn −Hn−k)

Because of the functional non-invariance of the expected value, E[φ(Z(k))] 6= φ(E[Z(k)]) in
general, so that rk = Hn−Hn−k does not work (except for the strict Pareto case where φ is linear).

More generally, rk will always depend on the distribution of X , so we cannot use it in practice in

order to estimate φ.

We could argue that the bias created by choosing the wrong rk might be small enough to be tol-

erable: after all, that was true of the simple estimator, whose the bias disappeared asymptotically.

As discussed in David and Nagaraja (2005, p. 85), and as we observed for the Pareto case in

section 2.2.1, the approximation we would make is asymptotically good for middle range order

statistics, but not for extreme ones. In the parametric setting, the simple estimator was consistent

because middle range order statistics carried increasingly more weight in the estimator as the

sample size increased. That kind of argument does not work in a nonparametric setting since

we will always find ourselves estimating part of the tail function based solely on extreme order

statistics. In that part of the distribution the estimator would not just be biased, it would be

inconsistent.

One way to solve the problem is to drop the expected value operator in favor of an operator that

satisfies a functional invariance property, like the quantile. Technically, any quantile will do, but

the median is the most natural choice. Because φ is strictly increasing, we get:

Med
�

log
�X(k)
ω

��

=Med[φ(Z(k))]

= φ(Med[Z(k)])

= φ(− log[1− I−1
1/2(k, n− k+ 1)]) (2.26)

using equation (2.17). Hence we can estimate φ with a nonparametric median regression.

Nonparametric quantile regression

In order to estimate φ in practice, we still need to specify a way to perform a nonparametric

median regression. Two solutions exist (see Tsybakov (2009), for example). The first one is

called local polynomial fitting.2 At each point x , it locally approximates φ using a polynomial,

2Of which the Nadaraya-Watson estimator and local linear fitting are special cases.
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which corresponds to the truncated Taylor expansion around x . That polynomial is estimated

like any linear model, but giving more weights to the observations that are closer to x . This

approach is feasible: it has been tested on the data and gives correct results. But it has significant

drawbacks. First, it can be computationally intensive because it requires performing a new

regression every time we need to evaluate φ(x). Second, it makes it fairly difficult to impose

a priori constraints on φ, such as derivability, monotonicity or φ(0) = 0. Third, it can exhibit

erratic behavior near the boundaries of the data, and offers no reasonable fallback solution

outside of their range.

The other solution, which I will use, is called projection estimation. It approximates φ globally

by its projection over a sufficiently flexible function space of finite dimension. That is, if we

consider a family B = { f1, f2, . . . , fK} of functions, it approaches φ by an element of:

span(B) =

¨ K
∑

k=1

θk fk : (θ1,θ2, . . . ,θK) ∈RK

«

where the coefficients θk can be estimated by a multiple linear regression. This solution requires

performing only one regression, and the properties of the estimate can easily be controlled by

adjusting { f1, f2, . . . , fK}.

For B , I will use natural cubic splines expressed in the restricted power basis. Let M = K − 1.

They are defined for x ≥ 0 by f1(x) = x and:

∀m ∈ {0,1, . . . , M − 1} fm+2(x) = dm(x)− dM (x)

where:

∀m ∈ {0, 1, . . . , M} dm(x) =
(x − ξm)3+ − (x − ξM+1)3+

ξM+1 − ξm

and ξ0 = 0< ξ1 < ξ2 < · · ·< ξM+1 are called the knots of the spline. Any function g that can be

written as a linear combination of those functions satisfy the following properties:

(i) g(0) = 0

(ii) g is a cubic polynomial over [ξm,ξm+1] for m ∈ {0,1, . . . , M}

(iii) g is a linear polynomial over [ξM+1,+∞[

(iv) g is twice continuously differentiable over R+

For simplicity, we do not explicitly impose the constraint that φ is strictly increasing. Indeed,

order statistics are already sorted by construction, so that the function we estimate spontaneously

turns out to be strictly increasing in virtually all cases. Explicitly imposing φ′ > 0 would be

superfluous because such constraint would almost never be binding.
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The natural cubic spline provides a functional form that is flexible, smooth and numerically

stable. Beyond the last knot, the linear behavior implies that the data follow a Pareto distribution,

which seems to be the most reasonable option.

One question remains, namely the choice of the knots ξ1,ξ2, . . . ,ξM+1 (ξ0 is always set at 0). On

the one hand, if we choose too few knots, the function φ will be poorly approximated, resulting

in biased estimations (oversmoothing).3 On the other hand, if we choose too many knots, the

estimate of φ will have a large variance (undersmoothing). We face bias/variance trade-off, and

the appropriate choice of knots should optimally balance both objectives.

Ideally, that choice should itself be the result of an estimation procedure. But so far, there

is no proper way of doing so in the present context. In the simple case of iid data, some

solutions exist for optimal smoothing in quantile regressions (Yu and Jones, 1998; Abberger,

1998; Abberger, 2001). But they do not apply here because order statistics exhibit positive

serial correlation, which leads to undersmoothing if not taken into account. Indeed, if one

observation is significantly above its true mean, then the serial dependence will make the next

observations above average too, and a naive nonparametric estimator would wrongly interpret

those successive deviations as a sign that the true mean has changed (Opsomer, Wang, and Yang,

2001).

