
The impact of climate shocks on consumption and the
consumption distribution in India

Raavi Aggarwal

June 2, 2019

Supervisors: Dr. Lucas Chancel and Prof. Thomas Piketty
Referee: Prof. François Libois

Abstract

This dissertation examines the impact of climate shocks, measured as temperature
and precipitation variability, on monthly per capita consumption expenditure of Indian
households over the 1988-2012 period, utilising data from NSSO’s Consumer Expendi-
ture Surveys. Results show an increase in consumption by 1.2 per cent on average in
response to a one standard deviation rise in temperature, with heterogeneous impacts
across consumption deciles. The bottom 70 per cent individuals experience consump-
tion declines, while the top 30 per cent observe a rise in consumption. This rise is
explained in part, by an increase in electricity usage in response to temperature shocks,
by the top 20 per cent individuals, thus mirroring the rise in total consumption. The
findings highlight the increase in inequality due to climate shocks and a rise in energy
demand by richer individuals, with implications for future climate and economic policy.
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1 Introduction

The Intergovernmental Panel on Climate Change (IPCC) documents an increase in
global average surface temperature by 0.6 ◦C since 1861 and an average global sea level
rise of 0.1 - 0.2 metres over the 20th century (Cubasch et al. 2013) [IPCC]. This rise
in average temperature is extremely likely to have been caused by an unprecedented
increase in anthropogenic GHG emissions, such as carbon dioxide (CO2), methane
(CH4), nitrous oxide (N2O), CFCs etc. (IPCC 2014). Climate change is one of the
most pertinent challenges of this century, which could potentially undermine economic
growth and exacerbate poverty, hunger and conflict.

The Food and Agricultural Organization (FAO) has documented a trend of rising
world hunger since 2014, with an estimated 821 million undernourished people in 2017,
up from 804 million in 2016 (FAO 2018). The key reasons cited are economic recession
and volatility, war and conflict and importantly, climate change. Poor households
are particularly vulnerable due to the compounding of climatic and socioeconomic
stressors. For instance, in coastal Bangladesh, a combination of factors such as sea
level rise and saltwater intrusion, lower crop productivity and prevalence of disease
has raised the vulnerability and propensity of households to enter chronic poverty
(Olsson et al. 2014 [IPCC]). Hence, understanding the economic impacts of climate
change is important to devise sustainable development strategies, so as to increase
resilience to a changing climate. In view of this, the United Nations released its
sustainable development agenda in 2015, crucially focusing on mitigation of climate
change as part of countries’ growth efforts.

A recent statement by the World Meteorological Organisation (2019) provides
updated temperature records for the year 2018 and observes a warming of 0.99 ±
0.13 ◦C above pre-industrial levels, making the recent period 2015-2018 the warmest
in global climate records (WMO 2019). Given that the world is committed to at
least one degree of warming, with a goal of limiting further increase to a total of
2 ◦C or 1.5 ◦C, examining the economic, social and distributional impacts of global
warming is pertinent. Further, the design of mitigation policies must be based on fair
and equitable measures, taking into account the developmental capacities of different
world regions and sub-groups of the population within a developing country. In this
light, existing literature focuses on the distributional impacts of mitigation policies
such as carbon pricing on various income groups in both low- and middle-income
countries (Dorband, Jakob, Kalkuhl and Steckel 2019).

This Master’s dissertation poses a number of research questions relating climate
change and development. First, what is the relationship between higher tempera-
ture variability and household consumption in India and the key mechanisms behind
potentially adverse effects of higher temperatures on consumption? While in the agri-
culture sector we expect reduced crop yields due to suboptimal temperatures, does
heat stress lower the productivity and therefore income of industrial workers? Fur-
ther, do individuals employed in the services sector exhibit net adverse effects due
to climate induced heat stress or demand more energy, in the form of investment in
climate control technology, thus raising their overall household expenditures? Beyond
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average effects, this study will delve into distributional impacts of climate change to
examine in particular, whether low income households are more vulnerable to climate
shocks due to a lack of savings or infrastructural assets relative to upper income ones,
and hence, the consequences of climate shocks for resulting inequality.

This study focuses on the Indian economy as it is the sixth largest in the world
by GDP (World Bank 2017) and third largest contributor to global GHG emissions,
following China and the United States (IEA 2018a). Despite robust economic growth,
22 per cent of Indians live in poverty, i.e. under USD 1.90 a day (World Bank 2019)
and close to 800 million people in the Indian subcontinent reside in regions that will
be severely vulnerable to climate change by 2050 in the absence of strong policy action
to reduce emissions (i.e. the business-as-usual scenario) (Mani et al. 2018).

I employ household-level survey data from the National Sample Survey Organ-
isation (NSSO) in India, over the 1988-2012 period to analyse the impact of cli-
mate shocks, in the form of increased variability of temperature and precipitation, on
monthly per capita consumption expenditures of the average household and house-
holds at various deciles of the consumption distribution. I next analyse heterogeneous
effects differentiated by the primary sector of occupation of the household (agricul-
ture, industry or services), interacted with their region of residence (rural or urban)
in producing differential impacts. In addition, the role of existing state insurance
mechanisms through availability of ration cards within households, in mitigating po-
tential adverse effects of climate shocks is investigated. I subsequently test a number
of mechanisms to identify the drivers of climatic impacts. First, I test whether en-
ergy expenditures in the form of electricity usage by households drives the increase in
total consumption expenditure. Second, the analysis delves into disparity in impacts
across households situated in districts with historically higher mean temperatures
in comparison to relatively “colder” districts, to capture the dual effects of poten-
tial adaptation by households exposed to higher temperatures to long-run climate
change and a potential rise in productivity of individuals residing in colder districts
in response to positive temperature shocks.

The results show an increase in average per capita consumption expenditure by
1.2 per cent in response to a one standard deviation rise in temperature, whereas
equivalent precipitation shocks have no statistically significant effects on consumption.
The panel fixed-effects regression results obtained by averaging consumption to the
district-level, are in tandem with the results obtained from the pooled cross-sectional
regressions, although with larger magnitudes, i.e. a rise in consumption by 4.8 per
cent due to a one standard deviation increase in temperature. Distributional analysis
reveals adverse effects on consumption for the bottom 70 per cent individuals, with
the median household experiencing a fall in consumption by 16 per cent, whereas the
top 30 per cent individuals experience an increase in consumption. Interestingly, while
households in the lowest decile experience a loss in monthly per capita consumption
of 49 per cent, the top decile of the population witnesses an increase by 38 per
cent, highlighting the rise in inequality due to climate shocks. The rise in average
consumption and that of the top decile is explained in part, by a significant rise
in electricity consumption, of around 1.5 per cent for the average household and 21
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per cent for the top 10 per cent individuals in response to a higher deviation of
temperature from its long run mean. This points to the importance of energy as a
key channel in driving climatic impacts.

This paper contributes to the literature in the following ways. First, it provides
estimates of the economic impacts of climate change at the household level for India,
investigating heterogeneity by sector of economic activity and the key mechanism
of energy in producing impacts. Second, the analysis spans a long time horizon,
thus taking into account long-run adaptation by households to climate change, while
exploiting short-run temperature variations to examine immediate effects. Lastly,
the paper examines climatic effects across the consumption distribution, thus going
beyond average impacts. By addressing questions of inequality, economic growth
and climate change, this paper would contribute to the debate on inclusive growth
and sustainable development by providing empirical evidence, necessary to inform
economic policy.

2 Literature Review

Existing research has focused on estimating the economic impact of climate change
through the construction of damage functions that relate temperature changes to loss
of income (Pindyck 2013). While current models provide broad orders of magnitude of
the average effects of slow and steady temperature rise (as is observed in the empirical
data), they abstract from estimating the “fat tails” of the temperature distribution.
The probability of catastrophic events (i.e. large increases in temperature, for e.g.
7 – 8 ◦C) is small but damages could potentially be enormous. Further, due to
multiple feedback effects in the climate sensitivity 1 process, the estimated increase
in temperature from a doubling of anthropogenic emissions is uncertain (Pindyck
2013). Therefore, this caveat must be borne in mind while interpreting the results of
climate economy models.

Dell, Jones and Olken (2012) examine the impacts of climate change, via rise in
temperature and fall in precipitation, on the level and growth of economic output,
spanning 125 countries over the 1950-2003 period. Their results confirm a negative
relationship, with a 1 ◦C rise in temperature lowering economic growth by 1.3 per-
centage points in poor countries. These growth effects seem to persist in the medium
run, with little evidence of long run adaptation, suggesting a reduction in the growth
trajectory and potentially counterproductive effects of economic growth. Deryugina
and Hsiang (2014) conduct a complementary study to analyse the effects of increased
temperature variability on per capita income in United States counties over the 1969-
2011 period. Employing data at a daily frequency and the “temperature-binning”
approach, they find that daily average productivity declines by 1.7 per cent in re-
sponse to a 1 ◦C increase in daily temperature above 15 ◦C. These studies, therefore,

1Climate sensitivity refers to the increase in temperature from a doubling of anthropogenic CO2e emis-
sions once the new atmospheric equilibrium is achieved. The initial temperature increase creates a feedback
effect, causing further temperature increase, through an unknown probability distribution of the feedback
parameter. Hence, there exists uncertainty about the resulting temperature increase (Pindyck 2013).
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provide evidence of adverse economic climatic impacts in both rich and poor countries.
Hsiang and Meng (2015) further study the determinants of annual weather fluctua-
tions, relating them to the El Niño-Southern Oscillation (ENSO), a phenomenon
germane to tropical regions. They find that a 1 ◦C increase in the ENSO index raises
country-level temperatures in the tropics by 0.27 ◦C and lowers precipitation by 4.6
cm on average. Subsequent analysis of ENSO-induced weather variability on agri-
cultural outcomes reveals adverse impacts of higher temperatures and lower rainfall
levels on cereal yields, output and agricultural income in the order of around 2 per
cent.

A number of recent papers evaluate the human health effects of climate change, by
assessing relationships between higher temperatures and mortality rates. Barreca et
al. (2015) analyse the impact of higher daily mean temperatures on monthly mortality
rates in the United States, at the state level for a century long period (1900-2004).
Taking into account long-term adaptation, they find states with mean temperatures in
the lowest decile of the temperature distribution to experience a 31 per cent increase
in monthly mortality rates due to an additional day’s exposure to temperatures above
90 ◦F, relative to historically hotter states (i.e. the top decile of the distribution),
which witness a mere 0.68 per cent increase in monthly mortality rates in response to
equivalent increases in temperature. Analogously, Deschênes and Greenstone (2011)
assess the relationship between higher daily temperatures and annual mortality rates
in the United States, examining the channel of a potential rise in residential energy
consumption in response to higher temperatures as a measure of self-protection. In
contrast to the results obtained by Barreca et al. (2015), Deschênes et al. (2011)
find that the mortality risk of higher temperatures is highest at both the bottom and
top deciles of the temperature distribution, leading to about 0.69 and 0.94 additional
deaths annually per 100,000 individuals. Further, their results show that annual
energy consumption rises by 0.4 per cent due to a single additional day above 90 ◦F,
highlighting the role of energy as a potential adaptation measure by individuals in
response to higher temperatures.

Sector specific evidence in industry and agriculture examines different channels
through which climate shocks affect economic activity. Somanathan et al. (2015)
provide evidence of adverse effects of high temperatures on worker productivity and
firm output in Indian manufacturing firms, premised on the mechanism of physiolog-
ical heat stress. Employing a piece-wise linear function to capture nonlinearity, they
find that a 1 ◦C rise in temperature above 25 ◦C contracts annual firm output by 3
per cent.

Climate impacts on agriculture in the United States and in developing countries
such as India are well documented in the recent literature. Burke and Emerick (2016)
find reductions in crop yields due to higher temperatures in the United States, with
each additional day at a higher temperature by 1◦C, above 29◦C, (the optimum tem-
perature for corn production), reducing yields by 0.5 per cent, translating into a 15
per cent yield reduction by the end of the growing season. Their results provide lim-
ited evidence of mitigation of short-run damages from climate change through longer
term adaptation by farmers. A Government of India (2018a) study finds adverse
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effects of temperature and rainfall shocks (defined as values in the top and bottom
quintiles of the respective climate distributions) on crop yields in the two agricultural
seasons - Kharif (July-September) and Rabi (October-March), with yields declining
significantly more in unirrigated regions than in irrigated ones. Taraz (2017) con-
ducts similar analysis to study adaptation by farmers in response to rainfall shocks
by exploiting changes in the monsoon rainfall regimes in India. The key mechanisms
highlighted are adaptation through irrigation investment and crop choice. Evidence
suggests that farmers plant more drought-tolerant crops following a decade with rela-
tively low levels of precipitation and similarly, invest more in irrigation following dry
years than wet years.

Analogously, Taraz (2018a) evaluates the impact of high temperatures on crop
yields in Indian districts, exploring whether districts that exhibit historically higher
temperatures incur smaller damages relative to districts with lower average tempera-
tures. This long-term exposure to heat signals an adaptation mechanism. Second, the
presence of groundwater aquifers as a mitigation mechanism for excessive heat stress
on crops is tested. The results provide evidence for adaptation through long-term
exposure to temperatures up to 30 ◦C, beyond which yield reductions do not differ
significantly across traditionally hotter and colder districts.