In the absence of appropriate data-driven method, the choice of the knots is left to our discretion.

In practice, it rarely seems necessary to go beyond five or six knots in total. I will give more

details about this choice in chapter 3.

Given a set of knots (ξ0,ξ1, . . . ,ξM+1), we can proceed to the estimation of φ. Define φ̂ the

estimator. We have:

φ̂(x) =
K
∑

k=1

θ̂k fk(x) (2.27)

The coefficients θ̂k can be estimated by a linear quantile regression. Based on (2.26) and (2.27),

we solve the following `1 minimization problem:

(θ̂1, θ̂2, . . . , θ̂K) = argmin
(θ1,θ2,...,θK )∈RK

n
∑

r=1

�

�

�

�

�

log
�X(r)
ω

�

−
K
∑

k=1

θ̂k fk(− log[1− I−1
1/2(r, n− r + 1)])

�

�

�

�

�

That problem can be recast as a linear one, solved using either simplex or interior point methods.

That procedure is implemented in most statistical software packages, and yields the desired

estimates for (θ̂1, θ̂2, . . . , θ̂K). We finally obtain an estimate for φ using (2.27).

3Choosing zero knots would put us back in the strict Pareto case.
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Chapter 3

Wealth inequality in Europe and in
the United States

This last chapter combines the data of the chapter 1 with the methodology of chapter 2 to

provide new, improved estimates of wealth inequality. These new estimates take better account

of the top tail of the distribution, while remaining consistent with the national accounts.

Section 3.1 will explore the different public rankings of top wealth holders that are available.

They will provide precious information on the very top of the tail of the wealth distribution, thus

allowing us to use the methodology of chapter 2 effectively. Section 3.2 will show how that

methodology can be applied to our specific setting, and section 3.3 will finally give the results.

3.1 Wealth rankings

In the last decades, a number of newspapers have started to regularly publish lists of top wealth

holders. Journalists compile them based on a mix of publicly available information on stock

holding, insider knowledge, and educated guesses. They are a very valuable source of information,

because they go precisely where surveys do not: the very top of the distribution.

At the same time, they have issues. They are, to a large extent, black boxes. Journalists do write

a few words on how they proceed, but the details are kept secret. The methodology may also

not be fully comparable from one list to the next. They may also have biases because they tend

to privilege the most visible types of wealth, and ignore the rest.

Those limitations must be acknowledged. But the rankings, for all their imperfections, are

better than no information at all. In practice, they appear to convincingly extend the survey

data. Importantly, our estimates will not overly rely on the precise distribution of wealth in the

rankings. They rather serve as an anchor point, a piece of information that tells us where the

tail of the distribution is heading.
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3.1.1 Overview of rankings

The most famous ranking of wealth is probably the one published by Forbes, with covers the

entire world. Because it exclusively covers billionaires, it often includes very few individuals

from a specific country. Rankings published by national magazines can offer a better coverage

because they go further down the distribution.

Forbes (worldwide)

Forbes started to publish a list of the 400 wealthiest Americans in 1983, and called it the Forbes
400. In 1987, they extended their efforts to the entire world, and started a census of all

billionaires worldwide (as measured in US dollars), called the The World’s Billionaires.

More than 50 reporters in 16 countries work on these lists. They interview sources close to

candidates (employees, attorneys, rivals), they keep track of major transactions and charitable

donations. Some people even cooperate directly. The figures try to account for financial assets

(public and private companies), real assets (real estate, yachts, paintings, etc.) and debt (Dolan,

2012).

For the United States, the Forbes rankings are the only ones at our disposal.1 They actually

provide excellent coverage of the top tail of the distribution. We also use The World’s Billionaires
for Italy and Spain despite much smaller samples sizes, because no better choices were available.

Challenges (France)

The weekly French magazine Challenges has published a list of France’s 500 biggest fortunes since

1996. The list focuses on gross financial wealth, which at this point of the distribution should

arguably be very close to net wealth. Journalists look first a stock market data, but fortunes built

on public company stocks only represent a third of the ranking. They track the rest based on an

examination of professional publications, seminars, award ceremonies and similar events. They

value private companies by comparing them with publicly traded ones, based on their balance

sheets. Finally, they send letters to potential members of the list asking if they want to suggest

improvements or clarifications, and some do cooperate (Treguier, 2012).

Manager Magazin (Germany)

Manager Magazin has compiled a list Germany’s 300 richest people since 2000, and has extended

it to the 500 richest since 2010. They estimate net wealth using information from archives,

registers, stock markets, lawyers, asset managers and the people themselves. Some asked to be

removed for privacy or security reasons (Bach, Thiemann, and Zucco, 2015).

1A competing list exists, Bloomberg Billionaires. But it only started in 2012, after the period we are studying. See
http://www.bloomberg.com/billionaires/.
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Trend (Austria)

The business magazine Trend publishes a list of Austria’s 100 wealthiest people. They do not

appear to give any information on the methodology.

Exame (Portugal)

The Portuguese magazine Exame publishes a list of the 25 wealthiest people in Portugal. They

value the financial assets based on market value for listed companies, and using “conservative”

estimates for unlisted ones (Exame, 2009).

3.1.2 Comparability and corrections

Not all rankings of wealth are directly comparable. In general, national rankings find higher

levels of wealth than the Forbes list. In countries where both are available, if we were to run

estimates with the data as they are published, we would find higher levels of wealth inequality

with national lists than with Forbes. That can be attributed to two problems. First, Forbes (like
the surveys) considers the country of residence of individuals, while national lists also include

citizens living abroad. It seems to be the case of about 20% of Challenges’ ranking, for example.

Second, most entries in Forbes refer to individuals. Some refer to families, but they are the

exception, not the rule. National lists have a much bigger tendency to aggregate the wealth of

families. The first entry of the Trend list is a spectacular example: it corresponds to the Porsche

and Piëch families, for a total wealth of €34bn in 2010. That fortune, however, is spread among

about a hundred family members.

The first problem has actually a minor impact on the results. To understand why, consider the

stylized model plotted in figure 3.1a. Wealth follows a Pareto distribution with tail index 2/3.

I simulate n = 1000 observations. I add 20% of observations to the sample to simulate the

presence of individuals that are unwanted because they reside in another country. Then I plot

a Pareto diagram of the last n observations for both the original sample and the sample with

additional observations. As we can see, the difference is very barely noticeable.2 That can be

compared to figure 3.1b, which simulates in a similar way a distribution of wealth with families

of seven members who share their wealth equally. The impact is much stronger and can thus

change estimates significantly. For that reason, I will overlook the first issue and focus on the

second. As a robustness check, I provide estimates of top shares for all countries with 20% of

the wealth rankings removed in table 3.5. As expected, it changes very little to the results.

Wealth rankings specify whether an entry refers to an individual or a family. But they never say

how many members they are in the family. However, Forbes publishes another list, America’s
Richest Families, which lists wealthy families whose individual members do not necessarily make

it to the Forbes 400. That list does give the number of people who share the family’s wealth. I

2It also gets smaller as inequality increases: at the limit, where one individual gets all the wealth, the impact
vanishes entirely.
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I simulated a Pareto sample of size n= 1000 with tail index 2/3. In figure (a), I added 0.2n observations with the
same distribution to model citizens residing in another country. In figure (b), I split each data point in 7 points with
equal value to model families. In each case, I plotted observed against their harmonic rank (see chapter 2) as if the
sample size was n, and compared the “real” distribution with the “observed” one. Samples are normalized so that the
“real” distribution starts at one.

Figure 3.1: Impact of country of residence and families on the wealth rankings

assume that this list is representative of wealthy families in all countries, and use it to impute

a number of family members when needed. Figure 3.2a shows the distribution of family sizes.

With a median of 7, and a mean of 25, it is highly skewed to the right. I exclude the DuPont

family, which is a clear outlier with 3500 members. The resulting sample has a maximum value

of 300, and little more than 10% of observations are above 50. Figure 3.2b shows on a scatter

plot the absence of relationship between the size of the family and its wealth, so that we need not

worry about larger families being richer (a linear regression gives a p-value of 0.934). Every time

a ranking marks an entry as referring to a family, I draw with replacement from the distribution

of figure 3.2a, and divide wealth randomly between members following a uniform distribution.

That procedure introduces additional variability, which remains modest. I take it into account in

the standard errors using the multiple imputation procedure of Rubin (1987), following in that

regards a practice already in place in the surveys (see section 1.1.2): I generate five different

corrected rankings and associate each of them to an implicate of the survey.

The imputation procedure can induce the presence of silently missing observations towards the

bottom the ranking, because of some people who might have made it to the list as a family while

being individually poorer than others who did not make it as persons. To avoid the problem, I

systematically discard all observations that are below the last entry originally marked as referring

to an individual.

62



0%

5%

10%

2 5 10 20 30 40 ≥ 50
number of family members

re
la

ti
ve

 fr
eq

ue
nc

y

(a) Distribution of the size of families

10

100

$1B $10B $100B
family net wealth (US dollars)

nu
m

be
r 

of
 fa

m
ily

 m
em

be
rs

(b) Size of families and their wealth (log-log scale)

Source: Forbes (2015).

Figure 3.2: America’s Richest Families list

Additionally, the rankings get less reliable when we look near the bottom, because journalists

are more likely to miss people with relatively lower wealth. Given that the method does not

require a large amount of data points, I only keep the top 50 of individuals. I make an exception

with Forbes for two reasons. First, because it only tracks billionaires, who should arguably all

be rich enough for their wealth to be traceable (as opposed to national rankings which need

to go further down the distribution). Second, because we need to consider the lower part of

their list to get information on the billionaires in Italy or Spain, who can be near the bottom

globally even though they are at the top in their country. It would be inconsistent to just keep

the top 50 in the United States while still using observations in lower parts of the ranking for

other countries. Table 3.1 summarizes the sample sizes we get in the end.

country year source observations

Austria 2010 Trend 32
France 2010 Challenges 50
Germany 2011 Manager Magazin 50
Italy 2011 Forbes 10
Portugal 2010 Exame 10
Spain 2009 Forbes 12
United States 2010 Forbes 373

Table 3.1: Final sample sizes for wealth rankings

The correction for families does not impact all rankings equally: for example, Forbes is mostly

left unaffected, but Challenges goes down significantly. Appendix B shows graphically, for each

country, the impact of the correction alongside the tail of the survey in Pareto diagrams.
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3.2 Estimation procedure

Now that I have introduced all of the data, I will explain how the estimation procedure works in

our specific setting. Chapter 2 explored theoretical considerations, but all within the context of

a single, iid sample. Moreover, it paid no attention to standard errors. But here, not only do we

have two samples (the survey and the ranking), none of which are iid, we also need to get some

sense of the precision of the estimates.