Another important mechanism of climatic impacts on agricultural households
could be migration to more productive regions across states or ‘out-migration’ to
the secondary or tertiary sector for higher wage employment. Dallmann and Millock
(2017) examine the impact of increased climatic variability such as greater frequency,
duration and magnitude of drought as well as excess precipitation, on state-level mi-
gration flows in India, introducing a lag of five years between the climate anomaly
and consequent migration. They find evidence for important channels such as income
and agriculture in inducing rural-rural state migration.

The above studies point to an important mechanism through which climate change
impacts agriculture, i.e. heat stress due to higher temperatures, resulting in lower
crop yields. Yields decline as crops require an optimal temperature as well as a
specific amount of rainfall for maximum yields. In addition, there exist alternative
mechanisms which lower agricultural output in the face of climate variability. First,
heat stress due to rising temperatures may reduce animal production through de-
creased performance of livestock, higher mortality rates, lower reproduction and loss
in production of animal products (Walthall et al. 2012). This loss in productivity and
breeding problems may deplete farmers’ livestock assets. Second, farmers may leave
agriculture and migrate to other sectors of the economy such as industry or services,
or other regions of the country while remaining in the agriculture sector in search of
higher incomes, particularly if opportunities for adaptation are limited.

In a World Bank study, Mani et al. (2018) estimate the effects of changes in
district-level average seasonal temperature and mean precipitation levels on house-
hold consumption expenditures in the Indian subcontinent. Employing a reduced-
form model with a quadratic functional form for both temperature and rainfall, the
authors find an adverse impact of higher temperatures on consumption, with an av-
erage rate of reduction of consumption expenditures by 0.6 per cent in response to
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a 1 ◦C increase in temperature beyond the threshold of 24 – 27 ◦C, in the summer
season. The effects differ substantially by season and are smaller in magnitude for
precipitation. Importantly, this study identifies specific geographic regions including
districts and states within India and more broadly across the subcontinent, which
may be particularly vulnerable to climate change in the medium and long run, i.e. up
to 2030 and 2050, respectively, thus highlighting the regions that should be targeted
on a priority basis for adaptation to climate change through government policy.

Beyond the average effects of weather shocks on consumption, analyzing hetero-
geneous effects across the consumption distribution is relevant for the discourse on
poverty and inequality. Jacoby, Rabassa and Skoufias (2011) employ a rural house-
hold model to analyse the effects of changes in land prices, wage rates and food
prices on household per capita consumption, further considering effects across the
consumption distribution. The highest distributional effects appear to be due to
changes in wage rates, where the distribution of effects is highly skewed to the left
with large adverse effects on consumption of low-income households. A parallel review
of the empirical evidence by Skoufias et al. (2011) suggests that climate change may
raise poverty rates and have adverse distributional consequences. Quoting studies on
Brazil, Sub-Saharan Africa (SSA) and South Asia, they highlight a potential increase
in the poverty rate by 3.2 percentage points and an average increase in the number of
poor people by 10 million (in SSA and South Asia), relative to a no climate change
scenario. Further, there may be differences in the ability of the rich and poor to
save and build assets to mitigate the adverse impacts of climate shocks (Olsson et al.
2014 [IPCC]). Consequently, socio-economic stressors compounded by climatic effects
may expose low-income households to greater vulnerability and exacerbate existing
economic inequality. This preliminary evidence offers a direction for future research
on the relationships between poverty, inequality and climate change.

Lastly, while the above studies provide estimates of climate change impacts on eco-
nomic activity, the policy implications drawn at this juncture are limited. Greenstone
and Hanna (2014) investigate the impacts of environmental regulations in India on
air and water pollution levels in Indian cities, highlighting the importance of citizen
awareness and increased public demand for improvements in air quality, as a mech-
anism for concerted policy action. A study by Taraz (2018b) analyses the effects
of a large-scale social protection program, the National Rural Employment Guar-
antee Act (NREGA) 2005, in potentially ameliorating the adverse climatic impacts
faced by farmers in India. Contrary to expectation, it finds that the implementation
of NREGA exacerbates the deleterious impact of climate shocks on crop yields, as
non-agricultural employment in NREGA rises in response to adverse weather shocks.
Insofar as this raises a household’s total income, the net effect on welfare is still
positive. However, the reduction in crop yields raises concerns for national food secu-
rity. Hence, social insurance programs and state protection through public policy are
important in providing protection from climate change damages and analysing their
efficacy in mitigating long-term adverse climatic impacts is pertinent in this context.
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3 Theoretical Framework

3.1 Impacts on the average household

This framework models the relationship between climate change (in the form of
weather shocks) and household consumption, through different mechanisms depend-
ing on the sector of the household’s principal occupation. Formally,

C = f(T, P,NIC,Region,X) (1)

A household’s consumption expenditure, C is related to climate variables (tem-
perature and precipitation), the sector of employment (NIC Code) and the region of
residence, which differs by rural or urban in the analysis2. X is a vector of control
variables such as the possession of ration cards by households, which are a form of
social protection or insurance and may help mitigate the adverse impacts of climate
change. Furthermore, climate impacts may differ by the consumption level of the
household, with poorer households prima facie at a higher risk or vulnerability from
climate change. This entails analysis across the distribution of initial consumption
expenditure.

A number of mechanisms can be outlined through which climate change will affect
households, depending on the principal source of income and other regional factors.
Within the agriculture, forestry and fishing 3 sector, there are four key mechanisms
which may influence farm income. First, as documented above, higher temperatures
and/or low rainfall may reduce crop yields and in turn farm productivity. Insofar as
risk mitigation strategies are available to farmers, these effects would be subverted.
These include investment in irrigation pumps or the presence of groundwater aquifers
to satisfy crops’ water requirements, in the event of low precipitation. As crop yields
decline, food prices are expected to rise. Hence, effects on farm revenue and in turn,
household income (or consumption) are ambiguous. Second, loss of animal produc-
tion due to heat stress may lead to loss of assets, particularly livestock. In case of
floods, other physical assets of the household may directly be lost or damaged. Third,
farmers may respond to a changing climate and reduced crop yields by migrating to
a different sector, such as manufacturing or services for employment. However, this
effect is difficult to disentangle in the data as structural shifts in employment over
time take place for multiple reasons. Lastly, farmers may migrate out of the region to
another district within the state or across states in response to unfavourable climatic
conditions.

Industry would be affected by weather shocks primarily through its adverse impact
on labour productivity in the form of physiological heat stress. Within the industrial

2Ideally, the region should correspond to the agro-climatic zone in which the household is located. How-
ever, this information is not precisely available in the NSS dataset.

3The Central Statistical Office (CSO) in India defines sectors of economic activity as: 1. Agriculture,
forestry and fishing, 2. Industry (Mining & Quarrying, Manufacturing, Electricity, Gas, Water Supply &
Other Utility services and Construction), and 3. Services (Trade, Hotel, Transport, Storage, Communication
& Services related to Broadcasting, Financial, Real Estate & Professional Services and Public Administra-
tion, Defence & Other Services (Government of India 2018b).
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sector, mining, manufacturing and construction activities are expected to be nega-
tively affected due to the strenuous working conditions of workers, compounded with
climate-induced heat stress. However, there may be an increase in demand for con-
struction and rebuilding of infrastructure in the aftermath of extreme climate events.
Hence, the net effect appears ambiguous. Higher temperatures may further result
in higher energy demand, thus boosting consumption expenditures for the electric-
ity sector. Therefore, the overall effect on industry, comprising these four segments,
is ambiguous and analysis by sub-sector (using the NIC Codes) would help illumi-
nate which mechanisms dominate and quantify the effects across various sub-sectors.
Lastly, the services sector is expected to be negatively impacted by climate change
through reduced worker productivity. However, the dominance of service firms in
urban regions, along with the urban heat island effect, which results in higher tem-
peratures in urban regions relative to neighbouring rural areas, may raise energy
demand, leading to higher consumer expenditure. Hence, the net effect of climate
shocks on this sector is also ambiguous. Identifying the precise mechanisms driv-
ing impacts by sector involves developing sector-specific models and lies beyond the
scope of this paper. Nonetheless, keeping the potential mechanisms in mind provides
intuition for the observed differential climatic impacts across various sectors of the
economy.

3.2 Heterogeneous impacts across the consumption distribution

The next part of the analysis entails studying climatic impacts across the distribution
of initial consumption among Indian households. The key research question is whether
adverse climatic impacts are more pronounced at the lower tail of the consumption
distribution than at the median or upper tail, insofar as consumption and in turn
income levels inform a household’s ability to save and build assets, which may be
utilised as self-protection measures against climate shocks. In this scenario, low-
income households may be more susceptible to heat stress due to temperature shocks,
on account of their low savings and modest stock of assets.

The relationship between inequality and climate change can be hypothesized as
bidirectional, with the former potentially being both a significant driver of climate
change and a consequence of adverse climatic impacts. The existing literature pro-
vides some evidence in support of this hypothesis. A review of the evidence by
Fleurbaey et al. (2014) [IPCC] on emerging consumerist lifestyles sheds light on
the role of inequality in consumption-led emissions as a driver of climate change.
Specifically, cross-sectional studies find a strong correlation between consumption
expenditures and a household’s carbon footprint, with a doubling of consumption
leading to an increase in GHG emissions by 57 per cent. In addition, analysis of
inequality in CO2-equivalent emissions between 1998 and 2013 shows an increase in
within-country inequality of emissions on account of economic growth and its asso-
ciated emissions, although between-country inequality in emissions reduced over the
same period, due to global convergence of incomes as well as stagnation of emissions
in advanced economies. Moreover, while the bottom 50 per cent of world individuals
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account for merely 13 per cent of global emissions, the top 10 per cent of individuals
contribute 45 per cent to aggregate emissions, highlighting the stark inequality in
GHG emissions (Chancel and Piketty 2015). On the other hand, Olsson et al. (2014)
[IPCC] observe unequal impacts of weather shocks such as floods among low vs. high-
income households, with the latter being able to afford insurance against damage to
property, whereas the poor residents often lose substantial portions of their physical
assets, suggesting an increase in inequality post climatic events. While the relation-
ship between inequality and climate change can be studied as a two-part question,
in this paper, the latter question of whether adverse climatic impacts propagate in-
equality, is explicitly addressed by examining differential climatic impacts across the
consumption distribution.

Bourguignon and Morrisson (2002) discuss important trends in world income in-
equality over the 1820-1992 period, observing a rise since the early 19th century until
post world war II, around 1950, with the Theil Index increasing from 0.52 in 1820 to
0.8 in 1950. This period was marked by a concomitant rise in both within-country
and between-country inequality until 1910, after which inequality within countries
declined until 1960, although the latter continued on an upward trajectory. Over
1960-1992, rise in inequality between country groups has been the dominant source
of increase in total world inequality. Chancel and Piketty (2017) further examine
inequality dynamics in India over the 1922-2015 period. The share of national in-
come accruing to the top 1 per cent individuals appears to have risen from 6.2 per
cent in 1982-83 to 21.3 per cent in 2014-15, while the share accruing to the bottom
50 percent of the population has declined from 23.6 per cent to 14.9 per cent over
the same period. Furthermore, the share of income accounted for by the middle 40
per cent individuals declined from 46 per cent to 29.2 per cent between 1982-83 and
2014-15.

Rising income inequality implies not only a lack of inclusive growth, which is an
important policy objective, but also has significant implications for poverty reduction,
given that the latter is a function of both growth in mean incomes and changes in the
income distribution (Bourguignon 2003). Simulation exercises demonstrate that an
additional 2.15 billion people could have been lifted out of poverty over 1820-1992,
given historical growth rates, had the distribution of income remained unchanged
(Bourguignon et al. 2002). Comparative analysis of existing taxation systems in
India and China over the 1986-2015 period reveals lacunae in the implementation of
progressive taxation in the former economy, while the latter has been more successful
in raising the tax base and consequently, income tax revenues as a proportion of GDP
(Piketty and Qian 2015). By keeping the marginal tax rates fixed despite revision
of the exemption thresholds from 9,600 yuans per year in 1980-1998 to 19,200 yuans
since 2006, the share of the total population within the purview of income taxes in
China rose from 0.1 per cent to 20 per cent over 1986-2008. On the other hand,
although the Indian government implemented progressive taxation in 1922, there has
been a continuous revision of the exemption thresholds, along with a decline in the tax
rates or tax schedule. For instance, in 1986-1988, the marginal tax rate corresponding
to the highest tax slab, i.e. for earners of Rs. 1,00,000 and above annually, stood
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at 55 per cent. By 2008, earners of less than Rs. 1,50,000 faced no income taxes,
while the top tax bracket, i.e. annual incomes above Rs. 5,00,000, faced only a 30 per
cent marginal tax rate. Consequently, the rise in exemption thresholds has mirrored
the rise in nominal incomes. This combination of factors has restricted the share of
population subject to income taxes at around 3 per cent in India in 2008, compared
to almost 15 per cent in China in the same year.