3.2.1 Point estimation

Let N be the true size of the population of reference in a country. We view the distribution of

wealth over that population as an iid sample of size N , and write it (X1, X2, . . . , XN ). The wealth

ranking simply correspond to the last m order statistics of that sample:

(X(N−m+1), X(N−m+2), . . . , X(N))

Matters are somewhat more complicated for the survey, because we do not know exactly the

true population rank of survey observations. But we can estimate it, using the fact that order

statistics can be viewed as sample estimates of the quantile.

Let n be the size of the survey sample. We consider standard asymptotics for that kind of problem,

namely n→ +∞, N → +∞, and n/N → 0. Let F̂N be the empirical CDF over the true population.

Denote f the PDF and Q the quantile function of the underlying distribution. With r = bN pc+ 1,

the so-called Bahadur (1966) representation of the quantile states:

X(r) =Q(p) +
F̂N (Q(p))− p

f (Q(p))
+ o(N−1/2) (3.1)

Francisco and Fuller (1991) extended that result to complex survey designs. Denote (Z1, . . . , Zn) ⊂
(X1, . . . , XN ) the survey sample, and (w1, . . . , wn) the associated survey weights.3 Consider:

s =min

¨

k ∈ {1, . . . , n};
k
∑

i=1

w(i) ≥ N p

«

And let F̃n be the empirical CDF over the survey data. Under some technical conditions, we have:

Z(s) =Q(p) +
F̃n(Q(p))− p

f (Q(p))
+ o(n−1/2) (3.2)

Using both formulas, we can find a true population rank relevant to the survey observation Z(s).

Let λ ∈]0,1], a parameter offering some leeway reflecting the fact that the quantile function is

not unique in finite samples. Define:

p =
1
N

� s−1
∑

i=1

w(i) +λw(s)

�

3I assume, as it is always the case in practice, that the survey weights are calibrated so that
∑n

i=1 wi = N .
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and let r = bN pc+1. With those definitions, formulas (3.1) and (3.2) both apply. Since n/N → 0,

the term o(N−1/2) is negligible compared to o(n−1/2), so we get:

Z(s) − X(r) =
F̃n(Q(p))− p

f (Q(p))
+

F̂N (Q(p))− p
f (Q(p))

+ o(n−1/2)

Moreover, F̂N (Q(p))− p = O(N−1/2), so the second term is negligible too:

Z(s) − X(r) =
F̃n(Q(p))− p

f (Q(p))
+ o(n−1/2) (3.3)

Francisco and Fuller (1991) also showed F̃n(Q(p))− p = O(n−1/2), hence we get the following

convergence:

Z(s) − X(r) = O(n−1/2)

Additionally, it follows from (3.3) that the asymptotic distribution of n1/2(Z(s) − X(r)) is the same

as that of n1/2(F̃n(Q(p))− p)/ f (Q(p)). Therefore:

n1/2(Z(s) − X(r))→N (0,σ2)

where σ2 is a complex variance term that depends on the survey design, and whose expression

is given by Francisco and Fuller (1991). Z(s) is a consistent and asymptotically normal estimator

of X(r). For some λ ∈]0,1], we will therefore replace X(r) by Z(s) in the estimation, where:

r =

� s−1
∑

i=1

w(i) +λw(s)

�

+ 1 (3.4)

The choice of λ is asymptotically irrelevant. I use λ= 1/2 because it correspond to the middle

of the interval. Through intuitive considerations, Vermeulen (2014) and Bach, Thiemann, and

Zucco (2015) chose λ = 0 and replace x 7→ bxc + 1 by the identity function. That has no

perceptible impact on the results.

There is one catch: the result holds for s fixed, and n→ +∞. The approximation may therefore

be bad for the last observations. This is not a major concern as the whole point of the approach

is to rely on the ranking for extreme values, not the survey.

In the end, we can view both samples as subsets of the true population order statistics. The

rankings correspond to the last ones, and the survey to the middle ones, whose order can be

approximated by formula 3.4.

Having only a selection of all order statistics changes nothing to the method of chapter 2: we just

ignore missing observations in the regression. To apply it, we must first decide on a threshold

above which to model the distribution. Because the estimate is nonparametric, that has no

consequences on the results. I always model the top 20% of the distribution.

Then we must choose the knots of the spline. The first one is always set at zero. I place the last

one at the very beginning of the ranking. It means that in practice, wealth is forced to follow a

65



Pareto law once we arrive in that part of the distribution. There is no better choice since the

number of observations there is generally too low to estimate a more flexible model. It is also

reasonable since the ranking represents at most the last few hundreds observations out of a

population of tens of millions. If the Pareto distribution is the limiting distribution of the tail,

then we should at least expect it to be a reasonable model here. In the survey sample, I set knots

as indicated in table 3.2, to provide a good fit and sufficiently precise estimates. In Austria, given

the imprecision of the data, I used the sparsest model possible, with only three knots in total.

country
quantile for the last knot

in the survey tail
number of knots
in the survey tail

total number
of knots

Austria 95% 2 3
France 99% 5 6
Germany 95% 3 4
Italy 95% 3 4
Portugal 95% 3 4
Spain 95% 3 4
United States 95% 4 5

In the survey part of the tail, I place the last knot at the unweighted quantile
indicated in the second column. The other ones are equally spaced between
that knot and the first one. I place the very last one where the ranking starts.

Table 3.2: Position of the knots of the spline

A final concern relates to the adjustment of data to the national accounts, which was performed

in chapter 1. When we model the tail, we typically increase mean wealth. With adjusted data, it

implies that total wealth will be above the national accounts: in other words, we will overcorrect

survey data. To ensure that totals are still consistent with the national accounts, I use an iterative

procedure similar to Vermeulen (2016). I estimate the model on the adjusted data, and calculate

the value of aggregate wealth, which should be higher than the national accounts. I scale down

wealth in the survey to match again the national accounts, and re-estimate the model on the

new data. I repeat the process until convergence of the estimated total towards the national

accounts total. In theory, there is no guarantee that it will converge, and as a matter of fact, it

sometimes doesn’t. However, the final relative difference is always below 0.5% in practice, and

most of the time below 0.1%.

3.2.2 Standard errors and hypothesis testing

Both the SCF and the HFCS have complex survey designs, to which researchers don’t have access

for confidentiality reasons. As a consequence, there is no way to get explicit formulas for the

variance of even the simplest estimators. That is a fortiori the case for the present estimator,

which is fairly complex.

Bootstrap is a good solution to that kind of problem. Standard bootstrap fails with complex

survey designs (Kolenikov, 2010), but this is why both the SCF anf the HFCS implement the
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rescaling bootstrap procedure of Rao and Wu (1988), and provide a set of so-called replicate

weights that enable proper inference (see section 1.1.2).

We also need to take the rankings into account. Standard bootstrap will also fail in that

situation because the last m order statistics of the population is not an iid sample either. Instead,

for each bootstrap replication, I simulate an entirely new ranking as follows. Let φ̂ be the

estimated tail function, and consider the last m order statistics from a uniform sample of size N :

(U(N−m+1), . . . , U(N)). Define for all k ∈ {N −m+ 1, . . . , N}:

X ∗(k) =ωexp
�

φ̂(− log(1− U(k)))
�

Given properties (2.2) and (2.25), the sample (X ∗(N−m+1), . . . , X ∗(N)) correspond to the last m order

statistics of the estimated distribution of wealth, and can thus be used as a bootstrap replication

sample.

That method requires simulating the last order statistics from a uniform sample. A naive solution

would be to simulate a sample of size N , and then discard all observations but the last m. Given

that N � m, it would a huge waste of computing power. A much better approach is to simulate

those last order statistics directly, with the method of Schucany (1972). Generate a uniform iid

sample of size m, (V1, . . . , Vm), set U(N) = V 1/N
1 , and then recursively set (U(N−1), . . . , U(N−m+1))

for all k ∈ {1, . . . , m− 1} using:

U(N−k) = U(N−k+1)V
1/(N−k)
k

The resulting sample corresponds to a draw of the last m order statistics out of a sample of size

N .

Interestingly, once we know the variance of the estimator, we can devise a simple test of the

Pareto shape. Remember that φ̂ is estimated as a spline, which is a linear combination of the

functions { f1, . . . , fK} with coefficients {θ1, . . . ,θK}. By construction, f1 is the linear component

of the spline, and f2, . . . , fK represent deviations from linearity. For a Pareto distribution, the tail

function is a straight line. That shape can be tested through the null hypothesis:

H0 : θ2 = 0, . . . ,θK = 0

Under asymptotic normality, we have:

p
n(θ̂2 − θ2, . . . , θ̂K − θK)∼N (0,Σ)

where Σ can be estimated via bootstrap.4 If H0 is verified, then asymptotically:

T =
1
n
(θ̂2, . . . , θ̂K)Σ̂

−1
(θ̂2, . . . , θ̂K)

′ ∼ χ2
K−1

To test the Pareto shape, we compare the test statistic T with typical values of a χ2 distribution

with K − 1 degrees of freedom. That test has some interesting features compared to other, more
4Σ also needs to take multiple imputation into account.
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standard goodness of fit tests. The Kolmogorov-Smirnov test, in particular, has been used in

the past to disprove that wealth at the top followed a Pareto law based on Forbes rankings (e.g.
Clauset, Rohilla, and Newman, 2007). But Forbes only publishes rounded figures, to which the

Kolmogorov-Smirnov test is known to be very sensitive: rejection could simply a product of that

fact. The new test is arguably less subject to that kind of problem because it relies on the global

fitting of a curve via quantile regression, which makes it less sensitive to specific observations.

without adjustment with adjustment

threshold p-value threshold p-value

Austria 194 100 0.482 225 000 0.420
France 200 700 < 0.001 302 500 0.032
Germany 153 600 0.304 200 500 0.070
Italy 211 100 0.076 288 200 0.325
Portugal 100 400 0.042 129 900 0.008
Spain 227 300 0.013 349 100 0.109
United States 185 300 < 0.001 144 200 < 0.001

Constant 2010 euros at market exchange rate. The thresh-
old corresponds to the 80% quantile. “adjustment” refers to
the rescaling of assets to match the national accounts.