Given current trends in within-country inequality, especially in a developing coun-
try such as India, the forthcoming analysis on potentially adverse distributional im-
pacts of climate shocks would contribute to the narrative and debate on curbing rising
inequality and promoting more inclusive growth and development. Moreover, insofar
as adverse changes in the income distribution reduce the rate of poverty reduction,
the current economic growth trajectory appears to be a double whammy. This is
because it is the key driver of anthropogenic-led climate change and if climate change
exacerbates inequality due to adverse economic impacts, then the process of economic
growth is not only unsustainable in the long run, but may also be counter-productive,
by leading to a rise in inequality and slowed pace of poverty reduction.

The question for policy relevance emerging from this discourse is, if climatic im-
pacts exacerbate inequality, then can a redistributive system be designed to generate
additional fiscal capacity in order to compensate the poor for climate-induced dam-
ages, funded by richer individuals? A number of economic and regulatory instruments
such as carbon taxes, fuel surcharges and emission standards are at the policymaker’s
disposal (Somanathan et al. 2014 [IPCC]). Analysis of the distributional effects of
carbon pricing reveals regressive effects in rich countries but progressive effects in low-
income countries, due to small energy expenditure shares among low-income house-
holds (Dorband et al. 2019). Although the loss of income due to uniform carbon
pricing of USD 30 per ton of CO2 among the lowest income group in India is 2.5 per
cent, the net effect of a carbon tax is distribution neutral, whereas it is highly pro-
gressive in the neighbouring countries of Bangladesh, China and Sri Lanka. While a
complete and wholesome welfare analysis must be undertaken to evaluate the hetero-
geneous and potentially adverse effects of mitigation policies on low-income groups,
such policy frameworks would address multiple issues of rising inequality as well as
mitigation of climate change and may be interesting questions for future research.

4 Data Sources and Methodology

4.1 Data Sources

Household-level economic data for India are drawn from the National Sample Survey
Organisation (NSSO)’s Consumer Expenditure Surveys, which have been conducted
on a quinquennial basis since 1951. These surveys provide data on household-level
monthly per capita consumption expenditure as well as expenditure incurred on a
range of food and non-food items, including energy (fuel and light), durable goods and
others. The survey rounds utilised for the analysis correspond to the years 1987-88,
1999-2000, 2004-05, 2009-10 and 2011-12. The years 1983 and 1993-94 are excluded
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as these rounds do not provide district codes corresponding to the households, but
instead only provide the State-Region codes, which aggregate several districts together
4. The 55th round (1999-2000) suffers from comparability issues with the remaining
rounds due to a distinction in its design (Datta 2006). The survey adopted both a 30-
day recall period, known as the Uniform Reference Period (URP), to record the food
component of consumption, as had been done in the previous rounds, but adopted
a 365-day recall period for five non-food items, namely, clothing, footwear, durable
goods, educational and medical expenses, instead of the 30-day recall for these items,
as in the previous rounds. The survey further adopted a 7-day recall period for
food consumption, thereby providing two estimates for monthly consumption - those
based on the 7-day recall and the 30-day recall periods. Consequently, MPCE values
based on the URP were underestimated relative to the other rounds, whereas those
using the Mixed Reference Period (i.e. 7-day recall for food consumption) resulted
in an overestimate of consumption. The difference in average consumption values for
1999-2000 and the remaining rounds is evident from Table 2 and Figure 5. In this
dissertation, the consumption estimates are drawn based on the 30-day recall period
and comparability concerns with the 55th round are ignored as they are not expected
to yield differential results in the regression analysis. Nevertheless, robustness checks
of the regression equation are conducted by omitting this round from the period of
analysis.

An important issue is the lack of a historical income survey in India, which is
instead proxied by household-level consumption expenditures. A number of advan-
tages exist for the use of income vis-à-vis consumption, and vice versa. Since income
comprises both consumption and savings, the effects of climate shocks on assets and
potential consumption smoothing behaviour by individuals can be more precisely
examined. Furthermore, evidence of asset-smoothing behaviour by the poor and
consumption-smoothing behaviour by the rich in climatic adversity has also been
recorded, which would be easier to identify with data on both consumption and sav-
ings or assets (Olsson et al. 2014 [IPCC]). In addition, consumption inequality is
found to be lower than income inequality through consumption-smoothing behaviour
and hence the use of consumption rather than income may mask many underlying
dynamics between various income groups (Attanasio and Pistaferri 2016). On the
other hand, consumption may be a better measure of permanent income, as it would
be less influenced by transitory shocks, in line with the permanent income hypothe-
sis. Further, consumption may not equal income, through inter-temporal borrowing
and lending among households and hence may better reflect regular household ex-
penditures. Moreover, wealth effects may be better captured in consumption than
income, for instance, through the purchase of luxury goods. In addition, consumption
smoothing may occur through receipt of government transfers, which would not be
captured in income. Finally, it is typically easier to accurately measure consumption
for low-income households, rather than income, which may be drawn from multiple

4Regressions conducted with state-region specific fixed effects yielded imprecise results due to the aver-
aging of temperature values across many districts.

11



sources and economic activities. However, income may be easier to measure than
consumption for high-income households (Attanasio et al. 2016). Nonetheless, both
measures - income and consumption - drawn from household survey data, suffer from
under-reporting, particularly at the top of the distribution. Although there is likely to
be measurement error in reported consumption, this is not a concern in the regression
analysis as the error is expected to be uncorrelated with the explanatory variables,
temperature and precipitation. The lack of correlation ensures that the exogeneity
assumption is not violated and the regression coefficients are estimated consistently
(Pischke 2007).

Climate data are drawn from the Climatic Research Unit at the University of East
Anglia (UEA), which provide data at the level of 0.25 ◦× 0.25 ◦grids, on a range of
key parameters such as mean, minimum and maximum temperatures, precipitation,
vapour pressure, wet day frequency and so on, over the 1901-2017 period on a monthly
basis. Data on mean temperature and precipitation are drawn for the 1983-2012
period and aggregated to the district-level based on a simple average using R-GIS 5.

4.2 Methodology

The econometric model used to evaluate the causal impact of increased climatic vari-
ability, measured as deviation of temperature (T ) and precipitation (P ) in year t
and sub-round r (corresponding to the NSS survey), from their district-sub round
specific historical mean values on household-level monthly per capita consumption
expenditure, is as follows:

lnChtr = αd + τt + β(Tdtr − T̄dr) + δ(Pdtr − P̄dr) + φXhtr + εhtr (2)

where αd is a vector of district dummy variables, τt are survey year dummy vari-
ables and Xhtr is a vector of household characteristics such as sector of occupation,
region of residence (rural or urban), access to government insurance programs, as well
as interaction terms between climate variables and occupation. Standard errors are
clustered at the district-level to account for correlation and heteroskedasticity among
households within a district. Although the primary unit of stratification in the NSS
survey (which follows a stratified sampling design) is the village rather than the dis-
trict, the inclusion of a large number of village dummy variables was not possible as
the NSSO do not provide comparable village codes across survey rounds. In addi-
tion, India has approximately 640,000 villages and a dummy variable with as many
categories was not feasible to implement for regression analysis.

The survey year dummy variables are important not only to capture the trend
in mean consumption over the three decades of analysis but also the changing con-
sumption distribution over time, which relies on the assumption of independent, but
not identically distributed errors (Wooldridge 2002). Hence, estimation is conducted
distinctly for each time period, in which observations are identically and indepen-
dently distributed across strata (which ensures asymptotic normality and standard

5The ‘cruts2poly’ package was used for extraction. Follow this link for a step-wise guide.

12



hypothesis testing), with results averaged over time. In addition, the stratification
dummies account for cross-sectional correlation among households within a stratum
and capture unobserved heterogeneity at the district level such as socioeconomic
characteristics as well as the natural geography of the region, which may be corre-
lated with each other. Since there are 580 districts (for which the climate and NSS
data merge perfectly), including district dummies should not lead to an incidental
parameters problem. As households are sampled randomly across survey years, the
estimation strategy employs pooled cross-sections, rather than a panel of households
over time. Hence, the unobserved heterogeneity is not eliminated as in the case of a
fixed effects ‘within’ estimator; instead, we obtain differential intercept terms across
strata. Alternatively, one may aggregate household consumption to the district level
and employ a panel regression approach. However, household-level analysis is impor-
tant for understanding the mechanisms, especially the role of sector of employment,
the disparity across rural and urban regions, and their interaction. This regression
model is thus estimated using OLS and subsequently using interaction terms of the
climate variables with consumption deciles, to estimate the effect of climate shocks on
consumption at the 10th, 20th, 50th, 90th percentiles and so on. A panel regression
model with fixed effects is subsequently estimated to corroborate the results of the
pooled cross-section regressions.

Since the survey is conducted in four sub rounds over the year, such that each
household is surveyed in a particular sub-round, there is clear seasonality of both the
consumption and climate data, although less so for the former due to consumption-
smoothing behaviour. The ideal specification entails the inclusion of dummy variables
that capture district-year-sub round specific unobserved heterogeneity. However, this
would imply a large number of categories for the dummy variable, which is infea-
sible to implement and offers little advantage. Alternatively, including both year
and sub-round effects would introduce perfect collinearity in the regression. More-
over, inclusion of a district-sub round fixed effect is more relevant as different states
and districts fall under varying climatic zones in the country, experiencing diverse
weather conditions in the same sub-round. For instance, while most of the country
experiences winters from October to December, the southern states of Tamil Nadu,
Kerala and Karnataka experience monsoonal conditions on account of the north-east
monsoon. Rather than including these various dummy variables, however, I simply
include a time trend and subsequently analyse results by sub-round of the NSS survey
to understand which seasons account for the largest observed impacts.

Dell, Jones and Olken (2014) discuss how local climatic variables like temperature,
soil quality and elevation might be correlated with economic ones such as institutional
quality and the level of development. Due to many potential confounders, the cross-
sectional approach typically suffers from omitted variable bias, which is circumvented
by the panel fixed effects method (Mani et al. 2018). The key identifying assumption
in the current analysis is that while district-level economic and climate variables might
be correlated with average temperature or rainfall, they would not be correlated with
exogeneous annual fluctuations or deviations in these climatic parameters from their
district-specific long run mean values. Hence, studying annual deviations from the
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means of climate variables rather than a simple increase in their average values over
time is important for identification.

5 Empirical Specification

The key equation to be estimated is:

lnChtr = αd + τt + βTdtr + δPdtr + φXhtr + εhtr (3)

where lnChtr is log household consumption, αd are district dummy variables, τt are
survey year dummies, Xhtr is a vector of controls and εhtr is a normally distributed
error term. Tdtr and Pdtr are temperature and precipitation at the district-level,
expressed as four different measures: 1) absolute values of T and P in district d,
year t and sub-round r; 2) deviations of observed values from their district-sub round
specific long term means (e.g. Tdtr − T̄dr); standardized z-scores averaged over the
sub-round; and standardized z-scores corresponding to the first month of the NSS sub-
round. This equation is estimated by Ordinary Least Squares (OLS), which relies on
the assumption of exogeneity and non-collinearity for consistent estimation of the
regression coefficients. Exogeneity of the climate variables has been discussed in the
preceding section and non-collinearity is ensured by the omission of any variables
which may be strongly correlated with both the climate variables and household-level
consumption.

The OLS estimation above is replicated with panel-level fixed effects using the
‘within-estimator’, which improves on the pooled OLS technique by eliminating the
unobserved heterogeneity or the district-level ‘fixed-effects’, as follows. The household
data are first averaged to the district-level to create a panel dataset with district-year-
sub round observations. The panel data equation is:

lnCdtr = αd + τt + βTdtr + δPdtr + εdtr (4)

Now consider the time-average of the above equation:

lnC̄dr = αd + τt + βT̄dr + δP̄dr + ε̄dr (5)

The ‘within-estimator’ is obtained by regressing the difference of equations (4)
and (5), which leads to elimination of the time-invariant fixed effects αd, which are
potentially correlated with the variables of interest, T and P and may confound
the coefficient estimates. This ensures exogeneity of the explanatory variables, i.e.
E(Tdtr;Pdtr|εdtr) = 0.

The final specification evaluates the impact of climate shocks on households in
various deciles of the consumption distribution. This is estimated by interacting the
climate variables with a dummy variable specifying the consumption decile that the
household belongs to, in order to obtain differential impacts of shocks across the
distribution.
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lnChtr = αd + τt + βlTdtr ∗Dl + δlPdtr ∗Dl + φXhtr + εhtr (6)

where the slope coefficients β and δ differ by consumption decile l.

6 Stylised Facts

This section presents and discusses descriptive statistics for the climate and economic
variables used for analysis for the period 1983-2012 and 1988-2012, respectively.