Table 3.3: Test of the Pareto shape for the top 20% of the distribution

Table 3.3 shows the results of that test on the data, both adjusted and non-adjusted to the

national accounts. The cases where the Pareto hypothesis is not rejected (at the traditional

confidence levels) are Austria (although it largely reflects lack of power given the imprecision of

the survey), Germany (for unadjusted data), Italy (for adjusted data) and, to a lesser extent,

Spain (for adjusted data). Otherwise, the hypothesis is always rejected at the 10% level, and

sometimes much more strongly, like in the United States.

3.3 Results

I estimate the top tail of the distribution for each country separately: appendix A provides details.

In particular, I plot the tail function alongside the survey data and the wealth rankings to give a

visual assessment of the quality of the fit.

Once the tail is estimated, the full distribution can be characterized piecewise by a mixture

model: the bottom 80% of the distribution is represented by raw survey observations, and the

top 20% by the estimated tail function. Using the tail function, we get the quantile function Q

from formula (2.24). Then, I calculate expected values by numerical integration of the quantile

function. The top p% share is given by:

∫ 1
h Q(x)dx
∫ 1

0 Q(x)dx
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where h= 1− p/100.

3.3.1 Individual countries

Table 3.4 shows top wealth shares for each country. The first three columns correspond to the

original survey data, which I give as a reference point. The next three columns also give standard

survey estimates, but after adjustment to the national accounts. That first half of the table is

essentially a repeat of table 1.10, with the top 0.1% added to it. The three columns after that

include the tail correction with the rankings, but no adjustment to match national account totals.

The last three columns give the final estimates, which include tail correction and are consistent

with the national accounts.

Final estimates show significantly higher inequalities than the original surveys. The increase is

mostly due to the estimation of the tail, not to the adjustment to the national accounts, with

the exception of the United States, where both corrections contribute equally. In Germany the

adjustment to national accounts actually decreases inequality.

The upward revision of top shares is particularly strong for the top 0.1%. That is not surprising,

as extreme top shares estimates can suffer from a strong downward bias even in reasonably large

samples (Taleb and Douady, 2015), and the number of observations in the top 0.1% of surveys

is generally very low. In Austria, the top 0.1% share goes from 4.4% to 21.1%, and in Germany

from 7.7% to 14.7%.

The method has virtually no impact on estimates for France and Spain, which strongly oversample

their surveys. However, it does change them for the United States, which has even stronger

oversampling (but excludes the Forbes 400).

Austria and the United States have the highest inequalities of wealth. Their top 1% and 0.1%

shares are comparable, although standard errors are quite high for Austria given its imprecise

survey data. Adding the wealth ranking, however, mitigates the problem. They are followed by

Germany, Portugal, then Italy. France and Spain have the lowest levels of inequality, with top

1% shares of 18% and 15% respectively.

The top 1% share in Austria is within the upper range of Vermeulen (2014), and also close

to the 38% estimate of Eckerstorfer et al. (2015). In Germany, I find lower inequality than

Vermeulen (2014), due to the equalizing impact of the adjustment to the national accounts.

Non-adjusted estimates, however, are very similar. Other estimates are also close to what we

find in the literature.

In the United States, it is possible to use the previous waves of the SCF to look at the evolution

of wealth inequality since 1989. Figure 3.3 compares this evolution from three sources: the

new method, the direct estimates from the SCF, and the capitalization method from Saez and

Zucman (2016). Like Saez and Zucman (2016), and unlike direct SCF estimates, I find that

the top 1% and 0.1% shares have sharply increased since 1989. Today’s top shares are similar
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Figure 3.3: Top wealth shares in the United States, 1989–2013

to those of Saez and Zucman (2016). The increase, however, has been less steady. Moreover,

top shares now seem to have stabilized, whereas they are still increasing according to Saez and

Zucman (2016). Despite those differences, the results corroborate their finding that wealth

inequality in the United States is higher than previously thought.

Table 3.5 provides a robustness check against the possibility that some rankings of wealth

mistakenly include non-residents. It provides the same estimates as before, but with 20% of the

people in the rankings removed at random. The top shares are slightly lower, but not enough to

change the conclusions.

3.3.2 Europe and the United States

We can finally combine the distributions of wealth estimated for the six European countries,

in order to compare the overall distribution of wealth in Europe and in the United States.

Let F1, . . . , FK be the CDF for the distribution of wealth in K countries, and let N1, . . . , NK the

population of each of these countries. Define the total population N =
∑K

k=1 Nk. The distribution
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no adjustment with adjustment

top 10%
share

top 1%
share

top 0.1%
share

top 10%
share

top 1%
share

top 0.1%
share

Austria 2010
67.7% 36.6% 18.3% 71.4% 39.5% 19.8%
(4.7%) (4.4%) (2.2%) (5.9%) (5.6%) (2.8%)

France 2010
48.8% 17.7% 7.6% 49.9% 18.2% 7.3%
(0.9%) (1.2%) (1%) (0.9%) (1.2%) (1%)

Germany 2011
62.5% 29.8% 15.8% 59.1% 25.9% 13.3%
(2.1%) (2.8%) (1.8%) (2%) (2.6%) (1.7%)

Italy 2011
47.7% 17.5% 6.9% 52.5% 21.9% 8.6%
(1.6%) (1.6%) (0.9%) (1.9%) (2.1%) (1.1%)

Portugal 2010
55.7% 24.7% 12.4% 60.9% 25.9% 12%
(2.4%) (3.7%) (3.9%) (1.8%) (2.5%) (2.3%)

Spain 2009
44.2% 14.7% 5.5% 44.5% 14.6% 5.1%
(3%) (3.7%) (4%) (1.5%) (1.5%) (1.1%)

United States 2010
75.7% 35.5% 14.6% 82.4% 39.6% 16.5%
(0.7%) (0.9%) (0.6%) (0.7%) (1%) (0.7%)

Bootstrapped standard errors in parentheses. “adjustment” refers to the rescaling of
assets to match the national accounts. Removing 20% of people in the wealth rank-
ings accounts for the possibility that some individuals in the list may not reside in the
country they are attributed to, and serves as a robustness check.

Table 3.5: Estimates with 20% of the wealth rankings removed

of wealth over the K countries can be represented as a mixture model, with the following CDF:

F(x) =
K
∑

k=1

Nk

N
Fk(x)

We can calculate quantiles by numerical inversion of F , and expected values as weighted sums

of the same expected values in each country. Hence, we can estimate global top shares.

population GDP wealth
top 10%
share

top 1%
share

top 0.1%
share

Europe
(6 countries)

270 millions $9.8tn $47.6tn
53.6% 21.8% 9.8%
(0.9%) (1.1%) (1%)

United States 310 millions $15tn $57.1tn
83.6% 40.5% 17.9%
(0.7%) (1.1%) (0.9%)

Bootstrapped standard errors in parentheses. The six European countries are Aus-
tria, France, Germany, Italy, Portugal and Spain. Figures for the population, GDP
and aggregate wealth correspond to the year 2010. GDP is calculated at purchas-
ing power parity, and wealth at market exchange rates. Source: United Nations
Population Division; OECD, WID and Financial Accounts of the United States.

Table 3.6: Wealth inequality in Europe and in the United States

Table 3.6 shows the result of such estimates. For context, it compares the two areas in terms of
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population, GDP and wealth. The six European countries represent 87% of the population, 65%

of the GDP (at PPP) and 83% of the aggregate wealth of the United States. Despite significant

heterogeneity, the six European countries still have a much lower level of wealth inequality than

the United States: their shares of the top 1% and 0.1% are 22% and 10%, nearly twice as low as

the same figures for the United States: 40% and 18%.
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Conclusion

This dissertation provides new estimates of wealth inequality that are based, mostly, on survey

data. It uses the Survey of Consumer Finances (SCF) for the United States, and the Household

Finance and Consumption Survey (HFCS) for six European countries: Austria, France, Germany,

Italy, Portugal and Spain. Survey data, however, is known to suffer from misreporting of assets,

and can be bad at capturing the top tail of the distribution given the size of samples.

I address the first problem by comparing survey estimates of aggregate household wealth with

comparable concepts in the national accounts. Financial assets suffer from underreporting more

than real ones, and at the same are more unequal: as a consequence, survey estimates might

underestimate wealth inequality. Under the assumption that misreporting reflects systematic

valuation errors, I rescale the value of each asset to match the national accounts totals. That,

alone, can lead to significant upward revision of top shares estimates.

Then, I address the second problem by combining the survey data with journalist rankings of

top wealth holders to estimate the top tail of the distribution. As opposed to previous work

on the subject, I do not rely on the Pareto distribution, or any other parametric family of

distribution. Instead, I characterize a distribution by the graph of its quantile function on a

logarithmic scale. That function behaves very well for fat-tailed distribution, and can be estimated

nonparametrically via a quantile regression of order statistics against a certain transform of their

rank.

The newmethod provides better estimates of top wealth shares than raw survey data, in particular

for the top 0.1%. Using this method, I estimate that the top 1% own 18% of the wealth in the

United States, as opposed to 10% in the six European countries analyzed. The situation varies

between European countries: in Austria, the top 0.1% own about 21% of the wealth, against

just 5% in Spain.

The method may still suffer from problems: in particular, it does not explicitly correct for

nonresponse bias, so that actual inequality may be even higher. However, it shows that a proper

estimation of the top tail of the distribution can go a long way towards a realistic assessment

of wealth inequality. It opens interesting perspectives for the estimation of wealth inequality

worldwide, given that many countries do not provide sufficient administrative data on wealth.

75





Appendix A

Detailed country results

This appendix shows the detailed results of the estimation of the tail function, country by country,

for both adjusted and non-adjusted survey data. The first set of graphs shows the tail function

alongside the survey and the wealth ranking to evaluate the quality of the fit. The five implicates

are drawn on top of each other to better visualize uncertainty. The second set of graphs shows

the full quantile function on a logarithmic scale. All amounts are in constant 2010 euros.
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A.1 Austria
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Figure A.1: Tail function (Austria)
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Figure A.2: Quantile function (Austria)
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A.2 France
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Figure A.3: Tail function (France)
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Figure A.4: Quantile function (France)
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A.3 Germany
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Figure A.5: Tail function (Germany)
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Figure A.6: Quantile function (Germany)
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A.4 Italy
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Figure A.7: Tail function (Italy)
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Figure A.8: Quantile function (Italy)
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A.5 Portugal
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Figure A.9: Tail function (Portugal)
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Figure A.10: Quantile function (Portugal)
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A.6 Spain
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Figure A.11: Tail function (Spain)
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Figure A.12: Quantile function (Spain)
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A.7 United States
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Figure A.13: Tail function (United States)

104

105

106

107

108

109

1010

0.0001%0.001%0.01%0.1%1%10%100%
top percentile

ne
t 

w
ea

lt
h

(a) non adjusted

104

105

106

107

108

109

1010

0.0001%0.001%0.01%0.1%1%10%
top percentile

ne
t 

w
ea

lt
h

(b) adjusted

Constant 2010 euros. 95% confidence interval in grey.