Variables Observations Mean Std. Dev. Min Max

Mean Temperature 545833 24.90 5.649 -10.41 33.88
Mean Precipitation 545833 111.1 125.9 0 781.3
Std. Temp. 545833 0.151 0.623 -1.750 1.724
Std. Pre. 545683 -0.0254 0.563 -1.680 2.268
Std. Temp. (1mo) 545833 0.160 0.883 -2.162 2.189
Std. Pre. (1mo) 542767 -0.0848 0.874 -2.202 2.268

Std. Temp. (1mo) and Std. Pre. (1mo) refer to the first month of the NSS sub-round.

Table 1: Summary Statistics of Climate Variables (1983-2012)

The mean temperature in India over the 1983-2012 period was 25 ◦C, with a stan-
dard deviation of 5.6 ◦C, ranging from -10 ◦C in the northern-most, snowy state of
Jammu and Kashmir (in 2011-12) to around 34 ◦C in the more temperate and mon-
soonal state of Maharashtra. Mean precipitation was 111 mm over the corresponding
period, with a large standard deviation of 126 mm. Many states and union territories
in diverse climatic regions witnessed no precipitation on average during January to
March. These include the hot, arid regions of Rajasthan and Gujarat, the temperate
state of Madhya Pradesh and the equatorial regions of Maharashtra, Andhra Pradesh,
Karnataka, Goa, Daman & Diu and Dadra & Nagar Haveli 6. On the other hand, the
state of Meghalaya, in particular the East Khasi Hills district, recorded the highest
mean rainfall in the country at 781 mm over 1983-2012 7.

In the subsequent regression analysis, climate shocks are defined in a number of
ways. First, the raw temperature and precipitation distributions are standardized into
z-scores by subtracting their long run monthly mean values for each district and sub-
sequently averaging these standard normal scores over the corresponding sub-round
of the NSS data. This standardization procedure allows comparison of equivalent
magnitudes of climate shocks across the country, comprising diverse climatic zones
across the states. These variables are labelled ‘Std. Temp.’ and ‘Std. Pre.’ in the
above table. The mean temperature shock over the 1983-2012 period was positive and
0.15 standard deviations above its long-run mean, while the mean precipitation shock

6These climate descriptions are based on the KöppenGeiger climate classification. Available here.
7The town of Cherrapunji, until recently known as the wettest place on Earth, lies within the East Khasi

Hills district of Meghalaya.
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was negative and 0.025 standard deviations below its long-run mean. Taraz (2017)
explains the inter-decadal alternating regimes of the Indian monsoon, computing the
long-run average of rainfall over 1871-2008. The 1970-2000 period corresponds to a
regime in which rainfall was below its historical average. Coupled with the finding
of negative precipitation shocks on average relative to long-run values over 1983-2012
computed from the CRU TS dataset implies overall low precipitation over this inter-
decadal period, relative to historical climatic conditions over the Indian region.

The next measure of climate shocks used is standardized z-scores for temperature
and precipitation corresponding to the first month of each sub-round (henceforth,
SR) of the NSS, i.e. July for SR 1, October for SR 2, January for SR 3 and April for
SR 4. This technique has two advantages. First, it correlates the climate shock of the
relevant month to the entire sub-round without averaging the magnitude of the shock
over the 3-month period, which tends to smooth out the shock. This is reflected in
lower absolute mean values of climate shocks in the ‘Std. Temp.’ and ‘Std. Pre.’
variables compared to the variables corresponding to the first month of the sub-round,
along with larger standard deviations and ranges of these later variables (Table 1).
Second, it allows analysis of both contemporaneous (same month) and lagged effects
(a lag of one or two months) of climate shocks on households that are sampled in the
first month of the sub-round vis-à-vis those sampled in the subsequent months within
the same sub-round. Lack of information on the month of the NSS survey precludes
monthly analysis.

Household-level data for real monthly per capita consumer expenditure drawn
from the NSS surveys show a steady increase in mean consumption from Rs. 195
in 1987-88 to Rs. 312 in 2011-12, using the Consumer Price Indices for Agricultural
labourers for the rural sector and Industrial Workers for the urban sector respec-
tively, using the base year of 1987-88, drawn from the NSS published reports (NSSO
2011-12; NSSO 2009-10). 89 It is interesting to note that the standard deviation
of consumption exceeds the mean in each year of the survey. This does not imply
negative expenditures at the bottom of the distribution but simply clustering of poor
households toward zero, thus highlighting the vast disparity in consumption between
high- and low-income households, with the large upper tail consumption patterns
raising the standard deviation 10.

Consumption averages at different quantiles of the distribution reflect underlying
inequality. Over 1988-2012, mean consumption of the poorest 25 per cent individuals
rose slowly, stabilising at around half of mean consumption in the country. Similarly,

8The unit-level estimates differ to an extent from the aggregate statistics reported by the NSS, potentially
due to rounding off errors. For example, the unit-level data suggests an increase in the average real MPCE
from Rs.169 to Rs. 242 for the rural sector (growth rate of 43 per cent) and from Rs. 280 to Rs. 468 for the
urban sector (growth rate of 67 per cent) over 1988-2012. However, these figures overestimate consumption
expenditure as the growth rate of real MPCE at the all-India level, as reported by the NSSO was only 40
per cent for the rural sector and 60 per cent for the urban sector. Nevertheless, these slight differences in
population estimates would not affect the regression analyses, which is the primary objective of this study.

9The significant underestimate of mean consumption in 1999-2000 relative to the remaining survey years,
the reasons for which were discussed in the Data section, is evident in Table 2.

10I thank Abhijit Tagade for highlighting this phenomenon and offering a detailed explanation.
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Mean Std. Dev. p10 p25 p50 p90 p99

1988 194.7 209.4 82.08 107.6 149.0 342.5 823.0
2000 2.442 3.096 1.074 1.384 1.895 4.276 9.839
2005 233.8 309.3 92.95 121.0 169.4 415.6 1177.6
2010 269.0 461.7 102.2 134.5 188.2 479.1 1323.9
2012 312.2 459.1 116.7 154.5 221.0 554.6 1637.8

p refers to percentile.

Table 2: Summary Statistics of Real MPCE, 1988-2012

Figure 1: Distribution of Real MPCE, 1988-2012 (excluding 1999-2000)

the median household has always consumed less than the mean household, reflecting
underlying inequality in the population of households, with the mean being driven by
consumption levels at the top. Finally, the rise in consumption levels of the top 1 per
cent of households is particularly noteworthy. This subgroup witnessed a doubling of
consumption levels, compared to an increase of 62 per cent for the top 10 per cent
individuals and only 44 per cent for the bottom 25 per cent individuals.

Household-level real energy expenditures show an increase from an average of
Rs. 64 in 1987-88 to Rs. 99 in 2004-05 (Table 3). Similarly, real expenditures
on electricity rose from Rs. 8 to Rs. 29 over 1988-2005. Other components of
energy for which data are recorded include coke, firewood, dung cakes, matches and
kerosene. Although the energy data for all rounds except the 43rd (1987-88) and
61st (2004-05) appear to be inconsistent with the corresponding household monthly
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Year Real MCE Energy Exp. Electricity Exp. HH Size

1988 884.1 63.90 7.090 5.025
2000 22854.6 82.04 8.781 9486.9
2005 984.3 98.88 28.86 4.744
2010 NA 0.934 0.304 NA
2012 1206.9 1.032 0.332 4.435
Mean (1988-2012) 2952.6 80.27 8.638 894.9

Real MCE = Real MPCE * Household Size ; NA - Not Available

Table 3: Summary Statistics for Mean Real Monthly Consumer Expenditure, Household
Energy and Electricity Expenditure and Household Size, 1988-2012

total consumption expenditures, these rounds, excluding the 55th (1999-2000) 11,
are nevertheless utilised for the subsequent regression analysis. Lastly, the mean
household size appears to have declined from 5 persons in 1987-88 to 4.7 in 2004-
05 and stabilised at 4.4 in 2011-12, with a corresponding decrease in its standard
deviation.

The availability of food ration cards among households is also included as a dummy
variable in the dataset to account for potential consumption-smoothing mechanisms
through state-led food security programs. Data from the 2004-05 and 2011-12 rounds
show that 76 per cent and 80 per cent of households, respectively, possessed a ration
card - either a Below Poverty Line (BPL) card or an Antyodaya Anna Yojana (AAY)
card, both of which guarantee these households provision of food grains, notably rice
and wheat, at subsidised prices, or any other type of ration card (Table 4).

Ownership of ration card 2004-05 2011-12

0 (No) 22.44 19.58
1 (Yes) 77.56 80.42

Table 4: Possession of Ration Cards by Households (in per cent)

Heterogeneity by the sector of the household’s principal occupation and region of
residence over the 1990s and 2000s reveals important trends. First, the primary sector
of employment continues to be largely agriculture, although the share of households
employed in this sector has fallen, from 60 per cent to 43 per cent over 1988-2012. This
decline in agriculture has been commensurate with the rise in the share of households
employed in services, from 24 per cent in 1988 to 32 per cent in 2012. This is
based on the National Industrial Classification 2008, and hence simply reflects the
industry of employment rather than the household’s primary occupation, which is
better informed by the National Classification of Occupations (NCO). Analysing the
incidence of climate shocks by sector is important to highlight various channels, as

11This round is not utilised as the analysis on electricity expenditures is performed for various quantile cat-
egories and the lack of comparability of the 55th round with the others prevents computation of comparable
quantile categories across rounds.

18



discussed in earlier sections. Second, temporal shifts in households’ region of residence
shows convergence between rural and urban regions over the previous three decades
(Table 6). While in 1987-88, 65 per cent of households resided in rural areas, this
share dropped to 59 per cent by 2011-12, with a corresponding rise in the share of
urban households from 35 per cent to 41 per cent. Lastly, heterogeneity by industry of
employment and region of residence confirms the ex ante intuition, in that a majority
(73 per cent) of agricultural households reside in rural regions, whereas around 33
per cent and 60 per cent of industrial and service-sector households reside in urban
regions.

Year Agriculture Industry Services

1988 59.48 16.89 23.62
2000 56.46 17.04 26.50
2005 51.25 20.23 28.5
2010 46.96 22.74 30.30
2012 43.38 24.93 31.69

Table 5: Share of Households by primary occupation based on NIC Codes (in per cent)

Year Rural Urban

1988 65.27 34.73
2000 60.38 39.62
2005 64.13 35.87
2010 58.45 41.55
2012 58.66 41.34

Table 6: Share of Households by Region of Residence (in per cent)

Sector Agriculture (1) Industry (2) Services (3)

1 (Rural) 72.84 11.95 15.21
2 (Urban) 7.61 32.55 59.84

Table 7: Share of Households by Primary Occupation and Region of Residence (in per cent)

The kernel density plots for various measures of the climate variables are presented
in the Appendix. These include temperature, precipitation, deviations from their long
run means, their standardized z-scores by month and aggregated by sub-round; and
standardized z-scores for the first month of each sub-round (i.e. July, October, Jan-
uary and April). The kernel density plot for standardized z-scores of temperature and
precipitation by sub-round somewhat resembles a normal distribution. However, the
Shapiro-Wilks’ W test for normality strongly rejects the null hypothesis of a normal
distribution. This is perhaps because of the spatial and temporal dependence of cli-
mate data. Therefore, it is important to correct the standard errors in the regressions
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to account for this spatial and temporal dependence (Deyugina and Hsiang 2014).
This is typically done using Conley (2008)’s HAC estimation technique. However,
due to the large sample size of the dataset, estimation of standard errors using Con-
ley’s GMM method cannot be implemented as it is computationally intensive. The
lack of correction for standard errors is a limitation of this dissertation.

Figure 2: Kernel Density Plots of Temperature and Precipitation (Standardized Z-Scores
averaged over the Sub-Round

Kernel density plots for real MPCE are presented in Figure 3. While real MPCE is
clearly not normally distributed, log consumption appears close to a normal for each
year. However, the Shapiro-Wilks’ W test (results presented in Appendix) strongly
rejects the null hypothesis of a normal distribution for each year. As Deaton (2018)
points out, this is typically the case in household survey data and perhaps the use
of nonparametric or semiparametric estimators would ensure more robust hypothesis
testing of the regression coefficients. However, the OLS method offers clear interpreta-
tions of results and is computationally less intensive than non-parametric estimators,
which have significant run times, especially for analysis using large datasets.

ln(Real MPCE) Temperature Precipitation

ln(Real MPCE) 1
Temperature -0.0225*** 1
Precipitation 0.00143 0.272*** 1

* p < 0.05, ** p < 0.01, *** p < 0.001

Table 8: Correlation Matrix for 1988-2012 (excluding 1999-2000)
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Figure 3: Kernel Density Plots of Real MPCE and ln(Real MPCE), 1988-2012

The pair-wise correlation matrix reveals a statistically significant and negative cor-
relation between log real monthly per capita consumer expenditure and temperature,
and a positive but insignificant correlation between log real MPCE and precipitation
(Table 8). The negative correlation can be explained by unobserved factors which
affect both consumption and local climate such as topography, elevation, distance
of the district from the coast as well as institutional quality, which has typically
been lower for less developed countries and more tropical climates (Dell, Jones and
Olken 2014). However, this correlation does not reflect the causal effect of higher
temperature and precipitation variability on per capita consumption, which is now
investigated through regression analysis.

7 Results

The pooled cross-section regression results, presented in Table 11 in the Appendix,
reveal an increase in log real monthly per capita consumer expenditure (MPCE) of
Indian households in response to climate shocks, measured as temperature and precip-
itation variability, over the 1988-2012 period. All regressions include dummy variables
for the survey year, with standard errors being clustered at the district level. The
first column reports the effect of higher absolute temperature and precipitation levels
on consumption expenditure, excluding district dummy variables. This regression
effectively measures the correlation among the three variables, with higher tempera-
tures and lower precipitation being associated with lower consumption expenditures.
However, the inclusion of district dummy variables is important to account for district
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specific unobserved heterogeneity. Hence, the subsequent estimations include district
dummies. The coefficient signs for both temperature and precipitation now reverse,
with both higher absolute temperatures and greater variability in temperature raising
consumption expenditure. On the other hand, higher precipitation and increased pre-
cipitation variability appear to lower consumption expenditure. As discussed earlier,
variables that capture climate shocks, measured as deviations of observed weather
conditions from their historical means for each district, are better measures of unex-
pected fluctuations, which may influence household consumption more than average
increases in temperature and precipitation, which might be better anticipated by
individuals based on past trends.

Following the above intuition, a 1 ◦C rise in mean temperature raises consump-
tion expenditure by 0.1 per cent and the effect is statistically significant at the 99
per cent confidence level. A 1 mm increase in precipitation, on the other hand, has
no detectable effect on consumption expenditure, as can be inferred from the statis-
tically insignificant and small regression coefficients on the precipitation variables in
all specifications. The negative sign on all coefficients is somewhat counter-intuitive
insofar as rainfall shocks can be interpreted as positive income shocks for households.
However, as the coefficients are not significant even at the 90 per cent confidence
level, inference will be limited to the temperature variables. Results in column 5
of Table 11 show that a one standard deviation increase in temperature relative to
its district-specific historical mean raises per capita monthly consumption expendi-
ture by around 1.2 per cent. The results are analogous while using the deviations of
temperature rather than the standardized z-scores, whereas those using z-scores of
temperature corresponding to the first month of each NSS sub-round show a smaller
increase in consumption expenditure, by around 0.6 per cent. The smaller increase
can be explained by the fact that only a third of households within a particular sub-
round would have faced that specific temperature shock in the month of the NSS
survey. The remaining households would have faced this shock either one or two
months prior to the survey and hence may have adapted their consumption levels
and expenditures accordingly.

While the point estimates obtained in the regressions are comparable in absolute
value to those in other studies cited above, i.e. in the range of 1 - 3 per cent, most
other studies perform regression analysis using income data, rather than consump-
tion, and typically observe income declines in response to weather shocks. Income
would encompass more channels than purely consumption alone such as potential
decreases in productivity, yields and so on. However, the increase in consumption in
response to weather shocks can be interpreted as a cost of adaptation incurred by
households due to unexpected variability in temperature relative to historically ob-
served temperatures in a particular three-month season within the year. This increase
in consumption or the cost of adaptation may be operating through a variety of chan-
nels such as rise in food consumption due to heat stress, rise in energy consumption for
cooling effects or potential increases in health expenditures. These mechanisms can
be better understood by analysing the impacts of climate shocks on sub-components
of MPCE. One such mechanism, energy, is examined in the forthcoming analysis. It
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is important to note that the increase in consumption is highly unlikely to reflect
a rise in living standards, through a potential increase in productivity. However,
this mechanism could be better examined using direct income data using alternative
sources.

Robustness checks for these pooled OLS regressions are conducted by checking the
sensitivity of results to analysis over different time periods. Table 14 presents results
without the year 1999-2000. This round is not comparable to the remaining NSS
rounds, as discussed in the data section, due to differential recall periods. Similarly,
Table 15 replicates the above results excluding both the years 1987-88 and 1999-
2000. In both specifications, the coefficient signs for all temperature variables and
the approximate magnitudes remain unchanged, i.e. within the range of 1-2 per
cent. The use of alternative measures for temperature and precipitation further adds
robustness to the results.

The results from the pooled cross-sectional analysis are now corroborated using
panel data fixed-effects regressions by averaging the household data to the district-
level, using the household survey weights provided by the NSS. The fixed effects
methodology is chosen over random effects as the district-specific unobserved hetero-
geneity is expected to be correlated with the explanatory variables, i.e. local climatic
variability. This would not satisfy the key assumption of the random effects model,
in that the unobserved heterogeneity should be uncorrelated with the regressors. Re-
sults are presented in Table 12. The first key observation from the regression table
is that all coefficient signs are identical to those from the pooled cross-section regres-
sions, with the temperature variables being statistically significant at the 99 per cent
confidence level and precipitation variables now also becoming significant at the 90
per cent confidence level. Second, the impact of higher mean temperature appears to
be insignificant on district-level monthly per capita consumption, due to estimation
using the ‘within-estimator’ which eliminates the fixed effects, thus obviating the ef-
fect of unobserved counfounding factors. Third, the coefficients on the temperature
variables are larger in magnitude, implying higher effects of climate shocks on mean
per capita consumption at the district-level. Specifically, a one standard deviation
increase in temperature relative to its district-specific historical average leads to a 4.8
per cent rise in consumption expenditure, whereas an equivalent increase in precipi-
tation reduces consumption by 2.7 per cent. On the other hand, the effects of shocks
at the beginning of the sub-round are dampened relative to those due to the mean
shock experienced over the duration of the sub-round, owing to potential adaptation.

The large magnitudes of these effects suggests that the mechanisms bringing about
an increase in mean consumption at the household-level vis-à-vis at the district-level
may be different. For example, it is possible that temperature shocks may have
spurred migration within rural regions across districts or states. In addition, a large
number of household members may have found employment in the secondary or ter-
tiary sector which would have raised incomes and therefore consumption. Alter-
natively, the potential rise in energy consumption by wealthier households may be
driving the average increase in total consumption at the district-level. The channels
driving an increase in consumption are diverse and heterogeneous in nature. I be-
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gin examining heterogeneity of climatic impacts by first investigating their effects on
households at various deciles of the consumption distribution 12.

The distributional effects of climate shocks are now examined, based on results
presented in Table 13. The effects of absolute increases in temperature as well as
temperature shocks, measured through deviations and standardized z-scores, appear
to be negative for households with consumption levels at and below the seventh
decile of the distribution (i.e. monthly per capita consumption expenditure of Rs.
190 or less). On the other hand, unexpected temperature variability appears to raise
consumption of households at the eighth, ninth and top deciles of the consumption
distribution (mean consumption expenditures of Rs. 228, Rs. 296 and Rs. 584
respectively). It is important to note that these mean consumption levels at various
deciles further mask significant underlying heterogeneity, as detailed in Table 10. For
example, households consuming above the 90th percentile exhibit a large range of
consumption expenditures, from Rs. 352 to Rs. 1,02,185. Further, the OLS method
would estimate average effects within a decile, which may further be driven by the
large upper tail consumption values within that decile category.

Analysing heterogeneous effects of climate shocks provides some intuition for the
results obtained in the pooled OLS regressions for the average household. Given the
sensitivity of the OLS estimator to extreme values in the dataset (i.e. outlier observa-
tions), perhaps the average increase in consumption in response to temperature shocks
is being driven by households at the top of the consumption distribution. These re-
sults do not however undermine the reasoning developed for the average effects, as
the increase in consumption by higher income individuals may still reflect a cost of
adaptation to climate change. On the other hand, the mechanisms now need to be
examined to understand which sub-components of consumption are rising in response
to higher temperatures. While analysing each component of total consumption such
as food, health, travel & transport and energy is rather detailed for this study, the
potential mechanism of energy, is examined in the succeeding sections. A rise in en-
ergy expenditure may raise consumption in two ways - 1) a direct rise through the
increased use of climate control technology within homes such as air conditioners and
coolers and 2) indirectly by enhancing individuals’ productivity and therefore raising
their incomes and consumption through cooling effects of climate control, given that
the use of climate control is endogeneous to both temperature and productivity.

It is further interesting to note the magnitude of effects of temperature shocks
across the consumption distribution. Column 3(a) examines the effects of a one
standard deviation increase in temperature on log real MPCE. While consumption
expenditures decline by 16 per cent for individuals at the median, they progressively
decline more at the lower deciles, with the bottom 10 per cent individuals exhibiting
declines of 49 per cent. On the other hand, individuals at the eighth decile experi-

12The decile categories have been created using data on all households whose real MPCE exceeds the 1
percentile value for the year 1987-88. This corresponds to a monthly per capita consumer expenditure of
Rs. 49., ranging to an upper limit of Rs. 1,02,185 in 2011-12. The year 1999-2000 has been excluded as the
recorded consumption levels were extremely low in that year compared to the other rounds, which led to
imprecise decile categories, such as minimum expenditures of Rs. 1.
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ence consumption increases in the order of 2.4 per cent and this positive effect rises
steadily toward the upper tail of the distribution, with the top 10 percent individuals
experiencing consumption increases of 38 per cent.

These magnitudes are extremely large and can be understood better by studying
the temperature distribution. Within the climate dataset employed for the analysis,
a one standard deviation of observed temperature relative to its long run mean for a
district corresponds on average, to a deviation of 0.8 ◦C, and ranges from 0.25 - 1.98 ◦C
across districts. This is within the scope of potential future increases in temperature
due to climate change. The heterogeneous effects of precipitation shocks can be
evaluated in a similar manner. While higher absolute levels of precipitation appear to
raise consumption expenditures of the bottom 10 and 20 per cent individuals, positive
precipitation shocks appear to lower consumption expenditures of the bottom 30 per
cent individuals, with consumption of the bottom 10 percent declining by 27.5 per
cent. On the other hand, consumption expenditures of the upper consumption deciles
rises by 3.1 per cent at the median, and progressively increases by 8.8 per cent for
the top 10 per cent individuals.

These possibly counter-intuitive results can be better explained by examining the
precipitation distribution. One standard deviation of observed precipitation relative
to its long run mean for a district corresponds to 50 mm of excess rainfall on average
and ranges from 0 to 522 mm of excess rainfall. These values are quite large, given
that the Indian Meteorological Department defines a ‘heavy rainfall day’ as one with
an excess precipitation of 64.5 mm, with further categorisation as ‘very heavy’ for
the 124.5 - 244.5 mm range and ‘extremely heavy’ as rainfall exceeding 244.5 mm
(Guhathakurta, Sreejith and Menon 2011). This implies that the average household
faced extreme amounts of unexpected rainfall, which may be better interpreted as
flood events rather than as positive rainfall shocks, which are typically used as a proxy
for income shocks in the development literature (Rose 1999). Dallmann and Millock
(2017) also provide explanations for why excess precipitation may be interpreted as
flood events, employing the same climate dataset for India as in this paper.

8 Heterogeneity

In this section, I examine the effects of climate shocks on per capita consumption,
incorporating important covariates which account for heterogeneity by the house-
hold’s primary occupation (i.e. agriculture, industry or services), region of residence
(rural or urban), NSS sub-round which broadly corresponds to different seasons and
the presence of state insurance programs such as availability of ration cards within
households.

Heterogeneous effects across sectors of economic activity, region of residence and
their interaction reveal interesting disparities in climate impacts across sub-groups of
the Indian population (Table 16 13). Agricultural and industrial households appear to
be adversely affected by both higher temperature and its increased variability, with

13The dummy variables for NIC codes and region have been interacted with the climate variables.
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a one standard deviation increase in temperature causing per capita consumption
declines of 3.8 per cent and 6.5 per cent, in the two sectors respectively. On the other
hand, per capita consumption levels of households employed in the services sector rise
by 3.1 per cent in response to climate shocks. Further, rural households on average
witness an increase in consumption by 4.7 per cent, relative to urban households.

These results are broadly in line with ex ante expectation, although one would
perhaps expect consumption declines in the service sector due to physiological heat
stress on workers, rather than increases. However, as discussed in the theoretical
framework, a rise in energy consumption and potentially other adaptation measures
such as increased use of private transport to protect oneself against the deleterious
health effects of hot weather, may lead to an overall increase in consumption expen-
diture in this sector. Another interesting and perhaps surprising result is the greater
absolute decline in consumption levels of households employed in the industrial sec-
tor, relative to agriculture. This points to potentially differing mechanisms across
sectors. While in agriculture the key channel of reduced consumption would be lower
crop yields, in the industrial sector, individuals are expected to suffer greater heat
stress and therefore, reduced labour productivity. Consequently, their daily wages
or monthly income may be lower, in turn leading to a reduced ability to consume.
A puzzling observation is the higher consumption expenditures undertaken by rural
households relative to urban ones in response to equivalent temperature shocks. One
may have expected the opposite effect, assuming households in urban areas may have
a better capacity to utilise protection measures against heat stress such as climate
control technology. A possible explanation is the presence of a heat island effect in
urban areas which raises temperatures beyond the average levels in the region and
perhaps leads to more heat stress compared to neighbouring rural regions even at
equivalent temperature levels. These intuitions and differential patterns between ru-
ral vis-à-vis urban households need to be investigated deeper and may be interesting
questions for future research.