Figure A.14: Quantile function (United States)
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Appendix B

Correction of wealth rankings

This appendix shows the wealth rankings, before and after correction, on a Pareto diagram

alongside the survey data adjusted to the national accounts. Only the first implicate is shown for

better visibility. All amounts are in constant 2010 euros.

When no corrected ranking is shown, it means that there was not enough families in it for the

correction to change anything (that concerns Forbes and Exame).
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Constant 2010 euros. Adjusted survey data. Only the first implicate is shown.
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Figure B.1: Wealth ranking: Challenges (France)
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Figure B.2: Wealth ranking: Manager Magazin (Germany)
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Figure B.3: Wealth ranking: Forbes (Italy)
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Figure B.4: Wealth ranking: Exame (Portugal)
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Figure B.5: Wealth ranking: Forbes (Spain)
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Figure B.6: Wealth ranking: Forbes (United States)
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Appendix C

Generalized Least Squares
estimator: proofs

Explicit formula for the estimator

Recall the following notations:

y =













log(X(1)/ω)

log(X(2)/ω)
...

log(X(n)/ω)













x =













Hn −Hn−1

Hn −Hn−2
...

Hn −H0













Σ=













H(2)n −H(2)n−1 H(2)n −H(2)n−1 · · · H(2)n −H(2)n−1

H(2)n −H(2)n−1 H(2)n −H(2)n−2 · · · H(2)n −H(2)n−2
...

...
. . .

...

H(2)n −H(2)n−1 H(2)n −H(2)n−2 · · · H(2)n −H(2)0













The GLS estimator is defined as:

β̂GLS = argmin
β

(y − βx )′Σ−1(y − βx )

That problem has an explicit solution:

β̂GLS = (x ′Σ−1x )−1 x ′Σ−1y (C.1)

Because Σ is symmetric positive definite, we can apply Cholesky decomposition and write it as:

Σ= P ′P

where P is a lower triangular matrix with positive diagonal entries. Therefore, we can rewrite

(C.1) as:

β̂GLS = [(P−1x )′(P−1x )]−1 (P−1x )′(P−1y)
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We can check with some algebra:

P =





















1/n 0 0 · · · 0 0

1/n 1/(n− 1) 0 · · · 0 0

1/n 1/(n− 1) 1/(n− 2) · · · 0 0
...

...
...

. . .
...

...

1/n 1/(n− 1) 1/(n− 2) · · · 1/2 0

1/n 1/(n− 1) 1/(n− 2) · · · 1/2 1





















Furthermore:

P−1 =





















n 0 0 · · · 0 0

−(n− 1) n− 1 0 · · · 0 0

0 −(n− 2) n− 2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2 0

0 0 0 · · · −1 1





















Hence:

P−1x =
�

1 1 · · · 1
�′

Thus, if we write:

P−1y =
�

a1 a2 · · · an

�′

the expression of the estimator simplifies to:

β̂GLS =
1
n

n
∑

k=1

ak

We have a1 = n log(X(1)/ω) and for all k ∈ {2, . . . , n}:

ak = (n− k+ 1)[log(X(k)/ω)− log(X(k−1)/ω)]

Finally:

β̂GLS = log(X(1)/ω) +
1
n

n
∑

k=2

(n− k+ 1)[log(X(k)/ω)− log(X(k−1)/ω)]

= log(X(1)/ω) +
1
n

n
∑

k=2

(n− k+ 1) log(X(k)/ω)−
1
n

n
∑

k=2

(n− k+ 1) log(X(k−1)/ω)

= log(X(1)/ω) +
1
n

n
∑

k=2

(n− k+ 1) log(X(k)/ω)−
1
n

n−1
∑

k=1

(n− k) log(X(k)/ω)

=
1
n

n
∑

k=1

log(X(k)/ω)
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In each term of the sum, there is no dependence in k other than in the index of order statistics.

Since all terms of the sum are interchangeable, we can drop the order statistics notation and we

get:

β̂GLS =
1
n

n
∑

k=1

log(Xk/ω)

Relation to the maximum likelihood estimator

The likelihood function can be written:

L (β; X1, . . . , Xn) =
n
∏

k=1

ω1/β

βX 1/β+1
k

Hence the log-likelihood function:

`(β; X1, . . . , Xn) = −n log(β) + n(logω)/β − (1/β + 1)
n
∑

k=1

log Xk

Maximizing with respect to β yields the first order condition:

−
n
β
−

n(logω)
β2

+
1
β2

n
∑

k=1

log Xk = 0⇔ nβ −
n
∑

k=1

log(Xk/ω) = 0

Therefore, we get an expression for βML which is the same as for βGLS:

βML = βGLS =
1
n

n
∑

k=1

log(Xk/ω)
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