Results from interaction of these two variables further deliver new insights. While
agricultural households residing in urban areas witness consumption declines of around
9.7 per cent in response to a one standard deviation increase in temperature, rural
agricultural households appear to have higher consumption by 1.4 per cent, on aver-
age, in response to equivalent temperature shocks. While only 8 per cent of agricul-
tural households reside in urban areas, the distribution of their economic activities
across the NIC 3-digit codes, such as growing of crops, animal production and fishing,
appears to be uniform across rural and urban areas, implying that the nature of urban
agriculture does not differ significantly. Nevertheless, perhaps access to smaller areas
for cultivation as well as limited opportunities for adaptation to higher temperatures,
as opposed to those in rural areas, may be responsible for the significant consumption
declines in urban areas. Importantly, the increase in consumption of rural agricultural
households may be due to higher food prices as a result of reduced crop yields, thus
leading to overall higher farm income. Evidence for this is provided in Taraz (2018a)
and Government of India (2018). Alternatively, higher wage incomes from increased
supply of casual labour by farmers in response to weather shocks which reduce crop
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yields, may also lead to higher consumption levels. This mechanism is discussed in
Taraz (2018b).

Industrial workers in urban regions appear to be more adversely affected by heat
shocks than those in rural areas, experiencing consumption declines of 5.4 per cent
and 2.9 per cent respectively. The mechanisms driving these impacts might be a
combination of differential working hours in rural vs urban factories, varying levels
of exposure to outdoor working conditions and hot weather, as well as the potential
urban heat island effect, which may produce higher levels of heat stress through the
feedback process of higher temperatures. The services sector unambiguously observes
consumption increases in response to temperature shocks, with rural households con-
suming proportionately more than those in urban areas, at 7.4 per cent and 3.3 per
cent, respectively. These results further present puzzles, which require further re-
search to discover the mechanisms. The overall results for the services sector appear
counter-intuitive as the channels driving them are determined both by supply and de-
mand factors. While labour supply might be lower due to more heat stress and hence
reduced productivity, the demand for certain kinds of goods might also be lower in
hotter weather. For example, in the city of Roorkee within the state of Uttarakhand,
rickshaw pullers have in recent years switched from manual rickshaws to battery op-
erated ones even though the latter offer lower profits, simply due to reduced public
demand for the former. They further observe a drop in their number of rides in hotter
weather, particularly in the summer season, as individuals prefer to remain within
their homes at peak hours of the day and on hotter days in the season 14. Given both
these supply and demand-side factors, consumption expenditure may be expected to
be lower. However, investments in climate control and other adaptation measures
may offset these negative effects, leading to a net positive impact on consumption.

Robustness checks for heterogeneous impacts by sector of occupation interacted
with the residential area, are conducted by sequentially omitting the years 1999-
2000 and 1987-88 & 1999-2000 from the analysis, results of which are presented in
Table 17. All coefficient signs on the interaction variables in both specifications
are identical to those in the earlier regression. The magnitudes of the impacts are,
however, larger in absolute value in the second set of regressions. For instance, urban
agricultural households witness consumption declines of 14 per cent and 16 per cent
in the specifications excluding the years 1999-2000 and both 1987-88 & 1999-2000,
compared to a decline of 9.7 per cent in the regression with all time periods. Similar
results hold for the industrial and service sectors. While the magnitudes are to an
extent sensitive to the time period of analysis, the overall results remain robust and
the interpretations and conclusions derived earlier continue to hold.

The next piece of analysis studies the role of state insurance mechanisms in the
form of ration cards owned by households, which provide a range of benefits depending
on the type of card. These include fixed quotas of subsidised food grains, subsidised
healthcare, nutritional supplements and so on. In Table 18, I investigate the role of
existing state insurance programs in mitigating the potentially adverse effects of tem-

14A brief discussion with some rickshaw pullers in Roorkee in April 2019, revealed this insight.
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perature shocks, particularly at the lower spectrum of the consumption distribution,
to which these ration card facilities mostly apply. Column (1) shows the differential
per capita consumption levels of households who possess ration cards vis-à-vis those
without them, with the former consuming 12 per cent less per month on average.
This is intuitive as the ration cards are supplied to individuals below the poverty
line and other extremely vulnerable populations. This result, however, contrasts with
the coefficient in column (4) which shows a higher monthly household consumption
level of ration-card holders vis-à-vis non-holders. Hence, while the per-capita con-
sumption levels of ration card owners may be lower than non-owners, at the aggregate
household-level, perhaps with the subsidised food grain received through the Targeted
Public Distribution System (TPDS) of the Government of India, these families are
able to achieve a consumption level that exceeds those of non-cardholders by 15 per
cent on average. Column (2) observes the effect of higher absolute temperatures on
log real per capita consumption expenditure, but yields insignificant coefficients on
both the temperature variable and the interaction term between temperature and the
presence of ration cards within the household. The next two columns analyse the dif-
ferential effects of temperature shocks on per capita and total household consumption
levels of families with ration cards, relative to others. A one standard deviation in-
crease in temperature, while raising consumption expenditure on average, significantly
lowers both per capita and household-level consumption of families with possession
of any kind of ration card (i.e. BPL, Antyodaya or Other), by approximately 3.2 -
3.4 per cent, relative to consumption of non-card holders.

There could be two alternative explanations for this ambiguous result. First,
note that the analysis is based on consumer expenditures, rather than quantities of
consumption such as yields etc. Therefore, despite observing expenditures in real
terms, the reduction in expenditure coupled with highly subsidised foodgrain offered
through these ration cards, could imply that while absolute consumption may have
risen, the expenditure incurred by the household fell, due to the presence of state aid
or excess supply of foodgrain in an environment of higher temperatures. However, this
explanation does not seem convincing if we truly interpret consumption expenditures
in real terms as proxies for levels of consumption. The alternative explanation, thence,
is that the dummy variable for ration cards simply divides the population into the
poor and the relatively well off segments, in terms of their baseline consumption
levels. In that case, the interaction term of the temperature shock and the possession
of ration cards by the household reflects the differential effect of the temperature
shock on low-income households relative to the average household. Therefore, while
the average household experiences an increase in overall consumption, the ration-card
holders, which constitute the lower tail of the distribution, are adversely affected by
the temperature shock. In conclusion, the negative coefficients on the interaction
terms clearly show the lack of state protection and insurance mechanisms against
the potentially adverse effects of climate shocks, particularly at the lower end of the
consumption distribution.
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9 Mechanisms

To understand the causes of the rise in MPCE in response to temperature shocks,
it is important to test different mechanisms. In this section, I test two key chan-
nels through which consumption may rise in response to unanticipated temperature
shocks. First, a rise in household-level energy consumption (proxied by expenditure
on electricity) may be driving the increase in total consumption expenditure. Second,
households residing in relatively warmer districts may experience smaller increases in
consumption expenditure compared to those in colder districts. This reflects both
adaptation by households to climate change through long-term exposure to higher
temperature, as is analysed in Taraz (2018a), as well as potential increases in pro-
ductivity and hence income of households in colder districts.

The analysis for the responsiveness of energy (electricity) consumption to temper-
ature variability is conducted as follows. I first test for the effect of climate shocks
on log real MPCE by sub-round of the NSS survey, which broadly map to different
seasons. Results obtained from these regressions, displayed in Table 19, show a rise in
consumption expenditure in sub rounds 2 and 4, by approximately 1.5 - 3.3 per cent
due to temperature shocks across various specifications. These rounds correspond to
the months of October to December and April to June, i.e. the winter and summer
months respectively, for most of the country, except for the southern states of Kerala,
Tamil Nadu and Karnataka, which receive most of their rainfall in the months of
October-December through the North-East monsoon (the rest of the country receives
most of its rainfall over June-October through the South-West monsoon).

Next, I examine the effects of climate shocks on log household electricity consump-
tion. It is important to note that electricity is not the primary source of energy for
majority of households and the NSS records various forms of energy use such as fire-
wood, dung cakes, matches, coke, kerosene etc. Given that households would adapt
their energy use differently depending on their primary source of energy, I investigate
the effects on electricity usage as it more clearly reflects the potentially increased
use of climate control equipment such as air conditioners and coolers in response to
hotter weather. Higher temperature and higher deviations of temperature from its
long-term mean raises electricity consumption on average by 0.2 and 1.6 per cent
respectively (Table 20). However, electricity consumption does not appear respon-
sive to standardized shocks, i.e. either those averaged over the sub-round or those
corresponding to the first month of the sub-round. Heterogeneity across sub-rounds
shows that electricity consumption rises by 2.5 - 4.2 per cent across sub-rounds 1,2
and 4 (although the coefficient for sub-round 1 is only significant at the 10 per cent
level), due to higher fluctuations of temperature relative to its long-run normal (Table
21, Column 2). The increase in electricity consumption in sub-rounds 2 and 4 can
help explain the overall rise in consumption expenditure, as the magnitudes of the
rise are comparable to the total rise in consumption in these sub-rounds (Table 19).
Lastly, the differential response of electricity consumption across deciles of the initial
consumption distribution is examined (results presented in Table 22).

The heterogeneous response of electricity consumption parallels the overall rise in
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consumption due to temperature shocks. Electricity consumption of households in
the bottom eight deciles, i.e. 80 per cent of the population, declines due to higher
temperatures relative to their long run means, while that for the top 20 per cent
individuals rises. The median consumption decline is 14.2 per cent, based on absolute
deviations of temperature from its long run mean and this decline progressively rises
in absolute value at the lower tail of the distribution, with the bottom 10 per cent
individuals witnessing a drop in electricity consumption of 42.7 per cent. At the upper
tail, electricity consumption rises by 5.7 per cent and 21 per cent for the ninth and
the top decile respectively. This significant rise in energy use by richer individuals
may be driving the increase in overall consumption due to temperature shocks. The
fall in energy consumption at the bottom of the distribution can be explained by
the fact that the share of a household’s total expenditure on energy is low among
low-income households and it rises steadily with per capita income or per capita
expenditure, until a turning point of approximately USD 8,000-10,000, beyond which
the share declines (Dorband et al. 2019). Consequently, households may substitute
away from energy consumption in an environment of unexpected temperature shocks
and redirect resources to greater food intake in order to smooth consumption and
minimise any loss of productivity and decline of health.

Another important mechanism examined is potential adaptation by households
residing in districts which have experienced historically higher temperatures relative
to the all-India median, compared with those districts which have experienced his-
torically lower average temperatures. The results (presented in Table 23) show that
while relatively hotter districts, i.e. those with long run mean temperatures above
25.6 ◦C, which is the country-level median, exhibit higher consumption expenditures
in response to climate shocks (columns 2 and 3), hot districts do not exhibit sys-
tematically different consumption responses relative to colder districts, as revealed
by the interaction term between the ‘Hot District’ dummy and the temperature vari-
able. This evidence contrasts with that of Taraz (2018a), who finds smaller effects
on historically hotter districts compared to colder ones, although the negative effects
start to rise beyond 30 ◦C, even in hot districts. While temperature does not seem to
impact districts differently, higher precipitation raises consumption expenditure by
0.008 per cent in hotter districts relative to colder ones.

To further test this mechanism, a dummy variable is now created for three tem-
perature ranges: < 15 ◦C, 15-29 ◦C and > 29 ◦C, and interacted with the temperature
shock. Results from this set of regressions (displayed in Table 24) fail to find a sig-
nificant difference in consumption expenditures in response to temperature shocks
across the different temperature ranges, although in column (4) consumption expen-
ditures appear to be 1.9 per cent lower among households facing mean temperatures
above 29 ◦C, relative to those living in colder conditions, i.e. < 15 ◦C. In addition,
consumption expenditures of households in the middle range, i.e. 15-29 ◦C, appear to
be 1.2 per cent lower due to temperature shocks, relative to households living in sub
15 ◦C conditions. This effect is statistically significant at the 10 per cent level. The
temperature shock in the first month of the sub-round (Std. Temp. (1mo)) raises
per capita consumption by 1.9 per cent on average and therefore, corresponds to
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the first temperature range. This helps to test the channel of productivity increases
as being potential drivers of the observed rise in consumption due to temperature
shocks. Indeed, Burke, Hsiang and Miguel (2015) find 13 ◦C to be the optimum
temperature for maximum productivity, beyond which it declines rapidly. Therefore,
the rise in consumption of households facing long run mean temperatures below 15
◦C, may be partly explained by an increase in productivity and therefore, income and
consumption.

The existence of productivity effects is further tested by regressing log consump-
tion on temperature and temperature-squared to estimate a turning point level of
temperature which optimises consumption. Calculations in the Appendix show that
the consumption minima is obtained at a temperature of 7.9 ◦C and the consumption-
temperature relationship does not follow an inverted-U curve. In fact, with the in-
clusion of year and district dummy variables, neither coefficients on the temperature
or temperature-squared variables are statistically significant, indicating the lack of a
temperature-productivity relationship for Indian households, insofar as consumption
expenditures proxy income or productivity.

10 Limitations

The limitations of the dissertation are now discussed. The primary drawback of the
analysis in this paper is that none of the four measures utilised for the climate vari-
ables, temperature and precipitation, fulfill the criterion of a normal distribution, as
confirmed by the Shapiro-Wilk W test for normality (Table 9) and as can be inferred
from the kernel density plots in Figure 4. The lack of normality is potentially due
to spatial and temporal dependence of the climate data, which can typically be cor-
rected by using Conley (2008)’s Heteroscedasticity and Autocorrelation Consistent
(HAC) estimation technique, which corrects the standard errors for the spatial de-
pendence among geographically concentrated districts. However, the large sample
size employed in the estimation precluded efficient usage of Conley’s technique and
proved computationally costly. Further, this technique corrects the standard errors,
thereby making the estimates more precise but does not affect the coefficient values.
Therefore, the regression coefficients obtained in the preceding sections can be inter-
preted as they are, insofar as the coefficients are statistically significant at standard
levels of significance.

Alternative measures of climate variables may be employed in future research to
improve upon the estimates obtained in this paper. While mean temperature was
tested through a number of alternative measures, the next step could be to study the
effects of a rise in maximum temperature at a daily or monthly frequency on the local
economy. It can plausibly be expected that household consumption patterns may
react differently to unexpected increases in the maximum temperature, while the
effects due to mean temperature may be less responsive, although the mechanisms
are expected to be the same. In addition, rather than using precipitation levels, the
Standardized Precipitation Index (SPI) could be utilised to capture the magnitude of
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drought and excess precipitation. This can be done by fitting a gamma distribution to
the underlying precipitation data and subsequently normalising the data (Dallmann
and Millock 2017). However, the program being computationally intensive prevents
the use of this measure in this paper.

A third limitation of this dissertation is the use of the OLS estimation method
rather than the quantile regression method for the evaluation of heterogeneous ef-
fects of climate shocks across the consumption distribution. The Quantile regression
estimator minimises the asymmetric absolute loss function at different quantiles of
the distribution, thereby estimating not the average effect but the effect on the data
points closest to the τ th quantile. While this method best approximates heterogeneous
effects, a key issue in quantile regression is the non-differentiability of the absolute
loss function at points where the error term is close to zero, i.e. µi = 0. In large
samples, this is typically not a concern as the probability of the estimator being non-
differentiable declines with the sample size. However, this implies that the OLS and
QR coefficients are not strictly comparable (Wooldridge 2002). The OLS estimation
interacts the climate variables by the consumption decile to which the household be-
longs, thus estimating the differential effects across deciles in an efficient manner by
utilising the entire dataset in the regression. This is an improvement upon alternative
methods which estimate differential effects separately for each decile by restricting
the observations to those pertaining to the relevant decile. Utilising only a subset of
the data for estimation may not lead to normally distributed error terms, as a subset
of the underlying population would not be normally distributed. This would raise
concerns for hypothesis testing based on the regression estimates.

Lastly, the analysis raises some puzzles in terms of the mechanisms driving the
increase in total consumption of the top 20 per cent individuals, beyond a rise in
their energy consumption, which in part accounts for this increase. Therefore, it is
important to test alternative mechanisms such as the income and productivity chan-
nels for the top deciles of the population. This could be done by utilising the India
Human Development Survey (IHDS) which provides household-level data on income,
consumption and wages, as well as other data sources such as the NSS Employment-
Unemployment survey, the Annual Survey of Industries and the NSS firm-level sur-
veys, which provide data on wages of workers and firm managers. Analysing differ-
ential impacts on sub-groups of the population such as production workers vis-à-vis
firm managers may highlight important dimensions of the economic impacts of cli-
mate change and in particular, its consequences on inequality. Utilising alternative
datasets could help answer these questions and may be interesting areas for further
research.

11 Conclusion

Climate change is a global challenge that demands prompt and well-coordinated in-
ternational policy action. If the business-as-usual scenario continues, it could under-
mine economic growth and development, possibly lead to a reversal of the hitherto
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gains made in poverty reduction, lead to a loss of biodiversity and have adverse hu-
man health impacts. This paper examines the effects of climate shocks, measured
as variability in temperature and precipitation, on monthly per capita consumption
expenditure of Indian households over the 1988-2012 period. The analysis also delves
into heterogeneity across households based on their consumption decile, sector of
occupation, region of residence and access to state insurance through possession of
ration cards.

Evidence for climatic impacts on the average household shows an increase in con-
sumption expenditure in response to higher temperatures. This is contrary to the
findings from existing research which observes a clear decline in income and produc-
tivity of individuals due to heat stress (Deryugina and Hsiang 2014). Heterogeneous
impacts on households at various deciles of the consumption distribution highlight
the mechanisms for this observed rise. While consumption of the top 20 per cent
individuals rises, that of the bottom 50 per cent individuals (i.e. bottom five deciles)
significantly declines due to equivalent heat shocks. Therefore, the observed positive
impacts on the average household are being driven by the increase in consumption at
the upper tail of the distribution. Two mechanisms are investigated for the observed
rise in consumption. The evidence points to a rise in electricity consumption, pre-
sumably for the use of climate control such as electric coolers and air conditioners,
due to unexpected higher temperatures. Differential responses of electricity expendi-
ture across the initial consumption distribution shows a significant rise in electricity
use for the top two deciles of the population and a decline for the remaining deciles,
which mirrors the heterogeneous effects of climate shocks on total consumption. The
decline in energy consumption of low-income households can be explained by their
low energy expenditure shares (Dorband et al. 2019) which may lead to potential
substitution of other types of consumption such as food and nutrition for energy in
the wake of climate shocks and heat stress.

The second mechanism tested is a potential rise in productivity of households
residing in relatively ‘colder’ districts, in response to higher temperatures, compared
to households in historically ‘warmer’ districts. However, the empirical evidence
fails to find differential economic impacts of climate shocks in ‘hotter’ vs ‘colder’
districts, thus ruling out the mechanism of a productivity increase on the average
household. Further investigation is required to understand differential impacts across
low- and upper-income households, in particular, whether the latter experience a
rise in productivity perhaps due to increased energy consumption in response to
temperature shocks.

Heterogeneity by the household’s primary economic activity, interacted with their
region of residence reveals disparities in impacts across sub-groups of the population.
While households employed in the agriculture and industrial sectors experience ad-
verse climatic effects on their per capita monthly consumption, households in the
services sector witness an overall increase in consumption, in both rural and urban
areas. The rise in consumption of rural households relative to urban households due
to equivalent temperature shocks seems counter-intuitive, as urban households may
be expected to utilise more self-protection measures such as use of climate control

33



against heat shocks. An interesting result is the rise in consumption of rural agri-
cultural households, which is contrary to existing evidence on agricultural impacts of
climate change. This rise in consumption may be driven by the increase in commodity
prices due to lower crop yields, which may be reasonably expected on account of heat
stress. Nonetheless, further assessment of the sector-specific mechanisms is needed
to identify the channels resulting in these impacts. In addition, industrial households
experience more adverse effects relative to agricultural ones on average across rural
and urban regions, i.e. a loss of consumption by 6.5 per cent vs. 3.8 per cent, which
highlights the importance of analyzing climatic impacts on this sector. Important
questions for future research could be to understand the drivers of impacts by sector
and their relative magnitudes, for example, whether a rise in energy consumption
drives the aggregate increase in consumption of service sector households. Lastly, the
possession of ration cards by households does not appear to moderate the adverse
impacts of climate shocks on per capita consumption. Alternative measures of state
insurance could be employed in future research to investigate the effects of social
protection in mitigating potentially adverse climatic impacts.

The empirical analysis in this paper has important implications for economic and
climate policy. The heterogeneous impacts of climate shocks reveal an increase in
inequality of consumption, which would in turn lead to a slowed pace of poverty
reduction and reflects the lack of inclusive growth. In this regard, an important policy
question is whether market instruments such as carbon taxes can be employed for re-
distributive purposes, from high- to low-income households, in order to compensate
the poor for reductions in their consumption due to climate change. A wholesome
welfare analysis is required to evaluate the effects of such policies on various income
groups of the population.

In addition, the rise in electricity consumption by richer individuals in response
to temperature shocks has implications for national and international energy demand
along with strategies for mitigation of climate change. In 2018, global energy demand
rose by 2.3 per cent, 70 per cent of which was accounted for by China, the United
States and India (IEA 2019). It is further forecast to grow by 25 per cent till 2040
(IEA 2018b). This increase in energy demand exerts pressure on existing sources of
energy and would need to increasingly be met by renewable energy sources to combat
rising emissions from fossil fuels. India’s Nationally Determined Contribution to the
Paris Climate Accord 2015 targets a 40 per cent share of renewable energy in the total
installed power capacity by 2030, with 175 Gigawatts of solar power by 2022 (Press
Information Bureau 2018 [PIB]). As of October 2018, the share of renewable energy
from a mixture of sources including wind, solar, small-hydro and bio-power stood at
21.12 per cent (PIB 2018). Beyond existing national and global energy requirements
and targets, the analysis in this paper highlights the unanticipated distributional con-
sequences of existing global warming, such as rising inequality of total consumption
as well as that of electricity or energy consumption. This helps identify an impor-
tant dimension for effective policy action to serve the dual objectives of mitigating
climate change and reducing socio-economic inequality, thereby promoting inclusive
and sustainable growth.
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Figure 4: Spatial distribution of mean temperature across Indian districts, 1979-2015.
Source: Taraz (2018a)
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Figure 5: Temporal change in mean temperature across Indian districts, 1951-2010. Source:
Mani et al. (2018)

Figure 6: Kernel Density Plots of ln(Real MPCE), 1988-2012
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Variables Observations W V Z Prob>z
Std. Temp. 545,833 0.99014 825.988 19.072 0.00000
Std. Pre. 545,683 0.98439 1307.920 20.378 0.00000

ln(Real MPCE) - 1988 114,291 0.97146 955.532 6.988 0.00000
ln(Real MPCE) - 2000 111,440 0.98385 531.462 6.594 0.00000
ln(Real MPCE) - 2005 123,211 0.97794 776.882 6.651 0.00000
ln(Real MPCE) - 2010 98,354 0.98125 566.193 6.930 0.00000
ln(Real MPCE) - 2012 98,535 0.97670 704.468 7.110 0.00000

Table 9: Shapiro-Wilk W test for normal data

Decile Mean Min. Max.

1 71.27 49.03 84.50
2 93.70 84.50 102
3 109.6 102.0 117.2
4 125.0 117.2 133.2
5 142.3 133.2 151.6
6 162.6 151.7 174.5
7 189.2 174.5 205.9
8 227.8 205.9 253.8
9 295.9 253.8 351.9
10 583.8 351.9 102185.1
Average 200.1 49.03 102185.1

N 432928

Table 10: Summary Statistics of Real MPCE by Quantile Categories (Rs.)
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ln(Real MPCE) (1) (2) (3) (4)

Temp. 0.00585
(0.80)

Pre. -0.0005***
(-3.86)

Dev. Temp. 0.0468***
(3.53)

Dev. Pre. -0.000432**
(-3.09)

Std. Temp. 0.0483***
(4.25)

Std. Pre. -0.0270*
(-2.07)

Std. Temp. (1mo) 0.0290***
(3.40)

Std. Pre. (1mo) -0.0234**
(-2.92)

Constant 4.667*** 4.752*** 4.752*** 4.752***
(25.23) (532.73) (517.89) (549.92)

N 2588 2588 2588 2588
R2 0.995 0.995 0.995 0.995
Year Fixed-Effects Yes Yes Yes Yes
District Fixed-Effects Yes Yes Yes Yes

t statistics in parentheses ; * p < 0.05, ** p < 0.01, *** p < 0.001

Table 12: Panel Fixed-Effects Regression Results (1988-2012)
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ln(Real MPCE) (1) (2) (3) (4)

Temp. 0.000770*
(2.31)

Pre. -0.0000183
(-1.31)

Dev. Temp. 0.0122*
(2.54)

Dev. Pre. -0.0000338
(-0.82)

Std. Temp. 0.0146***
(3.52)

Std. Pre. -0.00437
(-1.09)

Std. Temp. (1mo) 0.00719**
(2.97)

Std. Pre. (1mo) -0.00606**
(-2.66)

Constant 5.435*** 5.451*** 5.452*** 5.450***
(486.51) (794.99) (787.36) (784.00)

N 434391 434391 434313 431877
R2 0.226 0.226 0.226 0.226

t statistics in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001

Inclusion of year and district dummies.

Table 14: Robustness Check for Pooled OLS Regressions (All years except 1999-2000)
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ln(Real MPCE) (1) (2) (3) (4)

Temp. 0.000574
(1.49)

Pre. -0.0000152
(-0.93)

Dev. Temp. 0.0117**
(2.64)

Dev. Pre. -0.000143***
(-3.63)

Std. Temp. 0.0120**
(3.01)

Std. Pre. -0.0137***
(-3.94)

Std. Temp. (1mo) 0.00446
(1.81)

Std. Pre. (1mo) -0.0123***
(-5.01)

Constant 5.716*** 5.724*** 5.722*** 5.726***
(541.36) (1239.18) (1246.69) (1364.54)

N 320100 320100 320032 318145
R2 0.186 0.187 0.187 0.187

t statistics in parentheses; * p < 0.05, ** p < 0.01, *** p < 0.001

Inclusion of year and district dummies.

Table 15: Robustness Check for Pooled OLS Regressions (All years except 1987-88 and
1999-2000)
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ln(Real MPCE) (1) (2) (3) (4)
Temp. Std. Temp. Temp. Std. Temp.

NIC Code 1 (Agriculture) -0.00360*** -0.0383***
(-9.23) (-6.47)

NIC Code 2 (Industry) -0.00438*** -0.0647***
(-9.48) (-9.48)

NIC Code 3 (Services) 0.00350*** 0.0306***
(-9.21) (-6.22)

Region (1 = Rural, 0 = Urban) 0.00324*** 0.0470***
(-11.31) (-7.6)

Rural Agriculture -0.0000665 0.0140**
(NIC Code - 1, Region - 1) (-0.18) (-2.96)

Urban Agriculture -0.00767*** -0.0973***
(NIC Code - 1, Region - 2) (-15.77) (-8.28)

Rural Industry -0.00235*** -0.0290***
(NIC Code - 2, Region - 1) (-5.95) (-4.71)

Urban Industry -0.00329*** -0.0535***
(NIC Code - 2, Region - 2) (-6.69) (-6.73)

Rural Services 0.00679*** 0.0744***
(NIC Code - 3, Region - 1) -19.39 -14.64

Urban Services 0.00344*** 0.0325***
(NIC Code - 3, Region - 2) -8.96 -6.61

Constant 5.417*** 5.444*** 5.417*** 5.443***
(-507.97) (-779.03) (-504.78) (-779.3)

N 512020 511877 512020 511877
R2 0.925 0.923 0.925 0.923

t statistics in parentheses ; * p < 0.05, ** p < 0.01, *** p < 0.001

Inclusion of precipitation controls, year dummies and district dummies.

Table 16: Heterogeneous effects of climate shocks by a household’s primary occupation and
region of residence.
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ln(Real MPCE) (1a) (1b) (2a) (2b)
(All years except 2000) (All years except 1988 & 2000)

Temp. Std. Temp. Temp. Std. Temp.

Rural Agriculture -0.0000302 0.00734 0.00167*** 0.0178**
(NIC Code - 1, Region - 1) (-0.08) (-1.21) (-3.74) (-2.98)

Urban Agriculture -0.00787*** -0.144*** -0.00906*** -0.164***
(NIC Code - 1, Region - 2) (-15.19) (-10.84) (-15.20) (-11.72)

Rural Industry -0.00285*** -0.0347*** -0.00278*** -0.0314***
(NIC Code - 2, Region - 1) (-7.08) (-4.98) (-6.40) (-4.71)

Urban Industry -0.00382*** -0.0624*** -0.00659*** -0.0896***
(NIC Code - 2, Region - 2) (-7.50) (-6.57) (-12.08) (-9.01)

Rural Services 0.00658*** 0.0965*** 0.00659*** 0.0968***
(NIC Code - 3, Region - 1) (-17.7) (-16.06) (-15.37) (-15.39)

Urban Services 0.00307*** 0.0504*** 0.00110* 0.0390***
(NIC Code - 3, Region - 2) (-7.63) (-8.05) (-2.39) (-5.97)

Constant 5.434*** 5.454*** 5.725*** 5.724***
(477.96) (795.67) (512.80) (1169.95)

N 407471 407395 298444 298378
R2 0.249 0.230 0.218 0.192

t statistics in parentheses ; * p < 0.05, ** p < 0.01, *** p < 0.001

Inclusion of precipitation controls, year dummies and district dummies.

Table 17: Robustness Checks for heterogeneous effects of climate shocks by a household’s
primary occupation and region of residence.
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(1) (2) (3) (4)
ln(Real MPCE) ln(Real MPCE) ln(Real MPCE) ln(Real MCE)

Ration ( = 1) -0.118*** -0.101*** -0.117*** 0.147***
(-14.32) (-3.60) (-14.17) (11.63)

Temperature 0.00185
(1.86)

Temperature * -0.000690
(Ration = 1) (-0.64)

Std. Temp. 0.0400*** 0.0310*
(3.73) (2.56)

Std. Temp. * -0.0318** -0.0339**
(Ration Card = 1) (-2.87) (-2.67)

Constant 5.810*** 5.772*** 5.804*** 7.128***
(803.91) (223.05) (765.86) (651.87)

N 221746 221746 221702 221702
R2 0.206 0.206 0.207 0.168

t statistics in parentheses ; * p < 0.05, ** p < 0.01, *** p < 0.001
Inclusion of precipitation controls, year and district dummies.
MCE - Monthly consumer expenditure for a household.

Table 18: Effects of temperature shocks on consumption in the presence of ration cards
(2004-05 and 2011-12)

ln(Real MPCE) (1) (2) (3) (4)
Sub-Round Temp. Dev. Temp. Std. Temp. Std. Temp. (1mo)

1 (Jul-Sep) 0.000899 0.0119 0.0103 -0.000691
(1.29) (0.87) (1.57) (-0.12)

2 (Oct-Dec) 0.000916 0.0332*** 0.0202*** 0.00539
(1.05) (3.89) (3.36) (1.15)

3 (Jan-Mar) 0.000136 0.00526 0.00535 0.00680
(0.16) (0.96) (0.96) (1.66)

4 (Apr-Jun) 0.000492 0.00696 0.0237** 0.0154***
(0.80) (1.09) (3.16) (3.63)

Constant 5.444*** 5.456*** 5.455*** 5.456***
(239.58) (810.86) (785.46) (797.12)

N 433067 433067 432989 430556
R2 0.225 0.225 0.225 0.225

t statistics in parentheses ; * p < 0.05, ** p < 0.01, *** p < 0.001
Inclusion of precipitation controls, year and district dummies.

Table 19: The impact of climate shocks on ln(Real MPCE) by sub-round of the NSS survey
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ln(Electricity Exp.) (1) (2) (3) (4)

Temp. 0.00244***
(4.06)

Dev. Temp. 0.0157*
(2.32)

Std. Temp. -0.00326
(-0.49)

Std. Temp. (1mo) -0.00393
(-1.02)

Constant 2.825*** 2.879*** 2.885*** 2.882***
(140.61) (193.53) (190.82) (190.27)

N 303904 303904 303832 301690
R2 0.911 0.911 0.911 0.911

t statistics in parentheses ; * p < 0.05, ** p < 0.01, *** p < 0.001

Inclusion of precipitation controls, year and district dummies.

Table 20: The impact of climate shocks on log electricity consumption, 1988-2012 (excluding
2000)

ln(Electricity Exp.) (1) (2) (3) (4)
Sub-Round Temp. Dev. Temp. Std. Temp. Std. Temp. (1mo)
1 (Jul-Sep) -0.00189 0.0421 0.0114 0.00539

(-1.73) (1.96) (1.09) (0.68)

2 (Oct-Dec) -0.00101 0.0327** 0.00775 0.0102
(-0.78) (2.86) (0.90) (1.50)

3 (Jan-Mar) -0.00308* -0.00325 -0.0210* -0.0127*
(-2.53) (-0.39) (-2.35) (-1.98)

4 (Apr-Jun) -0.000172 0.0250** 0.00833 -0.00478
(-0.19) (2.91) (0.71) (-0.74)

Constant 2.930*** 2.881*** 2.885*** 2.884***
(79.58) (194.12) (189.34) (191.80)

N 303904 303904 303832 301690
R2 0.911 0.911 0.911 0.911

t statistics in parentheses ; * p < 0.05, ** p < 0.01, *** p < 0.001

Inclusion of precipitation controls, year and district dummies.

Table 21: The impact of climate shocks on log electricity consumption by sub-round
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ln(Electricity Exp.) (1) (2) (3) (4)

Decile Temp. Dev. Temp. Std. Temp. Std. Temp. (1mo)

1 -0.0236*** -0.427*** -0.385*** -0.0991***
(-22.48) (-10.14) (-10.12) (-4.95)

2 -0.0174*** -0.293*** -0.265*** -0.0661***
(-19.44) (-13.46) (-13.43) (-5.71)

3 -0.0135*** -0.241*** -0.219*** -0.0560***
(-17.08) (-15.61) (-15.20) (-5.92)

4 -0.0111*** -0.170*** -0.157*** -0.0409***
(-15.20) (-12.21) (-12.26) (-5.25)

5 -0.00881*** -0.142*** -0.134*** -0.0398***
(-12.58) (-12.04) (-12.01) (-5.56)

6 -0.00600*** -0.0971*** -0.0976*** -0.0325***
(-8.65) (-9.21) (-9.74) (-5.34)

7 -0.00315*** -0.0619*** -0.0764*** -0.0322***
(-4.66) (-6.59) (-8.31) (-5.58)

8 0.000565 -0.0138 -0.0280** -0.0156**
(0.85) (-1.51) (-3.14) (-2.94)

9 0.00568*** 0.0568*** 0.0288** 0.00286
(8.34) (5.81) (3.14) (0.54)

10 0.0168*** 0.208*** 0.164*** 0.0547***
(25.42) (15.62) (13.45) (7.28)

Constant 2.625*** 2.845*** 2.849*** 2.869***
(135.98) (197.03) (191.16) (187.75)

N 303900 303900 303828 301686
R2 0.922 0.912 0.912 0.911

t statistics in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001

Inclusion of precipitation controls, year and district dummies.

Table 22: Heterogeneous impacts of climate shocks on log electricity consumption by decile
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ln(Real MPCE) (1) (2) (3) (4)
Temp. Dev. Temp. Std. Temp. Std. Temp. (1mo)

Hot District (= 1) -0.0439 0.00651* 0.00617* 0.00544
(-1.24) (2.27) (2.16) (1.94)

Temp. 0.00109
(1.51)

Dev. Temp. 0.0133**
(3.28)

Std. Temp. 0.0124**
(3.17)

Std. Temp. (1mo) 0.00587*
(2.00)

Hot District (= 1) 0.00125 -0.00548 -0.00163 0.00135
* Temp. Variable (1.01) (-0.83) (-0.28) (0.31)

Pre. -0.0000723***
(-4.03)

Hot District (= 1) 0.0000833***
* Pre. (3.36)

Constant 5.416*** 5.433*** 5.434*** 5.434***
(330.14) (707.51) (711.61) (692.56)

N 545831 545831 545681 542765
R2 0.921 0.921 0.921 0.921

t statistics in parentheses ; * p < 0.05, ** p < 0.01, *** p < 0.001

Inclusion of precipitation controls, year and district dummies.

Table 23: Differential impacts of climate shocks across ‘Hot’ and ‘Cold’ Districts (1988-2012)
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ln(Real MPCE) (1) (2) (3) (4)

Temp. -0.0000321
(-0.02)

Dev. Temp. 0.00690
(0.77)

Std. Temp. 0.00669
(0.71)

Std. Temp. (1mo) 0.0189**
(3.15)

Temp. Range 1 ( 15-29 ◦C) -0.0456 -0.00938 -0.00983 -0.00988
(-1.93) (-1.12) (-1.16) (-1.16)

Temp. Range 2 ( > 29 ◦C) 0.0446 0.000415 -0.000655 -0.00215
(0.50) (0.05) (-0.07) (-0.23)

Temp. Range 1 0.00211 0.0111 0.00800 -0.0121
* Temp. Variable (1.31) (1.11) (0.79) (-1.89)

Temp. Range 2 -0.00108 -0.00998 -0.00730 -0.0191*
* Temp. Variable (-0.36) (-0.88) (-0.60) (-2.49)

Std. Pre. (1mo) 0.0161*
(2.14)

Temp. Range 1 -0.0199*
* Std. Pre. (1mo) (-2.46)

Temp. Range 2 -0.0263**
* Std. Pre. (1mo) (-3.00)

Constant 5.438*** 5.448*** 5.450*** 5.450***
(258.16) (511.20) (507.91) (501.69)

N 545831 545831 545681 542765
R2 0.921 0.921 0.921 0.921

t statistics in parentheses ; * p < 0.05, ** p < 0.01, *** p < 0.001

Inclusion of precipitation controls, year and district dummies.

Table 24: Differential impacts of climate shocks by temperature ranges (1988-2012)
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Calculation of Temperature Inflection Points

A quadratic equation can be written as:

y = ax2 + bx+ c (7)

The first-order condition w.r.t. x for global optimum is:

dy

dx
= 2ax+ b = 0 (8)

=⇒ x∗ = − b

2a
(9)

is the solution to the global optimum. Based on the second order derivative, a < 0
implies the function is concave and x∗ is the point of global maxima, whereas a > 0
implies a convex function, with x∗ being the point of global minima.

Calculation of the temperature threshold to optimise consumption is a parallel ex-
ercise. Given a = 0.0000178 and b = - 0.0002829 (regression not shown), yields
an optimum temperature, T ∗ = 7.9 ◦C. Further, a > 0 implies that consumption
increases with temperature and does not peak at the optimum of 7.9 ◦C.
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